rt-thread/components/drivers/pci/pci.c

1005 lines
23 KiB
C

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-10-24 GuEe-GUI first version
*/
#include <rtthread.h>
#include <rtservice.h>
#define DBG_TAG "rtdm.pci"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#include <drivers/pci.h>
#include <drivers/misc.h>
#include <drivers/core/bus.h>
rt_inline void spin_lock(struct rt_spinlock *spinlock)
{
rt_hw_spin_lock(&spinlock->lock);
}
rt_inline void spin_unlock(struct rt_spinlock *spinlock)
{
rt_hw_spin_unlock(&spinlock->lock);
}
rt_uint32_t rt_pci_domain(struct rt_pci_device *pdev)
{
struct rt_pci_host_bridge *host_bridge;
if (!pdev)
{
return RT_UINT32_MAX;
}
if ((host_bridge = rt_pci_find_host_bridge(pdev->bus)))
{
return host_bridge->domain;
}
return RT_UINT32_MAX;
}
static rt_uint8_t pci_find_next_cap_ttl(struct rt_pci_bus *bus,
rt_uint32_t devfn, rt_uint8_t pos, int cap, int *ttl)
{
rt_uint8_t ret = 0, id;
rt_uint16_t ent;
rt_pci_bus_read_config_u8(bus, devfn, pos, &pos);
while ((*ttl)--)
{
if (pos < 0x40)
{
break;
}
pos &= ~3;
rt_pci_bus_read_config_u16(bus, devfn, pos, &ent);
id = ent & 0xff;
if (id == 0xff)
{
break;
}
if (id == cap)
{
ret = pos;
break;
}
pos = (ent >> 8);
}
return ret;
}
static rt_uint8_t pci_find_next_cap(struct rt_pci_bus *bus,
rt_uint32_t devfn, rt_uint8_t pos, int cap)
{
int ttl = RT_PCI_FIND_CAP_TTL;
return pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
}
static rt_uint8_t pci_bus_find_cap_start(struct rt_pci_bus *bus,
rt_uint32_t devfn, rt_uint8_t hdr_type)
{
rt_uint8_t res = 0;
rt_uint16_t status;
rt_pci_bus_read_config_u16(bus, devfn, PCIR_STATUS, &status);
if (status & PCIM_STATUS_CAPPRESENT)
{
switch (hdr_type)
{
case PCIM_HDRTYPE_NORMAL:
case PCIM_HDRTYPE_BRIDGE:
res = PCIR_CAP_PTR;
break;
case PCIM_HDRTYPE_CARDBUS:
res = PCIR_CAP_PTR_2;
break;
}
}
return res;
}
rt_uint8_t rt_pci_bus_find_capability(struct rt_pci_bus *bus, rt_uint32_t devfn, int cap)
{
rt_uint8_t hdr_type, ret = RT_UINT8_MAX;
if (bus)
{
rt_pci_bus_read_config_u8(bus, devfn, PCIR_HDRTYPE, &hdr_type);
ret = pci_bus_find_cap_start(bus, devfn, hdr_type & PCIM_HDRTYPE);
if (ret)
{
ret = pci_find_next_cap(bus, devfn, ret, cap);
}
}
return ret;
}
rt_uint8_t rt_pci_find_capability(struct rt_pci_device *pdev, int cap)
{
rt_uint8_t res = RT_UINT8_MAX;
if (pdev)
{
res = pci_bus_find_cap_start(pdev->bus, pdev->devfn, pdev->hdr_type);
if (res)
{
res = pci_find_next_cap(pdev->bus, pdev->devfn, res, cap);
}
}
return res;
}
rt_uint8_t rt_pci_find_next_capability(struct rt_pci_device *pdev, rt_uint8_t pos, int cap)
{
rt_uint8_t res = RT_UINT8_MAX;
if (pdev)
{
res = pci_find_next_cap(pdev->bus, pdev->devfn, pos + PCICAP_NEXTPTR, cap);
}
return res;
}
rt_uint16_t rt_pci_find_ext_capability(struct rt_pci_device *pdev, int cap)
{
return rt_pci_find_ext_next_capability(pdev, 0, cap);
}
rt_uint16_t rt_pci_find_ext_next_capability(struct rt_pci_device *pdev, rt_uint16_t pos, int cap)
{
int ttl;
rt_uint32_t header;
rt_uint16_t start = pos;
/* minimum 8 bytes per capability */
ttl = ((PCIE_REGMAX + 1) - (PCI_REGMAX + 1)) / 8;
if (pdev->cfg_size <= PCI_REGMAX + 1)
{
return 0;
}
if (!pos)
{
pos = PCI_REGMAX + 1;
}
if (rt_pci_read_config_u32(pdev, pos, &header))
{
return 0;
}
/*
* If we have no capabilities, this is indicated by cap ID,
* cap version and next pointer all being 0.
