rt-thread/components/drivers/pic/pic-gicv3-its.c

1585 lines
41 KiB
C
Executable File

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-01-30 GuEe-GUI first version
*/
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#define DBG_TAG "pic.gicv3-its"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#include <mmu.h>
#include <mm_page.h>
#include <cpuport.h>
#include <dt-bindings/size.h>
#include "pic-gicv3.h"
#include "pic-gic-common.h"
#define ITS_CMD_QUEUE_SIZE (64 * SIZE_KB)
#define ITS_CMD_QUEUE_ALIGN (64 * SIZE_KB)
#define ITS_CMD_QUEUE_NR (ITS_CMD_QUEUE_SIZE / sizeof(struct its_command))
#define ITS_ITT_ALIGN (256 * SIZE_KB)
#define ITS_LPI_CONFIG_TABLE_ALIGN (64 * SIZE_KB)
#define ITS_LPI_CONFIG_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
#define ITS_LPI_CONFIG_PROP_SHIFT 2
#define ITS_LPI_CONFIG_PROP_MASK RT_GENMASK(7, ITS_LPI_CONFIG_PROP_SHIFT)
#define ITS_LPI_PENDING_TABLE_ALIGN (64 * SIZE_KB)
#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING RT_BIT(0)
#define RDIST_FLAGS_RD_TABLES_PREALLOCATED RT_BIT(1)
#define RDIST_FLAGS_FORCE_NON_SHAREABLE RT_BIT(2)
#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING RT_BIT(0)
#define ITS_FLAGS_WORKAROUND_CAVIUM_22375 RT_BIT(1)
#define ITS_FLAGS_FORCE_NON_SHAREABLE RT_BIT(2)
#define RD_LOCAL_LPI_ENABLED RT_BIT(0)
#define RD_LOCAL_PENDTABLE_PREALLOCATED RT_BIT(1)
#define RD_LOCAL_MEMRESERVE_DONE RT_BIT(2)
struct its_command
{
union
{
rt_le64_t code_raw[4];
rt_uint64_t code[4];
};
};
struct its_table
{
void *base;
rt_uint64_t val;
rt_uint32_t size_bits;
rt_uint32_t page_size;
union
{
struct
{
rt_uint32_t itt_entries;
rt_uint32_t lvl2_bits;
};
};
};
struct its_collection
{
rt_uint64_t target_address;
rt_uint16_t id;
};
struct gicv3_its;
struct its_map
{
rt_list_t list;
struct rt_ref ref;
struct gicv3_its *its;
int device_id;
int lpi_base;
int cpu_id;
void *itt;
void *lvl2_dte;
};
struct gicv3_its
{
struct rt_pic parent;
rt_list_t list;
void *base;
void *base_phy;
void *cmd_base;
rt_ubase_t cmd_idx;
rt_uint32_t flags;
struct rt_spinlock cmd_lock;
struct its_table tbls[GITS_BASER_NR_REGS];
struct its_collection collections[RT_CPUS_NR];
struct gicv3 *gic;
struct rt_ofw_node *np;
};
#define raw_to_gicv3_its(raw) rt_container_of(raw, struct gicv3_its, parent)
static rt_size_t lpi_nr;
static rt_uint32_t lpi_id_bits;
static void *lpi_table;
static void *lpi_pending_table;
static rt_bitmap_t *lpis_vectors = RT_NULL;
static struct rt_spinlock lpis_lock = {}, map_lock = {};
static rt_list_t its_nodes = RT_LIST_OBJECT_INIT(its_nodes);
static rt_list_t map_nodes = RT_LIST_OBJECT_INIT(map_nodes);
rt_inline rt_uint64_t its_readq(struct gicv3_its *its, int off)
{
return HWREG32(its->base + off) |
(rt_uint64_t)HWREG32(its->base + off + 4) << 32;
}
rt_inline void its_writeq(struct gicv3_its *its, int off, rt_uint64_t value)
{
HWREG32(its->base + off) = (rt_uint32_t)value;
HWREG32(its->base + off + 4) = (rt_uint32_t)(value >> 32);
}
rt_inline rt_uint32_t its_readl(struct gicv3_its *its, int off)
{
return HWREG32(its->base + off);
}
rt_inline void its_writel(struct gicv3_its *its, int off, rt_uint32_t value)
{
HWREG32(its->base + off) = value;
}
rt_inline rt_uint32_t its_pirq_event_id(struct gicv3_its *its, struct rt_pic_irq *pirq)
{
return pirq->hwirq - 8192;
}
rt_inline rt_uint32_t its_pirq_device_id(struct gicv3_its *its, struct rt_pic_irq *pirq)
{
struct its_map *map = pirq->msi_desc->priv;
return map->device_id;
}
rt_inline rt_size_t its_device_id_bits(struct gicv3_its *its)
{
return RT_FIELD_GET(GITS_TYPER_DEVBITS, HWREG64(its->base + GITS_TYPER)) + 1;
}
rt_inline void *lpi_base_config(int index)
{
return &((rt_uint8_t *)lpi_table)[index - 8192];
}
static void its_mask_encode(rt_uint64_t *raw_code, rt_uint64_t val, int h, int l)
{
rt_uint64_t mask = RT_GENMASK_ULL(h, l);
*raw_code &= ~mask;
*raw_code |= (val << l) & mask;
}
rt_inline void its_encode_cmd(struct its_command *cmd, rt_uint8_t cmd_nr)
{
its_mask_encode(&cmd->code[0], cmd_nr, 7, 0);
}
rt_inline void its_encode_valid(struct its_command *cmd, rt_bool_t valid)
{
its_mask_encode(&cmd->code[2], !!valid, 63, 63);
}
rt_inline void its_encode_phys_id(struct its_command *cmd, rt_uint32_t phys_id)
{
its_mask_encode(&cmd->code[1], phys_id, 63, 32);
}
rt_inline void its_encode_size(struct its_command *cmd, rt_uint8_t size)
{
its_mask_encode(&cmd->code[1], size, 4, 0);
}
rt_inline void its_encode_itt(struct its_command *cmd, rt_uint64_t itt_addr)
{
its_mask_encode(&cmd->code[2], itt_addr >> 8, 51, 8);
}
rt_inline void its_encode_target(struct its_command *cmd, rt_uint64_t target_addr)
{
its_mask_encode(&cmd->code[2], target_addr >> 16, 51, 16);
