914 lines
27 KiB
C
914 lines
27 KiB
C
/*
|
|
* Copyright (c) 2006-2021, RT-Thread Development Team
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Change Logs:
|
|
* Date Author Notes
|
|
* 2006-03-28 Bernard first version
|
|
* 2006-04-29 Bernard implement thread timer
|
|
* 2006-04-30 Bernard added THREAD_DEBUG
|
|
* 2006-05-27 Bernard fixed the rt_thread_yield bug
|
|
* 2006-06-03 Bernard fixed the thread timer init bug
|
|
* 2006-08-10 Bernard fixed the timer bug in thread_sleep
|
|
* 2006-09-03 Bernard changed rt_timer_delete to rt_timer_detach
|
|
* 2006-09-03 Bernard implement rt_thread_detach
|
|
* 2008-02-16 Bernard fixed the rt_thread_timeout bug
|
|
* 2010-03-21 Bernard change the errno of rt_thread_delay/sleep to
|
|
* RT_EOK.
|
|
* 2010-11-10 Bernard add cleanup callback function in thread exit.
|
|
* 2011-09-01 Bernard fixed rt_thread_exit issue when the current
|
|
* thread preempted, which reported by Jiaxing Lee.
|
|
* 2011-09-08 Bernard fixed the scheduling issue in rt_thread_startup.
|
|
* 2012-12-29 Bernard fixed compiling warning.
|
|
* 2016-08-09 ArdaFu add thread suspend and resume hook.
|
|
* 2017-04-10 armink fixed the rt_thread_delete and rt_thread_detach
|
|
* bug when thread has not startup.
|
|
* 2018-11-22 Jesven yield is same to rt_schedule
|
|
* add support for tasks bound to cpu
|
|
* 2021-02-24 Meco Man rearrange rt_thread_control() - schedule the thread when close it
|
|
* 2021-11-15 THEWON Remove duplicate work between idle and _thread_exit
|
|
*/
|
|
|
|
#include <rthw.h>
|
|
#include <rtthread.h>
|
|
#include <stddef.h>
|
|
|
|
#ifdef RT_USING_HOOK
|
|
static void (*rt_thread_suspend_hook)(rt_thread_t thread);
|
|
static void (*rt_thread_resume_hook) (rt_thread_t thread);
|
|
static void (*rt_thread_inited_hook) (rt_thread_t thread);
|
|
|
|
/**
|
|
* @brief This function sets a hook function when the system suspend a thread.
|
|
*
|
|
* @note The hook function must be simple and never be blocked or suspend.
|
|
*
|
|
* @param hook is the specified hook function.
|
|
*/
|
|
void rt_thread_suspend_sethook(void (*hook)(rt_thread_t thread))
|
|
{
|
|
rt_thread_suspend_hook = hook;
|
|
}
|
|
|
|
/**
|
|
* @brief This function sets a hook function when the system resume a thread.
|
|
*
|
|
* @note The hook function must be simple and never be blocked or suspend.
|
|
*
|
|
* @param hook is the specified hook function.
|
|
*/
|
|
void rt_thread_resume_sethook(void (*hook)(rt_thread_t thread))
|
|
{
|
|
rt_thread_resume_hook = hook;
|
|
}
|
|
|
|
/**
|
|
* @brief This function sets a hook function when a thread is initialized.
|
|
*
|
|
* @param hook is the specified hook function.
