rt-thread/bsp/hpmicro/libraries/drivers/drv_can.c

703 lines
22 KiB
C

/*
* Copyright (c) 2021-2023 HPMicro
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Change Logs:
* Date Author Notes
* 2022-05-08 HPMicro the first version
* 2023-05-08 HPMicro Adapt RT-Thread v5.0.0
*/
#include <rtthread.h>
#include <rtdevice.h>
#include <rthw.h>
#include "board.h"
#include "hpm_can_drv.h"
#define CAN_SEND_WAIT_MS_MAX (1000U) /* CAN maximum wait time for transmission */
#define CAN_SENDBOX_NUM (1U) /* CAN Hardware Transmission buffer number */
#define CAN_FILTER_NUM_MAX (16U) /* CAN Hardware Filter number */
#ifdef RT_USING_CAN
typedef struct _hpm_can_struct
{
CAN_Type *can_base; /**< CAN Base address */
const char *name; /**< CAN device name */
int32_t irq_num; /**< CAN IRQ index */
uint32_t fifo_index; /**< FIFO index, it is a fake value to satisfy the driver framework */
can_config_t can_config; /**< CAN configuration for IP */
struct rt_can_device can_dev; /**< CAN device configuration in rt-thread */
uint32_t filter_num; /**< Filter number */
can_filter_config_t filter_list[CAN_FILTER_NUM_MAX]; /**< Filter list */
} hpm_can_t;
/**
* @brief Configure CAN controller
* @param [in/out] can CAN device pointer
* @param [in] cfg CAN configuration pointer
* @retval RT_EOK for valid configuration
* @retval -RT_ERROR for invalid configuration
*/
static rt_err_t hpm_can_configure(struct rt_can_device *can, struct can_configure *cfg);
/**
* @brief Control/Get CAN state
* including:interrupt, mode, priority, baudrate, filter, status
* @param [in/out] can CAN device pointer
* @param [in] cmd Control command
* @param [in/out] arg Argument pointer
* @retval RT_EOK for valid control command and arg
* @retval -RT_ERROR for invalid control command or arg
*/
static rt_err_t hpm_can_control(struct rt_can_device *can, int cmd, void *arg);
/**
* @brief Send out CAN message
* @param [in] can CAN device pointer
* @param [in] buf CAN message buffer
* @param [in] boxno Mailbox number, it is not used in this porting
* @retval RT_EOK No error
* @retval -RT_ETIMEOUT timeout happened
* @retval -RT_EFULL Transmission buffer is full
*/
static int hpm_can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t boxno);
/**
* @brief Receive message from CAN
* @param [in] can CAN device pointer
* @param [out] buf CAN receive buffer
* @param [in] boxno Mailbox Number, it is not used in this porting
* @retval RT_EOK no error
* @retval -RT_ERROR Error happened during reading receive FIFO
* @retval -RT_EMPTY no data in receive FIFO
*/
static int hpm_can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t boxno);
/**
* @brief Common Interrupt Service routine
* @param [in] hpm_can HPM CAN pointer
*/
static void hpm_can_isr(hpm_can_t *hpm_can);
/**
* @brief Decode data bytes from DLC
* @param [in] dlc Data Length Code
* @return decoded data bytes
*/
static uint8_t can_get_data_bytes_from_dlc(uint32_t dlc);
#if defined(HPM_CAN0_BASE) && defined(BSP_USING_CAN0)
static hpm_can_t dev_can0 =
{