*/
if (header == 0)
{
return 0;
}
while (ttl-- > 0)
{
if (PCI_EXTCAP_ID(header) == cap && pos != start)
{
return pos;
}
pos = PCI_EXTCAP_NEXTPTR(header);
if (pos < PCI_REGMAX + 1)
{
break;
}
if (rt_pci_read_config_u32(pdev, pos, &header))
{
break;
}
}
return 0;
}
static void pci_set_master(struct rt_pci_device *pdev, rt_bool_t enable)
{
rt_uint16_t old_cmd, cmd;
rt_pci_read_config_u16(pdev, PCIR_COMMAND, &old_cmd);
if (enable)
{
cmd = old_cmd | PCIM_CMD_BUSMASTEREN;
}
else
{
cmd = old_cmd & ~PCIM_CMD_BUSMASTEREN;
}
if (cmd != old_cmd)
{
rt_pci_write_config_u16(pdev, PCIR_COMMAND, cmd);
}
pdev->busmaster = !!enable;
}
void rt_pci_set_master(struct rt_pci_device *pdev)
{
if (pdev)
{
pci_set_master(pdev, RT_TRUE);
}
}
void rt_pci_clear_master(struct rt_pci_device *pdev)
{
if (pdev)
{
pci_set_master(pdev, RT_FALSE);
}
}
void rt_pci_intx(struct rt_pci_device *pdev, rt_bool_t enable)
{
rt_uint16_t pci_command, new;
if (!pdev)
{
return;
}
rt_pci_read_config_u16(pdev, PCIR_COMMAND, &pci_command);
if (enable)
{
new = pci_command & ~PCIM_CMD_INTxDIS;
}
else
{
new = pci_command | PCIM_CMD_INTxDIS;
}
if (new != pci_command)
{
rt_pci_write_config_u16(pdev, PCIR_COMMAND, new);
}
}
static rt_bool_t pci_check_and_set_intx_mask(struct rt_pci_device *pdev, rt_bool_t mask)
{
rt_ubase_t level;
rt_bool_t irq_pending;
rt_bool_t res = RT_TRUE;
rt_uint16_t origcmd, newcmd;
rt_uint32_t cmd_status_dword;
struct rt_pci_bus *bus = pdev->bus;
level = rt_spin_lock_irqsave(&rt_pci_lock);
bus->ops->read(bus, pdev->devfn, PCIR_COMMAND, 4, &cmd_status_dword);
irq_pending = (cmd_status_dword >> 16) & PCIM_STATUS_INTxSTATE;
/*
* Check interrupt status register to see whether our device
* triggered the interrupt (when masking) or the next IRQ is
* already pending (when unmasking).
*/
if (mask != irq_pending)
{
res = RT_FALSE;
}
else
{
origcmd = cmd_status_dword;
newcmd = origcmd & ~PCIM_CMD_INTxDIS;
if (mask)
{
newcmd |= PCIM_CMD_INTxDIS;
}
if (newcmd != origcmd)
{
bus->ops->write(bus, pdev->devfn, PCIR_COMMAND, 2, newcmd);
}
}
rt_spin_unlock_irqrestore(&rt_pci_lock, level);
return res;
}
rt_bool_t rt_pci_check_and_mask_intx(struct rt_pci_device *pdev)
{
rt_bool_t res = RT_FALSE;
if (pdev)
{
res = pci_check_and_set_intx_mask(pdev, RT_TRUE);
}
return res;
}
rt_bool_t rt_pci_check_and_unmask_intx(struct rt_pci_device *pdev)
{
rt_bool_t res = RT_FALSE;
if (pdev)
{
res = pci_check_and_set_intx_mask(pdev, RT_FALSE);
}
return res;
}
void rt_pci_irq_mask(struct rt_pci_device *pdev)
{
if (pdev)
{
rt_bool_t unused;
struct rt_pic_irq *pirq;
rt_pci_intx(pdev, RT_FALSE);
pirq = rt_pic_find_pirq(pdev->intx_pic, pdev->irq);
RT_ASSERT(pirq != RT_NULL);
rt_hw_spin_lock(&pirq->rw_lock.lock);
unused = rt_list_isempty(&pirq->isr.list);