|
|
*/
|
|
void rt_thread_inited_sethook(void (*hook)(rt_thread_t thread))
|
|
{
|
|
rt_thread_inited_hook = hook;
|
|
}
|
|
|
|
#endif /* RT_USING_HOOK */
|
|
|
|
static void _thread_exit(void)
|
|
{
|
|
struct rt_thread *thread;
|
|
register rt_base_t level;
|
|
|
|
/* get current thread */
|
|
thread = rt_thread_self();
|
|
|
|
/* disable interrupt */
|
|
level = rt_hw_interrupt_disable();
|
|
|
|
/* remove from schedule */
|
|
rt_schedule_remove_thread(thread);
|
|
|
|
/* remove it from timer list */
|
|
rt_timer_detach(&thread->thread_timer);
|
|
|
|
/* change stat */
|
|
thread->stat = RT_THREAD_CLOSE;
|
|
|
|
/* insert to defunct thread list */
|
|
rt_thread_defunct_enqueue(thread);
|
|
|
|
/* enable interrupt */
|
|
rt_hw_interrupt_enable(level);
|
|
|
|
/* switch to next task */
|
|
rt_schedule();
|
|
}
|
|
|
|
static rt_err_t _thread_init(struct rt_thread *thread,
|
|
const char *name,
|
|
void (*entry)(void *parameter),
|
|
void *parameter,
|
|
void *stack_start,
|
|
rt_uint32_t stack_size,
|
|
rt_uint8_t priority,
|
|
rt_uint32_t tick)
|
|
{
|
|
/* init thread list */
|
|
rt_list_init(&(thread->tlist));
|
|
|
|
thread->entry = (void *)entry;
|
|
thread->parameter = parameter;
|
|
|
|
/* stack init */
|
|
thread->stack_addr = stack_start;
|
|
thread->stack_size = stack_size;
|
|
|
|
/* init thread stack */
|
|
rt_memset(thread->stack_addr, '#', thread->stack_size);
|
|
#ifdef ARCH_CPU_STACK_GROWS_UPWARD
|
|
thread->sp = (void *)rt_hw_stack_init(thread->entry, thread->parameter,
|
|
(void *)((char *)thread->stack_addr),
|
|
(void *)_thread_exit);
|
|
#else
|
|
thread->sp = (void *)rt_hw_stack_init(thread->entry, thread->parameter,
|
|
(rt_uint8_t *)((char *)thread->stack_addr + thread->stack_size - sizeof(rt_ubase_t)),
|
|
(void *)_thread_exit);
|
|
#endif /* ARCH_CPU_STACK_GROWS_UPWARD */
|
|
|
|
/* priority init */
|
|
RT_ASSERT(priority < RT_THREAD_PRIORITY_MAX);
|
|
thread->init_priority = priority;
|
|
thread->current_priority = priority;
|
|
|
|
thread->number_mask = 0;
|
|
#if RT_THREAD_PRIORITY_MAX > 32
|
|
thread->number = 0;
|
|
thread->high_mask = 0;
|
|
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
|
|
|
|
/* tick init */
|
|
thread->init_tick = tick;
|
|
thread->remaining_tick = tick;
|
|
|
|
/* error and flags */
|
|
thread->error = RT_EOK;
|
|
thread->stat = RT_THREAD_INIT;
|
|
|
|
#ifdef RT_USING_SMP
|
|
/* not bind on any cpu */
|
|
thread->bind_cpu = RT_CPUS_NR;
|
|
thread->oncpu = RT_CPU_DETACHED;
|
|
|
|
/* lock init */
|
|
thread->scheduler_lock_nest = 0;
|
|
thread->cpus_lock_nest = 0;
|
|
thread->critical_lock_nest = 0;
|
|
#endif /* RT_USING_SMP */
|
|
|
|
/* initialize cleanup function and user data */
|
|
thread->cleanup = 0;
|
|
thread->user_data = 0;
|
|
|
|
/* initialize thread timer */
|
|
rt_timer_init(&(thread->thread_timer),
|
|
thread->name,
|
|
rt_thread_timeout,
|
|
thread,
|
|
0,
|
|
RT_TIMER_FLAG_ONE_SHOT);
|
|
|
|
/* initialize signal */
|
|
#ifdef RT_USING_SIGNALS
|
|
thread->sig_mask = 0x00;
|
|
thread->sig_pending = 0x00;
|
|
|
|
#ifndef RT_USING_SMP
|
|
thread->sig_ret = RT_NULL;
|
|
#endif /* RT_USING_SMP */
|
|
thread->sig_vectors = RT_NULL;
|
|
thread->si_list = RT_NULL;
|
|
#endif /* RT_USING_SIGNALS */
|
|
|
|
#ifdef RT_USING_LWP
|
|
thread->lwp = RT_NULL;
|
|
#endif /* RT_USING_LWP */
|
|
|
|
#ifdef RT_USING_CPU_USAGE
|
|
thread->duration_tick = 0;
|
|
#endif
|
|
|
|
RT_OBJECT_HOOK_CALL(rt_thread_inited_hook, (thread));
|
|
|
|
return RT_EOK;
|
|
}
|
|
|
|
/**
|
|
* @addtogroup Thread
|
|
*/
|
|
|
|
/**@{*/
|
|
|
|
/**
|
|
* @brief This function will initialize a thread. It's used to initialize a
|
|
* static thread object.
|
|
*
|
|
* @param thread is the static thread object.
|
|
*
|
|
* @param name is the name of thread, which shall be unique.