.can_base = HPM_CAN0,
.name = "can0",
.irq_num = IRQn_CAN0,
.fifo_index = 0,
};
void can0_isr(void)
{
hpm_can_isr(&dev_can0);
}
SDK_DECLARE_EXT_ISR_M(IRQn_CAN0, can0_isr);
#endif
#if defined(HPM_CAN1_BASE) && defined(BSP_USING_CAN1)
static hpm_can_t dev_can1 =
{
.can_base = HPM_CAN1,
.name = "can1",
.irq_num = IRQn_CAN1,
.fifo_index = 1,
};
void can1_isr(void)
{
hpm_can_isr(&dev_can1);
}
SDK_DECLARE_EXT_ISR_M(IRQn_CAN1, can1_isr);
#endif
#if defined(HPM_CAN2_BASE) && defined(BSP_USING_CAN2)
static hpm_can_t dev_can2 =
{
.can_base = HPM_CAN2,
.name = "can2",
.irq_num = IRQn_CAN2,
.fifo_index = 2,
};
void can2_isr(void)
{
hpm_can_isr(&dev_can2);
}
SDK_DECLARE_EXT_ISR_M(IRQn_CAN2, can2_isr);
#endif
#if defined(HPM_CAN3_BASE) && defined(BSP_USING_CAN3)
static hpm_can_t dev_can3 =
{
.can_base = HPM_CAN3,
.name = "can3",
.irq_num = IRQn_CAN3,
.fifo_index = 3,
};
void can3_isr(void)
{
hpm_can_isr(&dev_can3);
}
SDK_DECLARE_EXT_ISR_M(IRQn_CAN3, can3_isr);
#endif
static hpm_can_t *hpm_cans[] = {
#if defined(HPM_CAN0_BASE) && defined(BSP_USING_CAN0)
&dev_can0,
#endif
#if defined(HPM_CAN1_BASE) && defined(BSP_USING_CAN1)
&dev_can1,
#endif
#if defined(HPM_CAN2_BASE) && defined(BSP_USING_CAN2)
&dev_can2,
#endif
#if defined(HPM_CAN3_BASE) && defined(BSP_USING_CAN3)
&dev_can3,
#endif
};
static const struct rt_can_ops hpm_can_ops = {
.configure = hpm_can_configure,
.control = hpm_can_control,
.sendmsg = hpm_can_sendmsg,
.recvmsg = hpm_can_recvmsg,
};
static void hpm_can_isr(hpm_can_t *hpm_can)
{
uint8_t tx_rx_flags = can_get_tx_rx_flags(hpm_can->can_base);
uint8_t error_flags = can_get_error_interrupt_flags(hpm_can->can_base);
/* High-priority message transmission done */
if ((tx_rx_flags & CAN_EVENT_TX_PRIMARY_BUF) != 0U)
{
rt_hw_can_isr(&hpm_can->can_dev, RT_CAN_EVENT_TX_DONE | (0UL << 8));
}
/* Normal priority message transmission done */
if ((tx_rx_flags & CAN_EVENT_TX_SECONDARY_BUF) != 0U)
{
rt_hw_can_isr(&hpm_can->can_dev, RT_CAN_EVENT_TX_DONE | (0UL << 8));
}
/* Data available in FIFO */
if ((tx_rx_flags & CAN_EVENT_RECEIVE) == CAN_EVENT_RECEIVE)
{
rt_hw_can_isr(&hpm_can->can_dev, RT_CAN_EVENT_RX_IND | (hpm_can->fifo_index << 8));
}
/* RX FIFO overflow */
if ((tx_rx_flags & CAN_EVENT_RX_BUF_OVERRUN) != 0U)
{
rt_hw_can_isr(&hpm_can->can_dev, RT_CAN_EVENT_RXOF_IND | (hpm_can->fifo_index << 8));
}
/* Error happened on CAN Bus */
if (((tx_rx_flags & CAN_EVENT_ERROR) != 0U) || (error_flags != 0U))
{
uint8_t err_kind = can_get_last_error_kind(hpm_can->can_base);
switch(err_kind)
{
case CAN_KIND_OF_ERROR_ACK_ERROR:
hpm_can->can_dev.status.ackerrcnt++;
break;
case CAN_KIND_OF_ERROR_BIT_ERROR:
hpm_can->can_dev.status.biterrcnt++;
break;
case CAN_KIND_OF_ERROR_CRC_ERROR:
hpm_can->can_dev.status.crcerrcnt++;
break;
case CAN_KIND_OF_ERROR_FORM_ERROR:
hpm_can->can_dev.status.formaterrcnt++;
break;
case CAN_KIND_OF_ERROR_STUFF_ERROR:
hpm_can->can_dev.status.bitpaderrcnt++;
break;
}
hpm_can->can_dev.status.rcverrcnt = can_get_receive_error_count(hpm_can->can_base);