rt_hw_spin_unlock(&pirq->rw_lock.lock);
if (unused)
{
rt_hw_interrupt_mask(pdev->irq);
}
}
}
void rt_pci_irq_unmask(struct rt_pci_device *pdev)
{
if (pdev)
{
rt_hw_interrupt_umask(pdev->irq);
rt_pci_intx(pdev, RT_TRUE);
}
}
struct rt_pci_bus *rt_pci_find_root_bus(struct rt_pci_bus *bus)
{
if (!bus)
{
return RT_NULL;
}
while (bus->parent)
{
bus = bus->parent;
}
return bus;
}
struct rt_pci_host_bridge *rt_pci_find_host_bridge(struct rt_pci_bus *bus)
{
if (!bus)
{
return RT_NULL;
}
if ((bus = rt_pci_find_root_bus(bus)))
{
return rt_container_of(bus->host_bridge, struct rt_pci_host_bridge, parent);
}
return RT_NULL;
}
rt_uint8_t rt_pci_irq_intx(struct rt_pci_device *pdev, rt_uint8_t pin)
{
int slot = 0;
if (!pdev->ari_enabled)
{
slot = RT_PCI_SLOT(pdev->devfn);
}
return (((pin - 1) + slot) % 4) + 1;
}
rt_uint8_t rt_pci_irq_slot(struct rt_pci_device *pdev, rt_uint8_t *pinp)
{
rt_uint8_t pin = *pinp;
while (!rt_pci_is_root_bus(pdev->bus))
{
pin = rt_pci_irq_intx(pdev, pin);
pdev = pdev->bus->self;
}
*pinp = pin;
return RT_PCI_SLOT(pdev->devfn);
}
rt_err_t rt_pci_region_setup(struct rt_pci_host_bridge *host_bridge)
{
rt_err_t err = host_bridge->bus_regions_nr == 0 ? -RT_EEMPTY : RT_EOK;
for (int i = 0; i < host_bridge->bus_regions_nr; ++i)
{
struct rt_pci_bus_region *region = &host_bridge->bus_regions[i];
/*
* Avoid allocating PCI resources from address 0 -- this is illegal
* according to PCI 2.1 and moreover. Use a reasonable starting value of
* 0x1000 instead if the bus start address is below 0x1000.
*/
region->bus_start = rt_max_t(rt_size_t, 0x1000, region->phy_addr);
LOG_I("Bus %s region(%d):",
region->flags == PCI_BUS_REGION_F_MEM ? "Memory" :
(region->flags == PCI_BUS_REGION_F_PREFETCH ? "Prefetchable Mem" :
(region->flags == PCI_BUS_REGION_F_IO ? "I/O" : "Unknown")), i);
LOG_I(" cpu: [%p, %p]", region->cpu_addr, (region->cpu_addr + region->size - 1));
LOG_I(" physical: [%p, %p]", region->phy_addr, (region->phy_addr + region->size - 1));
}
return err;
}
struct rt_pci_bus_region *rt_pci_region_alloc(struct rt_pci_host_bridge *host_bridge,
void **out_addr, rt_size_t size, rt_ubase_t flags, rt_bool_t mem64)
{
struct rt_pci_bus_region *bus_region, *region = RT_NULL;
bus_region = &host_bridge->bus_regions[0];
for (int i = 0; i < host_bridge->bus_regions_nr; ++i, ++bus_region)
{
if (bus_region->flags == flags && bus_region->size > 0)
{
void *addr;
region = bus_region;
addr = (void *)(((region->bus_start - 1) | (size - 1)) + 1);
if ((rt_uint64_t)addr - region->phy_addr + size <= region->size)
{
rt_bool_t addr64 = !!rt_upper_32_bits((rt_ubase_t)addr);
if (mem64)
{
if (!addr64)
{
region = RT_NULL;
/* Try again */
continue;
}
}
else if (addr64)
{
region = RT_NULL;