}
rt_inline void its_encode_device_id(struct its_command *cmd, rt_uint32_t device_id)
{
its_mask_encode(&cmd->code[0], device_id, 63, 32);
}
rt_inline void its_encode_event_id(struct its_command *cmd, rt_uint32_t event_id)
{
its_mask_encode(&cmd->code[1], event_id, 31, 0);
}
rt_inline void its_encode_collection(struct its_command *cmd, rt_uint16_t collection_id)
{
its_mask_encode(&cmd->code[2], collection_id, 15, 0);
}
static struct its_table *its_baser_type(struct gicv3_its *its, int type)
{
for (int i = 0; i < RT_ARRAY_SIZE(its->tbls); ++i)
{
if (GITS_BASER_TYPE(its->tbls[i].val) == type)
{
return &its->tbls[i];
}
}
return RT_NULL;
}
static struct its_command *its_cmd_alloc(struct gicv3_its *its)
{
struct its_command *cmd = RT_NULL;
for (rt_uint32_t count = 0; count <= 10000; ++count)
{
if ((its->cmd_idx + 1) % ITS_CMD_QUEUE_NR != its_readl(its, GITS_CREADR) / sizeof(*cmd))
{
struct its_command *cmds = its->cmd_base;
cmd = &cmds[its->cmd_idx++];
its->cmd_idx %= ITS_CMD_QUEUE_NR;
rt_memset(cmd, 0, sizeof(*cmd));
break;
}
rt_hw_us_delay(10);
}
return cmd;
}
static rt_err_t its_cmd_submit_raw(struct gicv3_its *its, struct its_command *cmd)
{
rt_uint64_t cwriter;
rt_bool_t retry = RT_FALSE;
cwriter = (void *)(cmd + 1) - its->cmd_base;
rt_hw_rmb();
#ifdef ARCH_CPU_BIG_ENDIAN
cmd->code_raw[0] = rt_cpu_to_le64(cmd->code[0]);
cmd->code_raw[1] = rt_cpu_to_le64(cmd->code[1]);
cmd->code_raw[2] = rt_cpu_to_le64(cmd->code[2]);
cmd->code_raw[3] = rt_cpu_to_le64(cmd->code[3]);
#endif /* ARCH_CPU_BIG_ENDIAN */
/* Make sure the commands written to memory are observable by the ITS */
if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
{
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, cmd, sizeof(*cmd));
}
else
{
rt_hw_wmb();
}
its_writel(its, GITS_CWRITER, cwriter);
for (rt_uint32_t count = 0; count < 10000; ++count)
{
if (its_readl(its, GITS_CREADR) == cwriter)
{
return RT_EOK;
}
/* Stalled */
if (!retry && its_readl(its, GITS_CREADR) & 1)
{
/* Retry */
its_writel(its, GITS_CWRITER, cwriter);
retry = RT_TRUE;
}
else if (retry)
{
LOG_E("Retry command 0x%02x fail", cmd->code[0] & 0xff);
return -RT_EIO;
}
rt_hw_us_delay(10);
}
return -RT_ETIMEOUT;
}
static rt_err_t its_cmd_submit_nomap(struct gicv3_its *its, struct its_command *cmd,
int cpu_id, rt_bool_t sync)
{
rt_err_t err;
struct its_command *hw_cmd;
rt_hw_spin_lock(&its->cmd_lock.lock);
if (!(hw_cmd = its_cmd_alloc(its)))
{
err = -RT_EBUSY;
goto _out_lock;
}
rt_memcpy(hw_cmd, cmd, sizeof(*hw_cmd));
if ((err = its_cmd_submit_raw(its, hw_cmd)))
{
goto _out_lock;
}
if (sync)
{
if (!(hw_cmd = its_cmd_alloc(its)))
{
err = -RT_EBUSY;
goto _out_lock;
}
its_encode_cmd(hw_cmd, GITS_CMD_SYNC);
its_encode_target(hw_cmd, its->collections[cpu_id].target_address);
err = its_cmd_submit_raw(its, hw_cmd);
}
_out_lock:
rt_hw_spin_unlock(&its->cmd_lock.lock);
return err;
}
static rt_err_t its_cmd_submit(struct gicv3_its *its, struct its_command *cmd,
struct its_map *map, rt_bool_t sync)
{
return its_cmd_submit_nomap(its, cmd, map->cpu_id, sync);
}
static rt_err_t lpi_flush_config(struct gicv3_its *its, rt_uint8_t *conf,
struct rt_pic_irq *pirq)
{
struct its_command cmd;
struct its_map *map = pirq->msi_desc->priv;
if (its->gic->redist_flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
{
/* Clean D-cache under command */
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, conf, sizeof(*conf));
}
else
{
/* DSB inner shareable, store */
rt_hw_wmb();
}
rt_memset(&cmd, 0, sizeof(cmd));
its_encode_cmd(&cmd, GITS_CMD_INV);
its_encode_device_id(&cmd, its_pirq_device_id(its, pirq));
its_encode_event_id(&cmd, its_pirq_event_id(its, pirq));
return its_cmd_submit(its, &cmd, map, RT_FALSE);
}
rt_inline void *gicr_rd_base_percpu(struct gicv3 *gic)
{
return gic->redist_regions[rt_hw_cpu_id()].base;
}
rt_inline void *gicr_rd_base(struct gicv3_its *its)
{
return its->gic->redist_percpu_base[rt_hw_cpu_id()];
}
rt_inline rt_uint64_t *gicr_rd_flags(struct gicv3_its *its)
{
return &its->gic->redist_percpu_flags[rt_hw_cpu_id()];
}
static rt_bool_t gicr_supports_plpis(struct gicv3_its *its)
{
return !!(HWREG64(gicr_rd_base(its) + GICR_TYPER) & GICR_TYPER_PLPIS);
}
static rt_err_t redist_disable_lpis(struct gicv3_its *its)
{
void *gicr = gicr_rd_base(its);
rt_uint64_t timeout = 1000000L, val;
if (!gicr_supports_plpis(its))
{
LOG_E("CPU#%d: LPIs not supported", rt_hw_cpu_id());
return -RT_ENOSYS;
}
val = HWREG32(gicr + GICR_CTLR);
if (!(val & GICR_CTLR_ENABLE_LPIS))
{
return RT_EOK;
}
/*
* If coming via a CPU hotplug event, we don't need to disable
* LPIs before trying to re-enable them. They are already
* configured and all is well in the world.