hpm_can->can_dev.status.snderrcnt = can_get_transmit_error_count(hpm_can->can_base);
hpm_can->can_dev.status.lasterrtype = can_get_last_error_kind(hpm_can->can_base);
hpm_can->can_dev.status.errcode = 0;
if ((error_flags & CAN_ERROR_WARNING_LIMIT_FLAG) != 0U)
{
hpm_can->can_dev.status.errcode |= ERRWARNING;
}
if ((error_flags & CAN_ERROR_PASSIVE_INT_FLAG) != 0U)
{
hpm_can->can_dev.status.errcode |= ERRPASSIVE;
}
if (can_is_in_bus_off_mode(hpm_can->can_base))
{
hpm_can->can_dev.status.errcode |= BUSOFF;
}
}
can_clear_tx_rx_flags(hpm_can->can_base, tx_rx_flags);
can_clear_error_interrupt_flags(hpm_can->can_base, error_flags);
}
static rt_err_t hpm_can_configure(struct rt_can_device *can, struct can_configure *cfg)
{
RT_ASSERT(can);
RT_ASSERT(cfg);
hpm_can_t *drv_can = (hpm_can_t*) can->parent.user_data;
RT_ASSERT(drv_can);
#ifdef RT_CAN_USING_CANFD
drv_can->can_config.enable_canfd = (cfg->enable_canfd != 0) ? true : false;
if (cfg->use_bit_timing != 0U)
{
drv_can->can_config.use_lowlevel_timing_setting = true;
drv_can->can_config.can_timing.prescaler = cfg->can_timing.prescaler;
drv_can->can_config.can_timing.num_seg1 = cfg->can_timing.num_seg1;
drv_can->can_config.can_timing.num_seg2 = cfg->can_timing.num_seg2;
drv_can->can_config.can_timing.num_sjw = cfg->can_timing.num_sjw;
drv_can->can_config.canfd_timing.prescaler = cfg->canfd_timing.prescaler;
drv_can->can_config.canfd_timing.num_seg1 = cfg->canfd_timing.num_seg1;
drv_can->can_config.canfd_timing.num_seg2 = cfg->canfd_timing.num_seg2;
drv_can->can_config.canfd_timing.num_sjw = cfg->canfd_timing.num_sjw;
}
else
#endif
{
drv_can->can_config.use_lowlevel_timing_setting = false;
drv_can->can_config.baudrate = cfg->baud_rate;
#ifdef RT_CAN_USING_CANFD
drv_can->can_config.baudrate_fd = cfg->baud_rate_fd;
#endif
}
switch (cfg->mode)
{
case RT_CAN_MODE_NORMAL:
drv_can->can_config.mode = can_mode_normal;
break;
case RT_CAN_MODE_LISTEN:
drv_can->can_config.mode = can_mode_listen_only;
break;
case RT_CAN_MODE_LOOPBACK:
drv_can->can_config.mode = can_mode_loopback_internal;
break;
default:
return -RT_ERROR;
break;
}
drv_can->can_config.enable_tx_buffer_priority_mode = (cfg->privmode != 0U) ? true : false;
init_can_pins(drv_can->can_base);
uint32_t can_clk = board_init_can_clock(drv_can->can_base);
drv_can->can_config.filter_list_num = drv_can->filter_num;
drv_can->can_config.filter_list = &drv_can->filter_list[0];
hpm_stat_t status = can_init(drv_can->can_base, &drv_can->can_config, can_clk);
if (status != status_success)
{
return -RT_ERROR;
}
return RT_EOK;
}
static rt_err_t hpm_can_control(struct rt_can_device *can, int cmd, void *arg)
{
RT_ASSERT(can);
hpm_can_t *drv_can = (hpm_can_t*) can->parent.user_data;
RT_ASSERT(drv_can);
uint32_t arg_val;
rt_err_t err = RT_EOK;
uint32_t temp;
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
arg_val = (uint32_t) arg;
intc_m_disable_irq(drv_can->irq_num);
if (arg_val == RT_DEVICE_FLAG_INT_RX)
{
uint8_t irq_txrx_mask = CAN_EVENT_RECEIVE | CAN_EVENT_RX_BUF_ALMOST_FULL | CAN_EVENT_RX_BUF_FULL | CAN_EVENT_RX_BUF_OVERRUN;