|
|
*
|
|
* @param entry is the entry function of thread.
|
|
*
|
|
* @param parameter is the parameter of thread enter function.
|
|
*
|
|
* @param stack_start is the start address of thread stack.
|
|
*
|
|
* @param stack_size is the size of thread stack.
|
|
*
|
|
* @param priority is the priority of thread.
|
|
*
|
|
* @param tick is the time slice if there are same priority thread.
|
|
*
|
|
* @return Return the operation status. If the return value is RT_EOK, the function is successfully executed.
|
|
* If the return value is any other values, it means this operation failed.
|
|
*/
|
|
rt_err_t rt_thread_init(struct rt_thread *thread,
|
|
const char *name,
|
|
void (*entry)(void *parameter),
|
|
void *parameter,
|
|
void *stack_start,
|
|
rt_uint32_t stack_size,
|
|
rt_uint8_t priority,
|
|
rt_uint32_t tick)
|
|
{
|
|
/* thread check */
|
|
RT_ASSERT(thread != RT_NULL);
|
|
RT_ASSERT(stack_start != RT_NULL);
|
|
|
|
/* initialize thread object */
|
|
rt_object_init((rt_object_t)thread, RT_Object_Class_Thread, name);
|
|
|
|
return _thread_init(thread,
|
|
name,
|
|
entry,
|
|
parameter,
|
|
stack_start,
|
|
stack_size,
|
|
priority,
|
|
tick);
|
|
}
|
|
RTM_EXPORT(rt_thread_init);
|
|
|
|
/**
|
|
* @brief This function will return self thread object.
|
|
*
|
|
* @return The self thread object.
|
|
*/
|
|
rt_thread_t rt_thread_self(void)
|
|
{
|
|
#ifdef RT_USING_SMP
|
|
rt_base_t lock;
|
|
rt_thread_t self;
|
|
|
|
lock = rt_hw_local_irq_disable();
|
|
self = rt_cpu_self()->current_thread;
|
|
rt_hw_local_irq_enable(lock);
|
|
return self;
|
|
#else
|
|
extern rt_thread_t rt_current_thread;
|
|
|
|
return rt_current_thread;
|
|
#endif /* RT_USING_SMP */
|
|
}
|
|
RTM_EXPORT(rt_thread_self);
|
|
|
|
/**
|
|
* @brief This function will start a thread and put it to system ready queue.
|
|
*
|
|
* @param thread is the thread to be started.
|
|
*
|
|
* @return Return the operation status. If the return value is RT_EOK, the function is successfully executed.
|
|
* If the return value is any other values, it means this operation failed.
|
|
*/
|
|
rt_err_t rt_thread_startup(rt_thread_t thread)
|
|
{
|
|
/* thread check */
|
|
RT_ASSERT(thread != RT_NULL);
|
|
RT_ASSERT((thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_INIT);
|
|
RT_ASSERT(rt_object_get_type((rt_object_t)thread) == RT_Object_Class_Thread);
|
|
|
|
/* set current priority to initialize priority */
|
|
thread->current_priority = thread->init_priority;
|
|
|
|
/* calculate priority attribute */
|
|
#if RT_THREAD_PRIORITY_MAX > 32
|
|
thread->number = thread->current_priority >> 3; /* 5bit */
|
|
thread->number_mask = 1L << thread->number;
|
|
thread->high_mask = 1L << (thread->current_priority & 0x07); /* 3bit */
|
|
#else
|
|
thread->number_mask = 1L << thread->current_priority;
|
|
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
|
|
|
|
RT_DEBUG_LOG(RT_DEBUG_THREAD, ("startup a thread:%s with priority:%d\n",
|
|
thread->name, thread->init_priority));
|
|
/* change thread stat */
|
|
thread->stat = RT_THREAD_SUSPEND;
|
|
/* then resume it */
|
|
rt_thread_resume(thread);
|
|
if (rt_thread_self() != RT_NULL)
|
|
{
|
|
/* do a scheduling */
|
|
rt_schedule();
|
|
}
|
|
|
|
return RT_EOK;
|
|
}
|
|
RTM_EXPORT(rt_thread_startup);
|
|
|
|
/**
|
|
* @brief This function will detach a thread. The thread object will be removed from
|
|
* thread queue and detached/deleted from the system object management.
|
|
*
|
|
* @param thread is the thread to be deleted.
|
|
*
|
|
* @return Return the operation status. If the return value is RT_EOK, the function is successfully executed.
|
|
* If the return value is any other values, it means this operation failed.