/* Try again */
continue;
}
region->bus_start = ((rt_uint64_t)addr + size);
*out_addr = addr;
}
break;
}
}
if (!region && mem64)
{
/* Retry */
region = rt_pci_region_alloc(host_bridge, out_addr, size, flags, RT_FALSE);
}
return region;
}
rt_err_t rt_pci_device_alloc_resource(struct rt_pci_host_bridge *host_bridge,
struct rt_pci_device *pdev)
{
rt_err_t err = RT_EOK;
rt_size_t size;
rt_ubase_t addr = 0;
rt_uint32_t cfg;
rt_size_t bars_nr;
rt_uint8_t hdr_type;
rt_bool_t prefetch = RT_FALSE;
rt_uint16_t class, command = 0;
for (int i = 0; i < host_bridge->bus_regions_nr; ++i)
{
if (host_bridge->bus_regions[i].flags == PCI_BUS_REGION_F_PREFETCH)
{
prefetch = RT_TRUE;
break;
}
}
rt_pci_read_config_u16(pdev, PCIR_COMMAND, &command);
command = (command & ~(PCIM_CMD_PORTEN | PCIM_CMD_MEMEN)) | PCIM_CMD_BUSMASTEREN;
rt_pci_read_config_u8(pdev, PCIR_HDRTYPE, &hdr_type);
if (pdev->hdr_type != hdr_type)
{
LOG_W("%s may not initialized", rt_dm_dev_get_name(&pdev->parent));
}
switch (hdr_type)
{
case PCIM_HDRTYPE_NORMAL:
bars_nr = PCI_STD_NUM_BARS;
break;
case PCIM_HDRTYPE_BRIDGE:
bars_nr = 2;
break;
case PCIM_HDRTYPE_CARDBUS:
bars_nr = 0;
break;
default:
bars_nr = 0;
break;
}
for (int i = 0; i < bars_nr; ++i)
{
rt_ubase_t flags;
rt_ubase_t bar_base;
rt_bool_t mem64 = RT_FALSE;
struct rt_pci_bus_region *region;
cfg = 0;
bar_base = PCIR_BAR(i);
rt_pci_write_config_u32(pdev, bar_base, RT_UINT32_MAX);
rt_pci_read_config_u32(pdev, bar_base, &cfg);
if (!cfg)
{
continue;
}
else if (cfg == RT_UINT32_MAX)
{
rt_pci_write_config_u32(pdev, bar_base, 0UL);
continue;
}
if (cfg & PCIM_BAR_SPACE)
{
mem64 = RT_FALSE;
flags = PCI_BUS_REGION_F_IO;
size = cfg & PCIM_BAR_IO_MASK;
size &= ~(size - 1);
}
else
{
/* memory */
if ((cfg & PCIM_BAR_MEM_TYPE_MASK) == PCIM_BAR_MEM_TYPE_64)
{
/* 64bits */
rt_uint32_t cfg64;
rt_uint64_t bar64;
mem64 = RT_TRUE;
rt_pci_write_config_u32(pdev, bar_base + sizeof(rt_uint32_t), RT_UINT32_MAX);
rt_pci_read_config_u32(pdev, bar_base + sizeof(rt_uint32_t), &cfg64);
bar64 = ((rt_uint64_t)cfg64 << 32) | cfg;
size = ~(bar64 & PCIM_BAR_MEM_MASK) + 1;
}
else
{
/* 32bits */
mem64 = RT_FALSE;
size = (rt_uint32_t)(~(cfg & PCIM_BAR_MEM_MASK) + 1);
}
if (prefetch && (cfg & PCIM_BAR_MEM_PREFETCH))
{
flags = PCI_BUS_REGION_F_PREFETCH;
}
else
{
flags = PCI_BUS_REGION_F_MEM;
}
}
region = rt_pci_region_alloc(host_bridge, (void **)&addr, size, flags, mem64);
if (region)
{
rt_pci_write_config_u32(pdev, bar_base, addr);
if (mem64)
{
bar_base += sizeof(rt_uint32_t);
#ifdef RT_PCI_SYS_64BIT
rt_pci_write_config_u32(pdev, bar_base, (rt_uint32_t)(addr >> 32));
#else
/*
* If we are a 64-bit decoder then increment to the upper 32 bits
* of the bar and force it to locate in the lower 4GB of memory.