drv_can->can_config.irq_txrx_enable_mask &= (uint8_t)~irq_txrx_mask;
can_disable_tx_rx_irq(drv_can->can_base, irq_txrx_mask);
}
else if (arg_val == RT_DEVICE_FLAG_INT_TX)
{
uint8_t irq_txrx_mask = CAN_EVENT_TX_PRIMARY_BUF | CAN_EVENT_TX_SECONDARY_BUF;
drv_can->can_config.irq_txrx_enable_mask &= (uint8_t)~irq_txrx_mask;
can_disable_tx_rx_irq(drv_can->can_base, irq_txrx_mask);
}
else if (arg_val == RT_DEVICE_CAN_INT_ERR)
{
uint8_t irq_txrx_mask = CAN_EVENT_ERROR;
uint8_t irq_error_mask = CAN_ERROR_ARBITRAITION_LOST_INT_ENABLE | CAN_ERROR_PASSIVE_INT_ENABLE | CAN_ERROR_BUS_ERROR_INT_ENABLE;
drv_can->can_config.irq_txrx_enable_mask &= (uint8_t)~irq_txrx_mask;
drv_can->can_config.irq_error_enable_mask &= (uint8_t)~irq_error_mask;
can_disable_tx_rx_irq(drv_can->can_base, irq_txrx_mask);
can_disable_error_irq(drv_can->can_base, irq_error_mask);
}
else
{
err = -RT_ERROR;
}
break;
case RT_DEVICE_CTRL_SET_INT:
arg_val = (uint32_t) arg;
if (arg_val == RT_DEVICE_FLAG_INT_RX)
{
uint8_t irq_txrx_mask = CAN_EVENT_RECEIVE | CAN_EVENT_RX_BUF_ALMOST_FULL | CAN_EVENT_RX_BUF_FULL | CAN_EVENT_RX_BUF_OVERRUN;
drv_can->can_config.irq_txrx_enable_mask |= irq_txrx_mask;
can_enable_tx_rx_irq(drv_can->can_base, irq_txrx_mask);
intc_m_enable_irq_with_priority(drv_can->irq_num, 1);
}
else if (arg_val == RT_DEVICE_FLAG_INT_TX)
{
uint8_t irq_txrx_mask = CAN_EVENT_TX_PRIMARY_BUF | CAN_EVENT_TX_SECONDARY_BUF;
drv_can->can_config.irq_txrx_enable_mask |= irq_txrx_mask;
can_enable_tx_rx_irq(drv_can->can_base, irq_txrx_mask);
intc_m_enable_irq_with_priority(drv_can->irq_num, 1);
}
else if (arg_val == RT_DEVICE_CAN_INT_ERR)
{
uint8_t irq_txrx_mask = CAN_EVENT_ERROR;
uint8_t irq_error_mask = CAN_ERROR_ARBITRAITION_LOST_INT_ENABLE | CAN_ERROR_PASSIVE_INT_ENABLE | CAN_ERROR_BUS_ERROR_INT_ENABLE;
drv_can->can_config.irq_txrx_enable_mask |= irq_txrx_mask;
drv_can->can_config.irq_error_enable_mask |= irq_error_mask;
can_enable_tx_rx_irq(drv_can->can_base, irq_txrx_mask);
can_enable_error_irq(drv_can->can_base, irq_error_mask);
intc_m_enable_irq_with_priority(drv_can->irq_num, 1);
}
else
{
err = -RT_ERROR;
}
break;
case RT_CAN_CMD_SET_FILTER:
{
/* Convert the RT-Thread Filter format to the filter format supported by HPM CAN */
struct rt_can_filter_config *filter = (struct rt_can_filter_config*)arg;
if (filter != NULL)
{
drv_can->filter_num = filter->count;
RT_ASSERT(filter->count <= CAN_FILTER_NUM_MAX);
for (uint32_t i=0; i<filter->count; i++)
{
drv_can->filter_list[i].index = i;
drv_can->filter_list[i].enable = (filter->actived != 0U) ? true : false;
drv_can->filter_list[i].code = filter->items[i].id;
drv_can->filter_list[i].id_mode = (filter->items[i].ide != 0U) ? can_filter_id_mode_extended_frames : can_filter_id_mode_standard_frames;
drv_can->filter_list[i].mask = (~filter->items[i].mask) & ~(7UL <<29);
}
}
else
{
drv_can->filter_num = 0;
}
err = hpm_can_configure(can, &drv_can->can_dev.config);
}
break;
case RT_CAN_CMD_SET_MODE:
arg_val = (uint32_t) arg;