|
|
*/
|
|
rt_err_t rt_thread_detach(rt_thread_t thread)
|
|
{
|
|
rt_base_t lock;
|
|
|
|
/* thread check */
|
|
RT_ASSERT(thread != RT_NULL);
|
|
RT_ASSERT(rt_object_get_type((rt_object_t)thread) == RT_Object_Class_Thread);
|
|
RT_ASSERT(rt_object_is_systemobject((rt_object_t)thread));
|
|
|
|
if ((thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_CLOSE)
|
|
return RT_EOK;
|
|
|
|
if ((thread->stat & RT_THREAD_STAT_MASK) != RT_THREAD_INIT)
|
|
{
|
|
/* remove from schedule */
|
|
rt_schedule_remove_thread(thread);
|
|
}
|
|
|
|
/* disable interrupt */
|
|
lock = rt_hw_interrupt_disable();
|
|
|
|
/* release thread timer */
|
|
rt_timer_detach(&(thread->thread_timer));
|
|
|
|
/* change stat */
|
|
thread->stat = RT_THREAD_CLOSE;
|
|
|
|
/* insert to defunct thread list */
|
|
rt_thread_defunct_enqueue(thread);
|
|
|
|
/* enable interrupt */
|
|
rt_hw_interrupt_enable(lock);
|
|
|
|
return RT_EOK;
|
|
}
|
|
RTM_EXPORT(rt_thread_detach);
|
|
|
|
#ifdef RT_USING_HEAP
|
|
/**
|
|
* @brief This function will create a thread object and allocate thread object memory.
|
|
* and stack.
|
|
*
|
|
* @param name is the name of thread, which shall be unique.
|
|
*
|
|
* @param entry is the entry function of thread.
|
|
*
|
|
* @param parameter is the parameter of thread enter function.
|
|
*
|
|
* @param stack_size is the size of thread stack.
|
|
*
|
|
* @param priority is the priority of thread.
|
|
*
|
|
* @param tick is the time slice if there are same priority thread.
|
|
*
|
|
* @return If the return value is a rt_thread structure pointer, the function is successfully executed.
|
|
* If the return value is RT_NULL, it means this operation failed.
|
|
*/
|
|
rt_thread_t rt_thread_create(const char *name,
|
|
void (*entry)(void *parameter),
|
|
void *parameter,
|
|
rt_uint32_t stack_size,
|
|
rt_uint8_t priority,
|
|
rt_uint32_t tick)
|
|
{
|
|
struct rt_thread *thread;
|
|
void *stack_start;
|
|
|
|
thread = (struct rt_thread *)rt_object_allocate(RT_Object_Class_Thread,
|
|
name);
|
|
if (thread == RT_NULL)
|
|
return RT_NULL;
|
|
|
|
stack_start = (void *)RT_KERNEL_MALLOC(stack_size);
|
|
if (stack_start == RT_NULL)
|
|
{
|
|
/* allocate stack failure */
|
|
rt_object_delete((rt_object_t)thread);
|
|
|
|
return RT_NULL;
|
|
}
|
|
|
|
_thread_init(thread,
|
|
name,
|
|
entry,
|
|
parameter,
|
|
stack_start,
|
|
stack_size,
|
|
priority,
|
|
tick);
|
|
|
|
return thread;
|
|
}
|
|
RTM_EXPORT(rt_thread_create);
|
|
|
|
/**
|
|
* @brief This function will delete a thread. The thread object will be removed from
|
|
* thread queue and deleted from system object management in the idle thread.
|
|
*
|
|
* @param thread is the thread to be deleted.
|
|
*
|
|
* @return Return the operation status. If the return value is RT_EOK, the function is successfully executed.
|
|
* If the return value is any other values, it means this operation failed.