*
* If running with preallocated tables, there is nothing to do.
*/
if ((*gicr_rd_flags(its) & RD_LOCAL_LPI_ENABLED) ||
(its->gic->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
{
return RT_EOK;
}
/* From that point on, we only try to do some damage control */
LOG_W("CPU%d: Booted with LPIs enabled, memory probably corrupted", rt_hw_cpu_id());
/* Disable LPIs */
val &= ~GICR_CTLR_ENABLE_LPIS;
HWREG32(gicr + GICR_CTLR) = val;
/* Make sure any change to GICR_CTLR is observable by the GIC */
rt_hw_barrier(dsb, sy);
/*
* Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
* from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
* Error out if we time out waiting for RWP to clear.
*/
while (HWREG32(gicr + GICR_CTLR) & GICR_CTLR_RWP)
{
if (!timeout)
{
LOG_E("CPU#%d: Timeout while disabling LPIs", rt_hw_cpu_id());
return -RT_ETIMEOUT;
}
rt_hw_us_delay(1);
--timeout;
}
/*
* After it has been written to 1, it is IMPLEMENTATION
* DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
* cleared to 0. Error out if clearing the bit failed.
*/
if (HWREG32(gicr + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS)
{
LOG_E("CPU#%d: Failed to disable LPIs", rt_hw_cpu_id());
return -RT_EBUSY;
}
return RT_EOK;
}
static void gicv3_its_cpu_init_lpis(struct gicv3_its *its)
{
void *gicr;
rt_ubase_t paddr;
rt_uint64_t val, tmp;
if (*gicr_rd_flags(its) & RD_LOCAL_LPI_ENABLED)
{
return;
}
gicr = gicr_rd_base(its);
val = HWREG32(gicr + GICR_CTLR);
if ((its->gic->redist_flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
(val & GICR_CTLR_ENABLE_LPIS))
{
*gicr_rd_flags(its) |= RD_LOCAL_PENDTABLE_PREALLOCATED;
goto _out;
}
paddr = (rt_ubase_t)rt_kmem_v2p(lpi_pending_table);
/* Set PROPBASE */
val = ((rt_ubase_t)rt_kmem_v2p(lpi_table) |
GITS_CBASER_InnerShareable |
GITS_CBASER_RaWaWb |
((lpi_id_bits - 1) & GICR_PROPBASER_IDBITS_MASK));
HWREG64(gicr + GICR_PROPBASER) = val;
tmp = HWREG64(gicr + GICR_PROPBASER);
if (its->gic->redist_flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
{
tmp &= ~GICR_PBASER_SHARE_MASK_ALL;
}
if ((tmp ^ val) & GICR_PBASER_SHARE_MASK_ALL)
{
if (!(tmp & GICR_PBASER_SHARE_MASK_ALL))
{
/*
* The HW reports non-shareable,
* we must remove the cacheability attributes as well.
*/
val &= ~(GICR_PBASER_SHARE_MASK_ALL | GICR_PBASER_INNER_MASK_ALL);
val |= GICR_PBASER_nC;
HWREG64(gicr + GICR_PROPBASER) = val;
}
if (!rt_hw_cpu_id())
{
LOG_I("Using cache flushing for LPI property table");
}
its->gic->redist_flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
}
val = (paddr | GICR_PBASER_InnerShareable | GICR_PBASER_RaWaWb);
HWREG64(gicr + GICR_PENDBASER) = val;
tmp = HWREG64(gicr + GICR_PENDBASER);
if (its->gic->redist_flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
{
tmp &= ~GICR_PBASER_SHARE_MASK_ALL;
}
if (!(tmp & GICR_PBASER_SHARE_MASK_ALL))
{
/*
* The HW reports non-shareable, we must remove the
* cacheability attributes as well.