*/
rt_pci_write_config_u32(pdev, bar_base, 0UL);
#endif
}
pdev->resource[i].size = size;
pdev->resource[i].base = region->cpu_addr + (addr - region->phy_addr);
pdev->resource[i].flags = flags;
if (mem64)
{
++i;
pdev->resource[i].flags = PCI_BUS_REGION_F_NONE;
}
}
else
{
err = -RT_ERROR;
LOG_W("%s alloc bar(%d) address fail", rt_dm_dev_get_name(&pdev->parent), i);
}
command |= (cfg & PCIM_BAR_SPACE) ? PCIM_CMD_PORTEN : PCIM_CMD_MEMEN;
}
if (hdr_type == PCIM_HDRTYPE_NORMAL || hdr_type == PCIM_HDRTYPE_BRIDGE)
{
int rom_addr = (hdr_type == PCIM_HDRTYPE_NORMAL) ? PCIR_BIOS : PCIR_BIOS_1;
rt_pci_write_config_u32(pdev, rom_addr, 0xfffffffe);
rt_pci_read_config_u32(pdev, rom_addr, &cfg);
if (cfg)
{
size = -(cfg & ~1);
if (rt_pci_region_alloc(host_bridge, (void **)&addr, size, PCI_BUS_REGION_F_MEM, RT_FALSE))
{
rt_pci_write_config_u32(pdev, rom_addr, addr);
}
command |= PCIM_CMD_MEMEN;
}
}
rt_pci_read_config_u16(pdev, PCIR_SUBCLASS, &class);
if (class == PCIS_DISPLAY_VGA)
{
command |= PCIM_CMD_PORTEN;
}
rt_pci_write_config_u16(pdev, PCIR_COMMAND, command);
rt_pci_write_config_u8(pdev, PCIR_CACHELNSZ, RT_PCI_CACHE_LINE_SIZE);
rt_pci_write_config_u8(pdev, PCIR_LATTIMER, 0x80);
return err;
}
void rt_pci_enum_device(struct rt_pci_bus *bus,
rt_bool_t (callback(struct rt_pci_device *, void *)), void *data)
{
rt_bool_t is_end = RT_FALSE;
struct rt_spinlock *lock;
struct rt_pci_bus *parent;
struct rt_pci_device *pdev, *last_pdev = RT_NULL;
/* Walk tree */
while (bus && !is_end)
{
/* Goto bottom */
for (;;)
{
lock = &bus->lock;
spin_lock(lock);
if (rt_list_isempty(&bus->children_nodes))
{
parent = bus->parent;
break;
}
bus = rt_list_entry(&bus->children_nodes, struct rt_pci_bus, list);
spin_unlock(lock);
}
rt_list_for_each_entry(pdev, &bus->devices_nodes, list)
{
if (last_pdev)
{
spin_unlock(lock);
if (callback(last_pdev, data))
{
spin_lock(lock);
--last_pdev->parent.ref_count;
is_end = RT_TRUE;
break;
}
spin_lock(lock);
--last_pdev->parent.ref_count;
}
++pdev->parent.ref_count;
last_pdev = pdev;
}
if (!is_end && last_pdev)
{
spin_unlock(lock);
if (callback(last_pdev, data))
{
is_end = RT_TRUE;
}
spin_lock(lock);
--last_pdev->parent.ref_count;
}
last_pdev = RT_NULL;
spin_unlock(lock);
/* Up a level or goto next */
while (!is_end)
{
lock = &bus->lock;
if (!parent)
{
/* Root bus, is end */
bus = RT_NULL;
break;
}
spin_lock(lock);
if (bus->list.next != &parent->children_nodes)
{
/* Has next sibling */
bus = rt_list_entry(bus->list.next, struct rt_pci_bus, list);
spin_unlock(lock);
break;
}
/* All device on this buss' parent */
rt_list_for_each_entry(pdev, &parent->devices_nodes, list)
{
if (last_pdev)
{
spin_unlock(lock);
if (callback(last_pdev, data))
{
spin_lock(lock);
--last_pdev->parent.ref_count;
is_end = RT_TRUE;
break;
}
spin_lock(lock);
--last_pdev->parent.ref_count;
}
++pdev->parent.ref_count;
last_pdev = pdev;
}
if (!is_end && last_pdev)
{
spin_unlock(lock);
if (callback(last_pdev, data))
{
is_end = RT_TRUE;
}
spin_lock(lock);
--last_pdev->parent.ref_count;
}
last_pdev = RT_NULL;
bus = parent;
parent = parent->parent;
spin_unlock(lock);
}
}
}
const struct rt_pci_device_id *rt_pci_match_id(struct rt_pci_device *pdev,
const struct rt_pci_device_id *id)
{