|
|
*/
|
|
rt_err_t rt_thread_delete(rt_thread_t thread)
|
|
{
|
|
rt_base_t lock;
|
|
|
|
/* thread check */
|
|
RT_ASSERT(thread != RT_NULL);
|
|
RT_ASSERT(rt_object_get_type((rt_object_t)thread) == RT_Object_Class_Thread);
|
|
RT_ASSERT(rt_object_is_systemobject((rt_object_t)thread) == RT_FALSE);
|
|
|
|
if ((thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_CLOSE)
|
|
return RT_EOK;
|
|
|
|
if ((thread->stat & RT_THREAD_STAT_MASK) != RT_THREAD_INIT)
|
|
{
|
|
/* remove from schedule */
|
|
rt_schedule_remove_thread(thread);
|
|
}
|
|
|
|
/* disable interrupt */
|
|
lock = rt_hw_interrupt_disable();
|
|
|
|
/* release thread timer */
|
|
rt_timer_detach(&(thread->thread_timer));
|
|
|
|
/* change stat */
|
|
thread->stat = RT_THREAD_CLOSE;
|
|
|
|
/* insert to defunct thread list */
|
|
rt_thread_defunct_enqueue(thread);
|
|
|
|
/* enable interrupt */
|
|
rt_hw_interrupt_enable(lock);
|
|
|
|
return RT_EOK;
|
|
}
|
|
RTM_EXPORT(rt_thread_delete);
|
|
#endif /* RT_USING_HEAP */
|
|
|
|
/**
|
|
* @brief This function will let current thread yield processor, and scheduler will
|
|
* choose the highest thread to run. After yield processor, the current thread
|
|
* is still in READY state.
|
|
*
|
|
* @return Return the operation status. If the return value is RT_EOK, the function is successfully executed.
|
|
* If the return value is any other values, it means this operation failed.
|
|
*/
|
|
rt_err_t rt_thread_yield(void)
|
|
{
|
|
struct rt_thread *thread;
|
|
rt_base_t lock;
|
|
|
|
thread = rt_thread_self();
|
|
lock = rt_hw_interrupt_disable();
|
|
thread->remaining_tick = thread->init_tick;
|
|
thread->stat |= RT_THREAD_STAT_YIELD;
|
|
rt_schedule();
|
|
rt_hw_interrupt_enable(lock);
|
|
|
|
return RT_EOK;
|
|
}
|
|
RTM_EXPORT(rt_thread_yield);
|
|
|
|
/**
|
|
* @brief This function will let current thread sleep for some ticks. Change current thread state to suspend,
|
|
* when the thread timer reaches the tick value, scheduler will awaken this thread.
|
|
*
|
|
* @param tick is the sleep ticks.
|
|
*
|
|
* @return Return the operation status. If the return value is RT_EOK, the function is successfully executed.
|
|
* If the return value is any other values, it means this operation failed.
|
|
*/
|
|
rt_err_t rt_thread_sleep(rt_tick_t tick)
|
|
{
|
|
register rt_base_t temp;
|
|
struct rt_thread *thread;
|
|
|
|
/* set to current thread */
|
|
thread = rt_thread_self();
|
|
RT_ASSERT(thread != RT_NULL);
|
|
RT_ASSERT(rt_object_get_type((rt_object_t)thread) == RT_Object_Class_Thread);
|
|
|
|
/* disable interrupt */
|
|
temp = rt_hw_interrupt_disable();
|
|
|
|
/* suspend thread */
|
|
rt_thread_suspend(thread);
|
|
|
|
/* reset the timeout of thread timer and start it */
|
|
rt_timer_control(&(thread->thread_timer), RT_TIMER_CTRL_SET_TIME, &tick);
|
|
rt_timer_start(&(thread->thread_timer));
|
|
|
|
/* enable interrupt */
|
|
rt_hw_interrupt_enable(temp);
|
|
|
|
rt_schedule();
|
|
|
|
/* clear error number of this thread to RT_EOK */
|
|
if (thread->error == -RT_ETIMEOUT)
|
|
thread->error = RT_EOK;
|
|
|
|
return RT_EOK;
|
|
}
|
|
|
|
/**
|
|
* @brief This function will let current thread delay for some ticks.
|
|
*
|
|
* @param tick is the delay ticks.
|
|
*
|
|
* @return Return the operation status. If the return value is RT_EOK, the function is successfully executed.
|
|
* If the return value is any other values, it means this operation failed.
|
|
*/
|
|
rt_err_t rt_thread_delay(rt_tick_t tick)
|
|
{
|
|
return rt_thread_sleep(tick);
|
|
}
|
|
RTM_EXPORT(rt_thread_delay);
|
|
|
|
/**
|
|
* @brief This function will let current thread delay until (*tick + inc_tick).
|
|
*
|
|
* @param tick is the tick of last wakeup.
|
|
*
|
|
* @param inc_tick is the increment tick.
|
|
*
|
|
* @return Return the operation status. If the return value is RT_EOK, the function is successfully executed.
|
|
* If the return value is any other values, it means this operation failed.