*/
val &= ~(GICR_PBASER_SHARE_MASK_ALL | GICR_PBASER_INNER_MASK_ALL);
val |= GICR_PBASER_nC;
HWREG64(gicr + GICR_PENDBASER) = val;
}
/* Enable LPIs */
val = HWREG32(gicr + GICR_CTLR);
val |= GICR_CTLR_ENABLE_LPIS;
HWREG32(gicr + GICR_CTLR) = val;
rt_hw_barrier(dsb, sy);
_out:
*gicr_rd_flags(its) |= RD_LOCAL_LPI_ENABLED;
}
static void gicv3_its_cpu_init_collection(struct gicv3_its *its)
{
rt_uint64_t target;
int cpu_id = rt_hw_cpu_id();
struct its_command cmd;
struct its_collection *collection;
if (HWREG64(its->base + GITS_TYPER) & GITS_TYPER_PTA)
{
target = (rt_uint64_t)rt_kmem_v2p(gicr_rd_base(its));
}
else
{
/* Linear by GICR processor number */
target = HWREG64(gicr_rd_base(its) + GICR_TYPER);
target = GICR_TYPER_CPU_NO(target) << 16;
}
collection = &its->collections[cpu_id];
collection->target_address = target;
collection->id = cpu_id;
rt_memset(&cmd, 0, sizeof(cmd));
its_encode_cmd(&cmd, GITS_CMD_MAPC);
its_encode_collection(&cmd, collection->id);
its_encode_target(&cmd, target);
its_encode_valid(&cmd, RT_TRUE);
its_cmd_submit_nomap(its, &cmd, cpu_id, RT_TRUE);
rt_memset(&cmd, 0, sizeof(cmd));
its_encode_cmd(&cmd, GITS_CMD_INVALL);
its_encode_collection(&cmd, collection->id);
its_cmd_submit_nomap(its, &cmd, cpu_id, RT_TRUE);
}
static rt_err_t gicv3_its_irq_init(struct rt_pic *pic)
{
rt_err_t err;
struct gicv3_its *its = raw_to_gicv3_its(pic);
if ((err = redist_disable_lpis(its)))
{
return err;
}
gicv3_its_cpu_init_lpis(its);
gicv3_its_cpu_init_collection(its);
return RT_EOK;
}
static void gicv3_its_irq_mask(struct rt_pic_irq *pirq)
{
rt_uint8_t *conf = lpi_base_config(pirq->hwirq);
struct gicv3_its *its = raw_to_gicv3_its(pirq->pic);
*conf &= ~GITS_LPI_CFG_ENABLED;
lpi_flush_config(its, conf, pirq);
rt_pci_msi_mask_irq(pirq);
}
static void gicv3_its_irq_unmask(struct rt_pic_irq *pirq)
{
rt_uint8_t *conf = lpi_base_config(pirq->hwirq);
struct gicv3_its *its = raw_to_gicv3_its(pirq->pic);
*conf |= GITS_LPI_CFG_ENABLED;
lpi_flush_config(its, conf, pirq);
rt_pci_msi_unmask_irq(pirq);
}
static rt_err_t gicv3_its_irq_set_priority(struct rt_pic_irq *pirq, rt_uint32_t priority)
{
rt_uint8_t *conf = lpi_base_config(pirq->hwirq);
struct gicv3_its *its = raw_to_gicv3_its(pirq->pic);
*conf = (priority << ITS_LPI_CONFIG_PROP_SHIFT) | (*conf & (~ITS_LPI_CONFIG_PROP_MASK));
return lpi_flush_config(its, conf, pirq);
}
static rt_err_t gicv3_its_irq_set_affinity(struct rt_pic_irq *pirq, rt_bitmap_t *affinity)
{
int cpu_id;
rt_err_t err;
struct its_map *map;
struct its_command cmd;
struct its_collection *collection;
struct gicv3_its *its = raw_to_gicv3_its(pirq->pic);
map = pirq->msi_desc->priv;
cpu_id = rt_bitmap_next_set_bit(affinity, 0, RT_CPUS_NR);
collection = &its->collections[cpu_id];
if (collection->target_address == ~0ULL)
{
return -RT_EIO;
}
if (map->cpu_id == cpu_id)
{
return RT_EOK;
}
rt_memset(&cmd, 0, sizeof(cmd));
its_encode_cmd(&cmd, GITS_CMD_MOVI);
its_encode_device_id(&cmd, map->device_id);
its_encode_event_id(&cmd, its_pirq_event_id(its, pirq));
its_encode_collection(&cmd, collection->id);
if (!(err = its_cmd_submit(its, &cmd, map, RT_TRUE)))
{
map->cpu_id = cpu_id;
}
return err;
}
static void gicv3_its_irq_compose_msi_msg(struct rt_pic_irq *pirq, struct rt_pci_msi_msg *msg)
{
rt_ubase_t addr;
struct gicv3_its *its = raw_to_gicv3_its(pirq->pic);
addr = (rt_ubase_t)its->base_phy + GITS_TRANSLATER;
msg->address_hi = rt_upper_32_bits(addr);
msg->address_lo = rt_lower_32_bits(addr);
msg->data = its_pirq_event_id(its, pirq);
}
static int gicv3_its_irq_alloc_msi(struct rt_pic *pic, struct rt_pci_msi_desc *msi_desc)
{
rt_ubase_t level;
rt_uint32_t device_id = -1;
int irq = -1, hwirq, parent_irq, hwirq_index, lpi_base = 0;
struct its_map *map = RT_NULL, *map_tmp;
struct its_table *tbl;
struct its_command cmd;
struct rt_pic_irq *pirq;
struct rt_pci_device *pdev = msi_desc->pdev;
struct gicv3_its *its = raw_to_gicv3_its(pic);
struct rt_pic *ppic = &its->gic->parent;
tbl = its_baser_type(its, GITS_BASER_TYPE_DEVICE);
RT_ASSERT(tbl != RT_NULL);
if (!pdev->parent.ofw_node)
{
device_id = rt_pci_dev_id(pdev);
}
else
{
struct rt_ofw_cell_args args;
for (int index = 0; ; ++index)
{
rt_err_t err = rt_ofw_parse_phandle_cells(pdev->parent.ofw_node,
"msi-parent", "#msi-cells", index, &args);
if (err)
{
return (int)err;
}
if (args.data == its->np)
{
device_id = args.args[0];
}
rt_ofw_node_put(args.data);
if ((rt_int32_t)device_id >= 0)
{
break;
}
}
}
if (device_id >= (1 << tbl->size_bits))
{