if ((arg_val != RT_CAN_MODE_NORMAL) && (arg_val != RT_CAN_MODE_LISTEN) && (arg_val != RT_CAN_MODE_LOOPBACK))
{
err = -RT_ERROR;
break;
}
if (arg_val != drv_can->can_dev.config.mode)
{
drv_can->can_dev.config.mode = arg_val;
err = hpm_can_configure(can, &drv_can->can_dev.config);
}
break;
case RT_CAN_CMD_SET_BAUD:
arg_val = (uint32_t) arg;
if (arg_val != drv_can->can_dev.config.baud_rate)
{
drv_can->can_dev.config.baud_rate = arg_val;
}
err = hpm_can_configure(can, &drv_can->can_dev.config);
break;
#ifdef RT_CAN_USING_CANFD
case RT_CAN_CMD_SET_CANFD:
arg_val = (uint32_t) arg;
if (arg_val != drv_can->can_dev.config.enable_canfd)
{
drv_can->can_dev.config.enable_canfd = arg_val;
err = hpm_can_configure(can, &drv_can->can_dev.config);
}
break;
case RT_CAN_CMD_SET_BAUD_FD:
arg_val = (uint32_t) arg;
if (arg_val != drv_can->can_dev.config.baud_rate_fd)
{
drv_can->can_dev.config.baud_rate_fd = arg_val;
err = hpm_can_configure(can, &drv_can->can_dev.config);
}
break;
case RT_CAN_CMD_SET_BITTIMING:
{
struct rt_can_bit_timing_config *timing_configs = (struct rt_can_bit_timing_config*)arg;
if ((timing_configs == RT_NULL) || (timing_configs->count < 1) || (timing_configs->count > 2))
{
return -RT_ERROR;
}
if (timing_configs->count != 0U)
{
drv_can->can_dev.config.can_timing = timing_configs->items[0];
}
if (timing_configs->count == 2)
{
drv_can->can_dev.config.canfd_timing = timing_configs->items[1];
}
err = hpm_can_configure(can, &drv_can->can_dev.config);
}
break;
#endif
case RT_CAN_CMD_SET_PRIV:
arg_val = (uint32_t)arg;
if ((arg_val != RT_CAN_MODE_PRIV) && (arg_val != RT_CAN_MODE_NOPRIV))
{
return -RT_ERROR;
}
if (arg_val != drv_can->can_dev.config.privmode)
{
drv_can->can_dev.config.privmode = arg_val;
err = hpm_can_configure(can, &drv_can->can_dev.config);
}
break;
case RT_CAN_CMD_GET_STATUS:
drv_can->can_dev.status.rcverrcnt = can_get_receive_error_count(drv_can->can_base);
drv_can->can_dev.status.snderrcnt = can_get_transmit_error_count(drv_can->can_base);
drv_can->can_dev.status.lasterrtype = can_get_last_error_kind(drv_can->can_base);
temp = can_get_error_interrupt_flags(drv_can->can_base);
drv_can->can_dev.status.errcode = 0;
if ((temp & CAN_ERROR_WARNING_LIMIT_FLAG) != 0U)
{
drv_can->can_dev.status.errcode |= ERRWARNING;
}
if ((temp & CAN_ERROR_PASSIVE_INT_FLAG) != 0U)
{
drv_can->can_dev.status.errcode |= ERRPASSIVE;
}
if (can_is_in_bus_off_mode(drv_can->can_base))
{
drv_can->can_dev.status.errcode |= BUSOFF;
}
rt_memcpy(arg, &drv_can->can_dev.status, sizeof(drv_can->can_dev.status));
break;
}
}
static int hpm_can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t boxno)
{
RT_ASSERT(can);
hpm_can_t *drv_can = (hpm_can_t*) can->parent.user_data;
RT_ASSERT(drv_can);
struct rt_can_msg *can_msg = (struct rt_can_msg *) buf;
can_transmit_buf_t tx_buf = { 0 };
tx_buf.id = can_msg->id;
if (can_msg->ide == RT_CAN_STDID)
{
tx_buf.extend_id = false;
}
else
{
tx_buf.extend_id = true;
}
if (can_msg->rtr == RT_CAN_DTR)
{
tx_buf.remote_frame = false;
}
else