|
|
*/
|
|
rt_err_t rt_thread_delay_until(rt_tick_t *tick, rt_tick_t inc_tick)
|
|
{
|
|
register rt_base_t level;
|
|
struct rt_thread *thread;
|
|
rt_tick_t cur_tick;
|
|
|
|
RT_ASSERT(tick != RT_NULL);
|
|
|
|
/* set to current thread */
|
|
thread = rt_thread_self();
|
|
RT_ASSERT(thread != RT_NULL);
|
|
RT_ASSERT(rt_object_get_type((rt_object_t)thread) == RT_Object_Class_Thread);
|
|
|
|
/* disable interrupt */
|
|
level = rt_hw_interrupt_disable();
|
|
|
|
cur_tick = rt_tick_get();
|
|
if (cur_tick - *tick < inc_tick)
|
|
{
|
|
rt_tick_t left_tick;
|
|
|
|
*tick += inc_tick;
|
|
left_tick = *tick - cur_tick;
|
|
|
|
/* suspend thread */
|
|
rt_thread_suspend(thread);
|
|
|
|
/* reset the timeout of thread timer and start it */
|
|
rt_timer_control(&(thread->thread_timer), RT_TIMER_CTRL_SET_TIME, &left_tick);
|
|
rt_timer_start(&(thread->thread_timer));
|
|
|
|
/* enable interrupt */
|
|
rt_hw_interrupt_enable(level);
|
|
|
|
rt_schedule();
|
|
|
|
/* clear error number of this thread to RT_EOK */
|
|
if (thread->error == -RT_ETIMEOUT)
|
|
{
|
|
thread->error = RT_EOK;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
*tick = cur_tick;
|
|
rt_hw_interrupt_enable(level);
|
|
}
|
|
|
|
return RT_EOK;
|
|
}
|
|
RTM_EXPORT(rt_thread_delay_until);
|
|
|
|
/**
|
|
* @brief This function will let current thread delay for some milliseconds.
|
|
*
|
|
* @param ms is the delay ms time.
|
|
*
|
|
* @return Return the operation status. If the return value is RT_EOK, the function is successfully executed.
|
|
* If the return value is any other values, it means this operation failed.
|
|
*/
|
|
rt_err_t rt_thread_mdelay(rt_int32_t ms)
|
|
{
|
|
rt_tick_t tick;
|
|
|
|
tick = rt_tick_from_millisecond(ms);
|
|
|
|
return rt_thread_sleep(tick);
|
|
}
|
|
RTM_EXPORT(rt_thread_mdelay);
|
|
|
|
/**
|
|
* @brief This function will control thread behaviors according to control command.
|
|
*
|
|
* @param thread is the specified thread to be controlled.
|
|
*
|
|
* @param cmd is the control command, which includes.
|
|
*
|
|
* RT_THREAD_CTRL_CHANGE_PRIORITY for changing priority level of thread.
|
|
*
|
|
* RT_THREAD_CTRL_STARTUP for starting a thread.
|
|
*
|
|
* RT_THREAD_CTRL_CLOSE for delete a thread.
|
|
*
|
|
* RT_THREAD_CTRL_BIND_CPU for bind the thread to a CPU.
|
|
*
|
|
* @param arg is the argument of control command.
|
|
*
|
|
* @return Return the operation status. If the return value is RT_EOK, the function is successfully executed.
|
|
* If the return value is any other values, it means this operation failed.