LOG_E("Device ID = is %x not supported", device_id);
return -RT_EINVAL;
}
/* Find old map info */
level = rt_spin_lock_irqsave(&map_lock);
rt_list_for_each_entry(map_tmp, &map_nodes, list)
{
if (map_tmp->device_id == device_id)
{
map = map_tmp;
lpi_base = map->lpi_base - 8192;
break;
}
}
rt_spin_unlock_irqrestore(&map_lock, level);
if (!map)
{
rt_size_t itt_size;
if (!(map = rt_calloc(1, sizeof(*map))))
{
return -RT_ENOMEM;
}
itt_size = tbl->itt_entries * (RT_FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE,
HWREG64(its->base + GITS_TYPER)) + 1);
itt_size = rt_max_t(rt_size_t, itt_size, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
map->itt = rt_malloc_align(itt_size, ITS_ITT_ALIGN);
if (!map->itt)
{
rt_free(map);
return -RT_ENOMEM;
}
if (tbl->lvl2_bits)
{
void *lvl2_dte;
rt_uint64_t *entry;
entry = tbl->base;
entry += device_id / (tbl->page_size / GITS_LVL1_ENTRY_SIZE);
if (*entry)
{
lvl2_dte = (void *)(*entry - PV_OFFSET);
rt_page_ref_inc(lvl2_dte, tbl->lvl2_bits);
}
else
{
rt_size_t dte_size;
lvl2_dte = rt_pages_alloc(tbl->lvl2_bits);
if (!lvl2_dte)
{
rt_free_align(map->itt);
rt_free(map);
return -RT_ENOMEM;
}
dte_size = rt_page_bits(tbl->lvl2_bits);
rt_memset(lvl2_dte, 0, dte_size);
if (!(tbl->val & GITS_BASER_SHARE_MASK_ALL))
{
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, lvl2_dte, dte_size);
}
*entry = rt_cpu_to_le64((rt_uint64_t)rt_kmem_v2p(lvl2_dte) | GITS_BASER_VALID);
if (!(tbl->val & GITS_BASER_SHARE_MASK_ALL))
{
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, entry, sizeof(*entry));
}
rt_hw_dsb();
}
map->lvl2_dte = lvl2_dte;
}
rt_memset(map->itt, 0, itt_size);
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, map->itt, itt_size);
}
msi_desc->priv = map;
/* Alloc the LPI base on the first LPI */
level = rt_spin_lock_irqsave(&lpis_lock);
hwirq_index = rt_bitmap_next_clear_bit(lpis_vectors, lpi_base, lpi_nr);
if (hwirq_index >= lpi_nr)
{
irq = -RT_EEMPTY;
goto _out_lock;
}
hwirq = 8192 + hwirq_index;
parent_irq = ppic->ops->irq_map(ppic, hwirq, RT_IRQ_MODE_EDGE_RISING);
if (parent_irq < 0)
{
irq = parent_irq;
goto _out_lock;
}
irq = rt_pic_config_irq(pic, hwirq_index, hwirq);
if (irq < 0)
{
goto _out_lock;
}
pirq = rt_pic_find_irq(pic, hwirq_index);
pirq->mode = RT_IRQ_MODE_EDGE_RISING;
rt_pic_cascade(pirq, parent_irq);
rt_bitmap_set_bit(lpis_vectors, hwirq_index);
_out_lock:
rt_spin_unlock_irqrestore(&lpis_lock, level);
if (irq < 0)
{
return irq;
}
if (map->its)
{
rt_ref_get(&map->ref);
}
else
{
rt_list_init(&map->list);
rt_ref_init(&map->ref);
map->its = its;
map->device_id = device_id;
map->lpi_base = hwirq;
level = rt_spin_lock_irqsave(&map_lock);
rt_list_insert_before(&map_nodes, &map->list);
rt_spin_unlock_irqrestore(&map_lock, level);
}
/* Default to CPU#0 */
map->cpu_id = 0;
RT_IRQ_AFFINITY_SET(pirq->affinity, map->cpu_id);
rt_memset(&cmd, 0, sizeof(cmd));
its_encode_cmd(&cmd, GITS_CMD_MAPD);
its_encode_device_id(&cmd, device_id);
its_encode_size(&cmd, rt_ilog2(tbl->itt_entries) - 1);
its_encode_itt(&cmd, (rt_uint64_t)rt_kmem_v2p(map->itt));
its_encode_valid(&cmd, RT_TRUE);
its_cmd_submit(its, &cmd, map, RT_FALSE);
rt_memset(&cmd, 0, sizeof(cmd));
its_encode_cmd(&cmd, GITS_CMD_MAPTI);
its_encode_device_id(&cmd, device_id);
its_encode_event_id(&cmd, its_pirq_event_id(its, pirq));
its_encode_phys_id(&cmd, hwirq);
its_encode_collection(&cmd, its->collections[map->cpu_id].id);
its_cmd_submit(its, &cmd, map, RT_TRUE);
return irq;
}
static void its_map_release(struct rt_ref *r)
{
rt_ubase_t level;
struct gicv3_its *its;
struct its_table *tbl;
struct its_command cmd;
struct its_map *map = rt_container_of(r, struct its_map, ref);
its = map->its;
tbl = its_baser_type(its, GITS_BASER_TYPE_DEVICE);
rt_memset(&cmd, 0, sizeof(cmd));
its_encode_cmd(&cmd, GITS_CMD_MAPD);
its_encode_device_id(&cmd, map->device_id);
its_encode_size(&cmd, rt_ilog2(tbl->itt_entries) - 1);
its_encode_itt(&cmd, (rt_uint64_t)rt_kmem_v2p(map->itt));
its_encode_valid(&cmd, RT_FALSE);
its_cmd_submit(its, &cmd, map, RT_TRUE);
level = rt_spin_lock_irqsave(&map_lock);
rt_list_insert_before(&map_nodes, &map->list);
rt_spin_unlock_irqrestore(&map_lock, level);
if (map->itt)
{
rt_free_align(map->itt);
}
if (map->lvl2_dte)
{
if (rt_page_ref_get(map->lvl2_dte, tbl->lvl2_bits) == 1)
{
rt_uint64_t *entry;
entry = tbl->base + (map->device_id / (tbl->page_size / GITS_LVL1_ENTRY_SIZE));
*entry = rt_cpu_to_le64(0);
if (!(tbl->val & GITS_BASER_SHARE_MASK_ALL))
{
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, entry, sizeof(*entry));