if ((id->vendor == PCI_ANY_ID || id->vendor == pdev->vendor) &&
(id->device == PCI_ANY_ID || id->device == pdev->device) &&
(id->subsystem_vendor == PCI_ANY_ID || id->subsystem_vendor == pdev->subsystem_vendor) &&
(id->subsystem_device == PCI_ANY_ID || id->subsystem_device == pdev->subsystem_device) &&
!((id->class ^ pdev->class) & id->class_mask))
{
return id;
}
return RT_NULL;
}
const struct rt_pci_device_id *rt_pci_match_ids(struct rt_pci_device *pdev,
const struct rt_pci_device_id *ids)
{
while (ids->vendor || ids->subsystem_vendor || ids->class_mask)
{
if (rt_pci_match_id(pdev, ids))
{
return ids;
}
++ids;
}
return RT_NULL;
}
static struct rt_bus pci_bus;
rt_err_t rt_pci_driver_register(struct rt_pci_driver *pdrv)
{
RT_ASSERT(pdrv != RT_NULL);
pdrv->parent.bus = &pci_bus;
#if RT_NAME_MAX > 0
rt_strcpy(pdrv->parent.parent.name, pdrv->name);
#else
pdrv->parent.parent.name = pdrv->name;
#endif
return rt_driver_register(&pdrv->parent);
}
rt_err_t rt_pci_device_register(struct rt_pci_device *pdev)
{
rt_err_t err;
RT_ASSERT(pdev != RT_NULL);
if ((err = rt_bus_add_device(&pci_bus, &pdev->parent)))
{
return err;
}
return RT_EOK;
}
static rt_bool_t pci_match(rt_driver_t drv, rt_device_t dev)
{
rt_bool_t match = RT_FALSE;
struct rt_pci_driver *pdrv = rt_container_of(drv, struct rt_pci_driver, parent);
struct rt_pci_device *pdev = rt_container_of(dev, struct rt_pci_device, parent);
if (pdrv->name && pdev->name)
{
match = rt_strcmp(pdrv->name, pdev->name) ? RT_FALSE : RT_TRUE;
}
if (!match)
{
pdev->id = rt_pci_match_ids(pdev, pdrv->ids);
match = pdev->id ? RT_TRUE : RT_FALSE;
}
return match;
}
static rt_err_t pci_probe(rt_device_t dev)
{
rt_err_t err = RT_EOK;
struct rt_pci_driver *pdrv = rt_container_of(dev->drv, struct rt_pci_driver, parent);
struct rt_pci_device *pdev = rt_container_of(dev, struct rt_pci_device, parent);
rt_pci_assign_irq(pdev);
rt_pci_enable_wake(pdev, RT_PCI_D0, RT_TRUE);
err = pdrv->probe(pdev);
if (err)
{
rt_pci_enable_wake(pdev, RT_PCI_D0, RT_FALSE);
}
return err;
}
static rt_err_t pci_remove(rt_device_t dev)
{
rt_err_t err = RT_EOK;
struct rt_pci_bus *bus;
struct rt_pci_driver *pdrv = rt_container_of(dev->drv, struct rt_pci_driver, parent);
struct rt_pci_device *pdev = rt_container_of(dev, struct rt_pci_device, parent);
if (pdrv && pdrv->remove)
{
if ((err = pdrv->remove(pdev)))
{
return err;
}
}
rt_pci_enable_wake(pdev, RT_PCI_D0, RT_FALSE);
bus = pdev->bus;
rt_pci_device_remove(pdev);
/* Just try to remove */
rt_pci_bus_remove(bus);
return err;
}
static rt_err_t pci_shutdown(rt_device_t dev)
{
struct rt_pci_bus *bus;
struct rt_pci_driver *pdrv = rt_container_of(dev->drv, struct rt_pci_driver, parent);
struct rt_pci_device *pdev = rt_container_of(dev, struct rt_pci_device, parent);
if (pdrv && pdrv->shutdown)
{
pdrv->shutdown(pdev);
}
rt_pci_enable_wake(pdev, RT_PCI_D0, RT_FALSE);
bus = pdev->bus;
rt_pci_device_remove(pdev);
/* Just try to remove */
rt_pci_bus_remove(bus);
return RT_EOK;
}
static struct rt_bus pci_bus =
{
.name = "pci",
.match = pci_match,
.probe = pci_probe,
.remove = pci_remove,
.shutdown = pci_shutdown,
};
static int pci_bus_init(void)
{
rt_bus_register(&pci_bus);
return 0;
}
INIT_CORE_EXPORT(pci_bus_init);