|
|
*/
|
|
rt_err_t rt_thread_control(rt_thread_t thread, int cmd, void *arg)
|
|
{
|
|
register rt_base_t temp;
|
|
|
|
/* thread check */
|
|
RT_ASSERT(thread != RT_NULL);
|
|
RT_ASSERT(rt_object_get_type((rt_object_t)thread) == RT_Object_Class_Thread);
|
|
|
|
switch (cmd)
|
|
{
|
|
case RT_THREAD_CTRL_CHANGE_PRIORITY:
|
|
{
|
|
/* disable interrupt */
|
|
temp = rt_hw_interrupt_disable();
|
|
|
|
/* for ready thread, change queue */
|
|
if ((thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_READY)
|
|
{
|
|
/* remove thread from schedule queue first */
|
|
rt_schedule_remove_thread(thread);
|
|
|
|
/* change thread priority */
|
|
thread->current_priority = *(rt_uint8_t *)arg;
|
|
|
|
/* recalculate priority attribute */
|
|
#if RT_THREAD_PRIORITY_MAX > 32
|
|
thread->number = thread->current_priority >> 3; /* 5bit */
|
|
thread->number_mask = 1 << thread->number;
|
|
thread->high_mask = 1 << (thread->current_priority & 0x07); /* 3bit */
|
|
#else
|
|
thread->number_mask = 1 << thread->current_priority;
|
|
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
|
|
|
|
/* insert thread to schedule queue again */
|
|
rt_schedule_insert_thread(thread);
|
|
}
|
|
else
|
|
{
|
|
thread->current_priority = *(rt_uint8_t *)arg;
|
|
|
|
/* recalculate priority attribute */
|
|
#if RT_THREAD_PRIORITY_MAX > 32
|
|
thread->number = thread->current_priority >> 3; /* 5bit */
|
|
thread->number_mask = 1 << thread->number;
|
|
thread->high_mask = 1 << (thread->current_priority & 0x07); /* 3bit */
|
|
#else
|
|
thread->number_mask = 1 << thread->current_priority;
|
|
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
|
|
}
|
|
|
|
/* enable interrupt */
|
|
rt_hw_interrupt_enable(temp);
|
|
break;
|
|
}
|
|
|
|
case RT_THREAD_CTRL_STARTUP:
|
|
{
|
|
return rt_thread_startup(thread);
|
|
}
|
|
|
|
case RT_THREAD_CTRL_CLOSE:
|
|
{
|
|
rt_err_t rt_err;
|
|
|
|
if (rt_object_is_systemobject((rt_object_t)thread) == RT_TRUE)
|
|
{
|
|
rt_err = rt_thread_detach(thread);
|
|
}
|
|
#ifdef RT_USING_HEAP
|
|
else
|
|
{
|
|
rt_err = rt_thread_delete(thread);
|
|
}
|
|
#endif /* RT_USING_HEAP */
|
|
rt_schedule();
|
|
return rt_err;
|
|
}
|
|
|
|
#ifdef RT_USING_SMP
|
|
case RT_THREAD_CTRL_BIND_CPU:
|
|
{
|
|
rt_uint8_t cpu;
|
|
|
|
if ((thread->stat & RT_THREAD_STAT_MASK) != RT_THREAD_INIT)
|
|
{
|
|
/* we only support bind cpu before started phase. */
|
|
return RT_ERROR;
|
|
}
|
|
|
|
cpu = (rt_uint8_t)(rt_size_t)arg;
|
|
thread->bind_cpu = cpu > RT_CPUS_NR? RT_CPUS_NR : cpu;
|
|
break;
|
|
}
|
|
#endif /* RT_USING_SMP */
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return RT_EOK;
|
|
}
|
|
RTM_EXPORT(rt_thread_control);
|
|
|
|
/**
|
|
* @brief This function will suspend the specified thread and change it to suspend state.
|
|
*
|
|
* @note If suspend self thread, after this function call, the
|
|
* rt_schedule() must be invoked.
|
|
*
|
|
* @param thread is the thread to be suspended.
|
|
*
|
|
* @return Return the operation status. If the return value is RT_EOK, the function is successfully executed.
|
|
* If the return value is any other values, it means this operation failed.
|
|
*/
|
|
rt_err_t rt_thread_suspend(rt_thread_t thread)
|
|
{
|
|
register rt_base_t stat;
|
|
register rt_base_t temp;
|
|
|
|
/* thread check */
|
|
RT_ASSERT(thread != RT_NULL);
|
|
RT_ASSERT(rt_object_get_type((rt_object_t)thread) == RT_Object_Class_Thread);
|
|
|
|
RT_DEBUG_LOG(RT_DEBUG_THREAD, ("thread suspend: %s\n", thread->name));
|
|
|
|
stat = thread->stat & RT_THREAD_STAT_MASK;
|
|
if ((stat != RT_THREAD_READY) && (stat != RT_THREAD_RUNNING))
|
|
{
|
|
RT_DEBUG_LOG(RT_DEBUG_THREAD, ("thread suspend: thread disorder, 0x%2x\n",
|
|
thread->stat));
|
|
return -RT_ERROR;
|
|
}
|
|
|
|
/* disable interrupt */
|
|
temp = rt_hw_interrupt_disable();
|
|
if (stat == RT_THREAD_RUNNING)
|
|
{
|
|
/* not suspend running status thread on other core */
|
|
RT_ASSERT(thread == rt_thread_self());
|
|
}
|
|
|
|
/* change thread stat */
|
|
rt_schedule_remove_thread(thread);
|
|
thread->stat = RT_THREAD_SUSPEND | (thread->stat & ~RT_THREAD_STAT_MASK);
|
|
|
|
/* stop thread timer anyway */
|
|
rt_timer_stop(&(thread->thread_timer));
|
|
|
|
/* enable interrupt */
|
|
rt_hw_interrupt_enable(temp);
|
|
|
|
RT_OBJECT_HOOK_CALL(rt_thread_suspend_hook, (thread));
|
|
return RT_EOK;
|
|
}
|
|
RTM_EXPORT(rt_thread_suspend);
|
|
|
|
/**
|
|
* @brief This function will resume a thread and put it to system ready queue.