}
}
rt_pages_free(map->lvl2_dte, tbl->lvl2_bits);
}
rt_free(map);
}
static void gicv3_its_irq_free_msi(struct rt_pic *pic, int irq)
{
rt_ubase_t level;
struct its_map *map;
struct its_command cmd;
struct rt_pic_irq *pirq;
struct gicv3_its *its = raw_to_gicv3_its(pic);
pirq = rt_pic_find_pirq(pic, irq);
if (!pirq)
{
return;
}
map = pirq->msi_desc->priv;
rt_memset(&cmd, 0, sizeof(cmd));
its_encode_cmd(&cmd, GITS_CMD_DISCARD);
its_encode_device_id(&cmd, map->device_id);
its_encode_event_id(&cmd, its_pirq_event_id(its, pirq));
its_cmd_submit(its, &cmd, map, RT_TRUE);
rt_pic_uncascade(pirq);
level = rt_spin_lock_irqsave(&lpis_lock);
rt_bitmap_clear_bit(lpis_vectors, pirq->hwirq - 8192);
rt_spin_unlock_irqrestore(&lpis_lock, level);
rt_ref_put(&map->ref, its_map_release);
}
static rt_err_t gicv3_its_irq_set_state(struct rt_pic *pic, int hwirq, int type, rt_bool_t state)
{
struct its_map *map;
struct its_command cmd;
struct rt_pic_irq *pirq;
struct gicv3_its *its = raw_to_gicv3_its(pic);
if (type != RT_IRQ_STATE_PENDING || hwirq > 8192 + lpi_nr)
{
return -RT_ENOSYS;
}
if (!(pirq = rt_pic_find_irq(pic, hwirq - 8192)))
{
return -RT_ENOSYS;
}
map = pirq->msi_desc->priv;
rt_memset(&cmd, 0, sizeof(cmd));
if (state)
{
its_encode_cmd(&cmd, GITS_CMD_INT);
its_encode_device_id(&cmd, map->device_id);
its_encode_event_id(&cmd, its_pirq_event_id(its, pirq));
}
else
{
its_encode_cmd(&cmd, GITS_CMD_CLEAR);
its_encode_device_id(&cmd, map->device_id);
its_encode_event_id(&cmd, its_pirq_event_id(its, pirq));
}
its_cmd_submit(its, &cmd, map, RT_TRUE);
return RT_EOK;
}
const static struct rt_pic_ops gicv3_its_ops =
{
.name = "GICv3-ITS",
.irq_init = gicv3_its_irq_init,
.irq_ack = rt_pic_irq_parent_ack,
.irq_mask = gicv3_its_irq_mask,
.irq_unmask = gicv3_its_irq_unmask,
.irq_eoi = rt_pic_irq_parent_eoi,
.irq_set_priority = gicv3_its_irq_set_priority,
.irq_set_affinity = gicv3_its_irq_set_affinity,
.irq_compose_msi_msg = gicv3_its_irq_compose_msi_msg,
.irq_alloc_msi = gicv3_its_irq_alloc_msi,
.irq_free_msi = gicv3_its_irq_free_msi,
.irq_set_state = gicv3_its_irq_set_state,
.flags = RT_PIC_F_IRQ_ROUTING,
};
static rt_ssize_t its_baser_page_size(struct gicv3_its *its, struct its_table *tbl)
{
rt_size_t page_size = 64 * SIZE_KB;
while (page_size)
{
rt_uint64_t val, baser_page_size;
rt_off_t baser = GITS_BASERn((int)(tbl - its->tbls));
val = its_readq(its, baser);
val &= ~GITS_BASER_PAGE_SIZE_MASK;
switch (page_size)
{
case 64 * SIZE_KB:
baser_page_size = GITS_BASER_PAGE_SIZE_64K;
break;
case 16 * SIZE_KB:
baser_page_size = GITS_BASER_PAGE_SIZE_16K;
break;
case 4 * SIZE_KB:
default:
baser_page_size = GITS_BASER_PAGE_SIZE_4K;
break;
}
baser_page_size >>= GITS_BASER_PAGE_SIZE_SHIFT;
val |= RT_FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, baser_page_size);
its_writeq(its, baser, val);
tbl->val = its_readq(its, baser);
if (RT_FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, tbl->val) == baser_page_size)
{
break;
}
switch (page_size)
{
case 64 * SIZE_KB:
page_size = 16 * SIZE_KB;
break;
case 16 * SIZE_KB:
page_size = 4 * SIZE_KB;
break;
case 4 * SIZE_KB:
default:
return -RT_EINVAL;
}
}
return page_size;
}
static rt_err_t its_table_init(struct gicv3_its *its)
{
int inited = 0;
rt_off_t baser;
rt_bool_t indirect = RT_FALSE;
rt_size_t pages_nr, alloc_size;
rt_uint64_t val, type, entry_size, share, cache;
struct its_table *tbl;
share = GITS_BASER_InnerShareable;
cache = GITS_BASER_RaWaWb;
for (int i = 0; i < RT_ARRAY_SIZE(its->tbls); ++i)
{
tbl = &its->tbls[i];
val = its_readq(its, GITS_BASERn(i));
type = GITS_BASER_TYPE(val);
if (type != GITS_BASER_TYPE_DEVICE &&
type != GITS_BASER_TYPE_COLLECTION)
{
continue;
}
tbl->page_size = its_baser_page_size(its, tbl);
if (tbl->page_size < 0)
{
continue;
}
baser = GITS_BASERn((int)(tbl - its->tbls));
entry_size = GITS_BASER_ENTRY_SIZE(val);
if (type == GITS_BASER_TYPE_DEVICE)
{
tbl->size_bits = its_device_id_bits(its);
LOG_D("Device Max IDs = %lu", 1UL << tbl->size_bits);
/* For MSI-X */
tbl->itt_entries = 2048;
while (MAX_HANDLERS / tbl->itt_entries < (1 << tbl->size_bits) &&
tbl->itt_entries > 32)
{
tbl->itt_entries >>= 1;
}
}
its_writeq(its, baser, tbl->val | GITS_BASER_INDIRECT);
tbl->val = its_readq(its, baser);
indirect = !!(tbl->val & GITS_BASER_INDIRECT);
if (indirect && type == GITS_BASER_TYPE_DEVICE)
{
/* The size of the level 2 table is equal to ITS page size */
tbl->lvl2_bits = tbl->size_bits - rt_ilog2(tbl->page_size / (int)entry_size);