{
tx_buf.remote_frame = true;
}
#ifdef RT_CAN_USING_CANFD
if (can_msg->fd_frame != 0)
{
tx_buf.canfd_frame = 1;
tx_buf.bitrate_switch = 1;
RT_ASSERT(can_msg->len <= 15);
}
else
#endif
{
RT_ASSERT(can_msg->len <= 8);
}
uint32_t msg_len = can_get_data_bytes_from_dlc(can_msg->len);
for (uint32_t i = 0; i < msg_len; i++)
{
tx_buf.data[i] = can_msg->data[i];
}
tx_buf.dlc = can_msg->len;
uint32_t delay_cnt = 0;
if (can_msg->priv != 0U)
{
while (can_is_primary_transmit_buffer_full(drv_can->can_base))
{
rt_thread_mdelay(1);
delay_cnt++;
if (delay_cnt >= CAN_SEND_WAIT_MS_MAX)
{
return -RT_ETIMEOUT;
}
}
hpm_stat_t status = can_send_message_nonblocking(drv_can->can_base, &tx_buf);
if (status != status_success)
{
return -RT_EFULL;
}
}
else
{
while (can_is_secondary_transmit_buffer_full(drv_can->can_base))
{
rt_thread_mdelay(1);
delay_cnt++;
if (delay_cnt >= CAN_SEND_WAIT_MS_MAX)
{
return -RT_ETIMEOUT;
}
}
hpm_stat_t status = can_send_message_nonblocking(drv_can->can_base, &tx_buf);
if (status != status_success)
{
return -RT_EFULL;
}
}
return RT_EOK;
}
static int hpm_can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t boxno)
{
RT_ASSERT(can);
hpm_can_t *drv_can = (hpm_can_t*) can->parent.user_data;
RT_ASSERT(drv_can);
rt_can_msg_t can_msg = (rt_can_msg_t)buf;
if (can_is_data_available_in_receive_buffer(drv_can->can_base)) {
can_receive_buf_t rx_buf;
hpm_stat_t status = can_read_received_message(drv_can->can_base, &rx_buf);
if (status != status_success) {
return -RT_ERROR;
}
if (rx_buf.extend_id != 0) {
can_msg->ide = RT_CAN_EXTID;
}
else {
can_msg->ide = RT_CAN_STDID;
}
can_msg->id = rx_buf.id;
if (rx_buf.remote_frame != 0) {
can_msg->rtr = RT_CAN_RTR;
}
else {
can_msg->rtr = RT_CAN_DTR;
}
can_msg->len = rx_buf.dlc;
uint32_t msg_len = can_get_data_bytes_from_dlc(can_msg->len);
for(uint32_t i = 0; i < msg_len; i++) {
can_msg->data[i] = rx_buf.data[i];
}
}
else {
return -RT_EEMPTY;
}
return RT_EOK;
}
static uint8_t can_get_data_bytes_from_dlc(uint32_t dlc)
{
uint32_t data_bytes = 0;
dlc &= 0xFU;
if (dlc <= 8U) {
data_bytes = dlc;
} else {
switch (dlc) {
case can_payload_size_12:
data_bytes = 12U;
break;
case can_payload_size_16:
data_bytes = 16U;
break;
case can_payload_size_20:
data_bytes = 20U;
break;
case can_payload_size_24:
data_bytes = 24U;
break;
case can_payload_size_32:
data_bytes = 32U;
break;
case can_payload_size_48:
data_bytes = 48U;
break;
case can_payload_size_64:
data_bytes = 64U;
break;
default:
/* Code should never touch here */
break;
}
}
return data_bytes;
}
int rt_hw_can_init(void)
{
struct can_configure config = CANDEFAULTCONFIG;
config.privmode = RT_CAN_MODE_NOPRIV;
config.sndboxnumber = CAN_SENDBOX_NUM;
config.ticks = 50;
for (uint32_t i = 0; i < ARRAY_SIZE(hpm_cans); i++)
{
hpm_cans[i]->can_dev.config = config;
hpm_cans[i]->filter_num = 0;
can_get_default_config(&hpm_cans[i]->can_config);
rt_hw_can_register(&hpm_cans[i]->can_dev, hpm_cans[i]->name, &hpm_can_ops, hpm_cans[i]);
}
return RT_EOK;
}
INIT_BOARD_EXPORT(rt_hw_can_init);
#endif