|
|
*
|
|
* @param thread is the thread to be resumed.
|
|
*
|
|
* @return Return the operation status. If the return value is RT_EOK, the function is successfully executed.
|
|
* If the return value is any other values, it means this operation failed.
|
|
*/
|
|
rt_err_t rt_thread_resume(rt_thread_t thread)
|
|
{
|
|
register rt_base_t temp;
|
|
|
|
/* thread check */
|
|
RT_ASSERT(thread != RT_NULL);
|
|
RT_ASSERT(rt_object_get_type((rt_object_t)thread) == RT_Object_Class_Thread);
|
|
|
|
RT_DEBUG_LOG(RT_DEBUG_THREAD, ("thread resume: %s\n", thread->name));
|
|
|
|
if ((thread->stat & RT_THREAD_STAT_MASK) != RT_THREAD_SUSPEND)
|
|
{
|
|
RT_DEBUG_LOG(RT_DEBUG_THREAD, ("thread resume: thread disorder, %d\n",
|
|
thread->stat));
|
|
|
|
return -RT_ERROR;
|
|
}
|
|
|
|
/* disable interrupt */
|
|
temp = rt_hw_interrupt_disable();
|
|
|
|
/* remove from suspend list */
|
|
rt_list_remove(&(thread->tlist));
|
|
|
|
rt_timer_stop(&thread->thread_timer);
|
|
|
|
/* insert to schedule ready list */
|
|
rt_schedule_insert_thread(thread);
|
|
|
|
/* enable interrupt */
|
|
rt_hw_interrupt_enable(temp);
|
|
|
|
RT_OBJECT_HOOK_CALL(rt_thread_resume_hook, (thread));
|
|
return RT_EOK;
|
|
}
|
|
RTM_EXPORT(rt_thread_resume);
|
|
|
|
/**
|
|
* @brief This function is the timeout function for thread, normally which is invoked
|
|
* when thread is timeout to wait some resource.
|
|
*
|
|
* @param parameter is the parameter of thread timeout function
|
|
*/
|
|
void rt_thread_timeout(void *parameter)
|
|
{
|
|
struct rt_thread *thread;
|
|
register rt_base_t temp;
|
|
|
|
thread = (struct rt_thread *)parameter;
|
|
|
|
/* thread check */
|
|
RT_ASSERT(thread != RT_NULL);
|
|
RT_ASSERT((thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_SUSPEND);
|
|
RT_ASSERT(rt_object_get_type((rt_object_t)thread) == RT_Object_Class_Thread);
|
|
|
|
/* disable interrupt */
|
|
temp = rt_hw_interrupt_disable();
|
|
|
|
/* set error number */
|
|
thread->error = -RT_ETIMEOUT;
|
|
|
|
/* remove from suspend list */
|
|
rt_list_remove(&(thread->tlist));
|
|
|
|
/* insert to schedule ready list */
|
|
rt_schedule_insert_thread(thread);
|
|
|
|
/* enable interrupt */
|
|
rt_hw_interrupt_enable(temp);
|
|
|
|
/* do schedule */
|
|
rt_schedule();
|
|
}
|
|
RTM_EXPORT(rt_thread_timeout);
|
|
|
|
/**
|
|
* @brief This function will find the specified thread.
|
|
*
|
|
* @note Please don't invoke this function in interrupt status.
|
|
*
|
|
* @param name is the name of thread finding.
|
|
*
|
|
* @return If the return value is a rt_thread structure pointer, the function is successfully executed.
|
|
* If the return value is RT_NULL, it means this operation failed.
|
|
*/
|
|
rt_thread_t rt_thread_find(char *name)
|
|
{
|
|
return (rt_thread_t)rt_object_find(name, RT_Object_Class_Thread);
|
|
}
|
|
|
|
RTM_EXPORT(rt_thread_find);
|
|
|
|
/**@}*/
|