/* Get level 1 entries count */
alloc_size = (1 << tbl->size_bits) / (tbl->page_size / entry_size);
alloc_size *= GITS_LVL1_ENTRY_SIZE;
}
else
{
alloc_size = (1 << tbl->size_bits) * entry_size;
indirect = RT_FALSE;
}
tbl->base = rt_malloc_align(alloc_size, tbl->page_size);
pages_nr = alloc_size / tbl->page_size;
if (!tbl->base)
{
return -RT_ENOMEM;
}
if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
{
cache = GITS_BASER_nCnB;
}
if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
{
cache = GITS_BASER_nC;
share = 0;
}
val = ((rt_ubase_t)rt_kmem_v2p(tbl->base) |
(type << GITS_BASER_TYPE_SHIFT) |
((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
(pages_nr << GITS_BASER_PAGES_SHIFT) |
cache | share | GITS_BASER_VALID);
val |= indirect ? GITS_BASER_INDIRECT : 0;
switch (tbl->page_size)
{
case 4 * SIZE_KB:
val |= GITS_BASER_PAGE_SIZE_4K;
break;
case 16 * SIZE_KB:
val |= GITS_BASER_PAGE_SIZE_16K;
break;
case 64 * SIZE_KB:
val |= GITS_BASER_PAGE_SIZE_64K;
break;
}
its_writeq(its, baser, val);
tbl->val = its_readq(its, baser);
rt_memset(tbl->base, 0, alloc_size);
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, tbl->base, alloc_size);
cache = tbl->val & GITS_BASER_INNER_MASK_ALL;
share = tbl->val & GITS_BASER_SHARE_MASK_ALL;
++inited;
}
return inited == 2 ? RT_EOK : -RT_ENOSYS;
}
static rt_err_t its_cmd_queue_init(struct gicv3_its *its)
{
void *cmd_phy_base;
rt_uint64_t baser, tmp;
its->cmd_base = rt_malloc_align(ITS_CMD_QUEUE_SIZE, ITS_CMD_QUEUE_ALIGN);
if (!its->cmd_base)
{
return -RT_ENOMEM;
}
its->cmd_idx = 0;
rt_memset(its->cmd_base, 0, ITS_CMD_QUEUE_SIZE);
cmd_phy_base = rt_kmem_v2p(its->cmd_base);
baser = GITS_CBASER_VALID | GITS_CBASER_RaWaWb | GITS_CBASER_InnerShareable | \
((rt_uint64_t)cmd_phy_base) | (ITS_CMD_QUEUE_SIZE / (4 * SIZE_KB) - 1);
its_writeq(its, GITS_CBASER, baser);
tmp = its_readq(its, GITS_CBASER);
if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
{
tmp &= ~GITS_CBASER_SHARE_MASK_ALL;
}
if ((tmp ^ baser) & GITS_CBASER_SHARE_MASK_ALL)
{
if (!(tmp & GITS_CBASER_SHARE_MASK_ALL))
{
/* The HW reports non-shareable, we must remove the cacheability attributes as well */
baser &= ~(GITS_CBASER_SHARE_MASK_ALL | GITS_CBASER_INNER_MASK_ALL);
baser |= GITS_CBASER_nC;
its_writeq(its, GITS_CBASER, baser);
}
LOG_I("Using cache flushing for CMD queue");
its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, its->cmd_base, ITS_CMD_QUEUE_SIZE);
}
/* Get the next command from the start of the buffer */
its_writeq(its, GITS_CWRITER, 0);
return RT_EOK;
}
static rt_err_t its_lpi_table_init(struct gicv3 *gic)
{
rt_size_t lpi_table_size, lpi_pending_table_size;
rt_uint32_t numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic->gicd_typer);
if (HWREG32(gicr_rd_base_percpu(gic) + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS)
{
gic->redist_flags |= RDIST_FLAGS_RD_TABLES_PREALLOCATED;
gic->redist_flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
LOG_I("Using preallocated redistributor tables");
}
lpi_id_bits = GICD_TYPER_ID_BITS(gic->gicd_typer);
if (gic->redist_flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)
{
rt_uint64_t val = HWREG64(gicr_rd_base_percpu(gic) + GICR_PROPBASER);
lpi_id_bits = rt_min_t(rt_uint32_t, lpi_id_bits, (val & GICR_PROPBASER_IDBITS_MASK) + 1);
}
lpi_nr = rt_min_t(rt_size_t, (1UL << lpi_id_bits) - 8192, gic->lpi_nr);
lpi_id_bits = __rt_clz(lpi_nr + 8192);
if (numlpis > 2 && numlpis > lpi_nr)
{
lpi_nr = numlpis;
LOG_W("Using hypervisor restricted LPI range [%u]", lpi_nr);
}
gic->lpi_nr = lpi_nr;
/* LPI Configuration table entry is 1 byte, Pending table bytes is N / 8. */
lpi_table_size = RT_GENMASK(lpi_id_bits, 0);
lpi_pending_table_size = lpi_table_size / 8;
lpi_table = rt_malloc_align(lpi_table_size, ITS_LPI_CONFIG_TABLE_ALIGN);
lpi_pending_table = rt_malloc_align(lpi_pending_table_size, ITS_LPI_PENDING_TABLE_ALIGN);
lpis_vectors = rt_calloc(1, RT_BITMAP_LEN(lpi_nr) * sizeof(rt_bitmap_t));
if (!lpi_table || !lpi_pending_table || !lpis_vectors)
{
if (lpi_table)
{
rt_free_align(lpi_table);
}
if (lpi_pending_table)
{
rt_free_align(lpi_pending_table);
}
if (lpis_vectors)
{
rt_free_align(lpis_vectors);
}
lpi_table = RT_NULL;
lpi_pending_table = RT_NULL;
lpis_vectors = RT_NULL;
return -RT_ENOMEM;
}
/* Set the default configuration */
rt_memset(lpi_table, ITS_LPI_CONFIG_PROP_DEFAULT_PRIO | GITS_LPI_CFG_GROUP1, lpi_table_size);
/*
* We should make a full mask size with lpi_id_bits,
* otherwise 'undefined' LPI will occur.
*/
rt_memset(lpi_pending_table, 0, lpi_pending_table_size);
/* Flush the table to memory */
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, lpi_table, lpi_table_size);
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, lpi_pending_table, lpi_pending_table_size);
LOG_D("ITS: Allocator initialized for %u LPIs", lpi_nr);
return RT_EOK;
}
static void its_init_fail(struct gicv3_its *its)
{
if (its->base)
{
rt_iounmap(its->base);
}
if (its->cmd_base)
{
rt_free_align(its->cmd_base);
}
for (int i = 0; i < RT_ARRAY_SIZE(its->tbls); ++i)
{
struct its_table *tbl = &its->tbls[i];
if (tbl->base)
{
rt_free_align(tbl->base);
}
}
rt_list_remove(&its->list);
rt_free(its);
}
static rt_err_t its_quirk_cavium_22375(void *data)
{
struct gicv3_its *its = data;
its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
return RT_EOK;
}
static rt_err_t its_enable_rockchip(void *data)
{
struct gicv3_its *its = data;
struct gicv3 *gic = its->gic;
if (!rt_ofw_machine_is_compatible("rockchip,rk3566") &&
!rt_ofw_machine_is_compatible("rockchip,rk3567") &&
!rt_ofw_machine_is_compatible("rockchip,rk3568") &&
!rt_ofw_machine_is_compatible("rockchip,rk3588") &&
!rt_ofw_machine_is_compatible("rockchip,rk3588s"))
{
return -RT_EINVAL;
}
its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
gic->redist_flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
return RT_EOK;
}
static rt_err_t its_set_non_coherent(void *data)
{
struct gicv3_its *its = data;
if (!rt_ofw_prop_read_bool(its->np, "dma-noncoherent"))
{
return -RT_EINVAL;
}
its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
return RT_EOK;
}
static const struct gic_quirk _its_quirks[] =
{
{
.desc = "ITS: Cavium ThunderX errata: 22375, 24313",
.iidr = 0xa100034c,
.iidr_mask = 0xffff0fff,
.init = its_quirk_cavium_22375,
},
{
.desc = "ITS: Rockchip erratum RK3566 ~ RK3588",
.iidr = 0x0201743b,
.iidr_mask = 0xffffffff,
.init = its_enable_rockchip,
},
{
.desc = "ITS: non-coherent attribute",
.compatible = "arm,gic-v3-its",
.init = its_set_non_coherent,
},
{ /* sentinel */ }
};
static const struct rt_ofw_node_id gicv3_its_ofw_match[] =
{
{ .compatible = "arm,gic-v3-its" },
{ /* sentinel */ }
};
rt_err_t gicv3_its_ofw_probe(struct rt_ofw_node *np, const struct rt_ofw_node_id *id)
{
rt_err_t err = -RT_EEMPTY;
struct rt_ofw_node *its_np;
struct gicv3_its *its, *its_next;
rt_ofw_foreach_available_child_node(np, its_np)
{
if (!rt_ofw_node_match(its_np, gicv3_its_ofw_match))
{
continue;
}
if (!rt_ofw_prop_read_bool(its_np, "msi-controller"))
{
continue;
}
if (!(its = rt_calloc(1, sizeof(struct gicv3_its))))
{
rt_ofw_node_put(its_np);
err = -RT_ENOMEM;
goto _free_all;
}
its->base = rt_ofw_iomap(its_np, 0);
if (!its->base)
{
LOG_E("%s: IO map failed", rt_ofw_node_full_name(its_np));
its_init_fail(its);
continue;
}
/*
* Make sure ALL the ITS are reset before we probe any,
* as they may be sharing memory
*/
for (int i = 0; i < GITS_BASER_NR_REGS; ++i)
{
its_writeq(its, GITS_BASER + (i << 3), 0);
}
its->np = its_np;
rt_list_init(&its->list);
rt_list_insert_before(&its_nodes, &its->list);
}
if (!rt_list_isempty(&its_nodes))
{
if ((err = its_lpi_table_init(rt_ofw_data(np))))
{
goto _free_all;
}
}
rt_list_for_each_entry_safe(its, its_next, &its_nodes, list)
{
rt_uint32_t ctlr;
its->base_phy = rt_kmem_v2p(its->base);
its->gic = rt_ofw_data(np);
gic_common_init_quirk_hw(HWREG32(its->base + GITS_IIDR), _its_quirks, its);
gic_common_init_quirk_ofw(its->np, _its_quirks, its);
if ((err = its_cmd_queue_init(its)))
{
goto _fail;
}
rt_spin_lock_init(&its->cmd_lock);
if ((err = its_table_init(its)))
{
goto _fail;
}
for (int i = 0; i < RT_CPUS_NR; ++i)
{
its->collections[i].target_address = ~0ULL;
}
ctlr = its_readl(its, GITS_CTLR);
ctlr |= GITS_CTLR_ENABLE;
its_writel(its, GITS_CTLR, ctlr);
its->parent.priv_data = its;
its->parent.ops = &gicv3_its_ops;
rt_pic_linear_irq(&its->parent, its->gic->lpi_nr);
rt_pic_user_extends(&its->parent);
its_np = its->np;
rt_ofw_data(its_np) = &its->parent;
rt_ofw_node_set_flag(its_np, RT_OFW_F_READLY);
continue;
_fail:
its_init_fail(its);
if (err == -RT_ENOMEM)
{
break;
}
}
if (rt_list_isempty(&its_nodes) && lpis_vectors)
{
rt_free(lpis_vectors);
rt_free_align(lpi_table);
rt_free_align(lpi_pending_table);
lpis_vectors = RT_NULL;
}
return err;
_free_all:
rt_list_for_each_entry_safe(its, its_next, &its_nodes, list)
{
rt_free(its);
rt_list_remove(&its->list);
}
return err;
}