rt-thread/bsp/samd21/sam_d2x_asflib/sam0/drivers/tcc/tcc.c

1609 lines
49 KiB
C

/**
* \file
*
* \brief SAM TCC - Timer Counter for Control Applications Driver
*
* Copyright (C) 2013-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#include "tcc.h"
#if TCC_ASYNC == true
# include "tcc_callback.h"
# include <system_interrupt.h>
/** \internal
* Converts a given TCC index to its interrupt vector index.
*/
# define _TCC_INTERRUPT_VECT_NUM(n, unused) \
SYSTEM_INTERRUPT_MODULE_TCC##n,
#endif
#define _SIZE_MAX(size) ((size==32u) ? 0xFFFFFFFF : ( \
(1u << size) - 1))
#define _SIZE_MAX_WITH_DITHER 0x03FFFFFF
/* Extension support mapping bits */
#define _TCC_DITHERING_B 16u
#define _TCC_PG_B 8u
#define _TCC_SWAP_B 4u
#define _TCC_DTI_B 2u
#define _TCC_OTMX_B 1u
#if !defined(__DOXYGEN__)
# define _TCC_GCLK_ID(n,unused) TPASTE3(TCC,n,_GCLK_ID),
# if (SAML21) || (SAML22) || (SAMC20) || (SAMC21) || (SAMR30)
# define _TCC_APBCMASK(n,unused) TPASTE2(MCLK_APBCMASK_TCC,n),
# else
# define _TCC_APBCMASK(n,unused) TPASTE2(PM_APBCMASK_TCC,n),
# endif
# define _TCC_SIZE(n,unused) TPASTE3(TCC,n,_SIZE),
# define _TCC_MAX(n,unused) _SIZE_MAX(TPASTE3(TCC,n,_SIZE)),
# define _TCC_EXT(n,unused) TPASTE3(TCC,n,_EXT),
# define _TCC_CC_NUM(n,unused) min(TPASTE3(TCC,n,_CC_NUM),TCC_NUM_CHANNELS),
# define _TCC_OW_NUM(n,unused) min(TPASTE3(TCC,n,_OW_NUM),TCC_NUM_WAVE_OUTPUTS),
# define TCC_GCLK_IDS { MREPEAT(TCC_INST_NUM, _TCC_GCLK_ID, 0) }
# define TCC_APBCMASKS { MREPEAT(TCC_INST_NUM, _TCC_APBCMASK, 0) }
# define TCC_SIZES { MREPEAT(TCC_INST_NUM, _TCC_SIZE, 0) }
# define TCC_MAXS { MREPEAT(TCC_INST_NUM, _TCC_MAX, 0) }
# define TCC_EXTS { MREPEAT(TCC_INST_NUM, _TCC_EXT, 0) }
# define TCC_CC_NUMS { MREPEAT(TCC_INST_NUM, _TCC_CC_NUM, 0) }
# define TCC_OW_NUMS { MREPEAT(TCC_INST_NUM, _TCC_OW_NUM, 0) }
#endif
/* List of available TCC modules. */
const Tcc *const tcc_modules[TCC_INST_NUM] = TCC_INSTS;
/* List of TCC GCLK IDs */
const uint8_t _tcc_gclk_ids[TCC_INST_NUM] = TCC_GCLK_IDS;
/* List of TCC APBC Masks */
const uint32_t _tcc_apbcmasks[TCC_INST_NUM] = TCC_APBCMASKS;
/* List of extension support of TCC modules. */
const uint8_t _tcc_exts[TCC_INST_NUM] = TCC_EXTS;
/* List of sizes support of TCC modules. */
const uint8_t _tcc_sizes[TCC_INST_NUM] = TCC_SIZES;
/* List of maximumvalues supported of TCC modules. */
const uint32_t _tcc_maxs[TCC_INST_NUM] = TCC_MAXS;
/* List of available channel number of TCC modules. */
const uint8_t _tcc_cc_nums[TCC_INST_NUM] = TCC_CC_NUMS;
/* List of available output number of TCC modules. */
const uint8_t _tcc_ow_nums[TCC_INST_NUM] = TCC_OW_NUMS;
/**
* \internal Find the index of the given TCC module instance.
*
* \param[in] The TCC module instance pointer
*
* \return Index of the given TCC module instance.
*/
uint8_t _tcc_get_inst_index(
Tcc *const hw)
{
/* Find index for TCC instance. */
for (uint32_t i = 0; i < TCC_INST_NUM; i++) {
if (hw == tcc_modules[i]) {
return i;
}
}
/* Invalid data given. */
Assert(false);
return 0;
}
/**
* \brief Initializes config with predefined default values.
*
* This function will initialize a given TCC configuration structure to
* a set of known default values. This function should be called on
* any new instance of the configuration structures before being
* modified by the user application.
*
* The default configuration is as follows:
* \li Don't run in standby
* \li When setting top, compare, or pattern by API, do double buffering write
* \li The base timer/counter configurations:
* - GCLK generator 0 clock source
* - No prescaler
* - GCLK reload action
* - Count upward
* - Don't perform one-shot operations
* - Counter starts on 0
* - Period/top value set to maximum
* \li The match/capture configurations:
* - All Capture compare channel value set to 0
* - No capture enabled (all channels use compare function)
* - Normal frequency wave generation
* - Waveform generation polarity set to 0
* - Don't perform ramp on waveform
* \li The waveform extension configurations:
* - No recoverable fault is enabled, fault actions are disabled, filter
* is set to 0
* - No non-recoverable fault state output is enabled and filter is 0
* - No inversion of waveform output
* \li No channel output enabled
* \li No PWM pin output enabled
* \li Pin and MUX configuration not set
*
* \param[out] config Pointer to a TCC module configuration structure to set
* \param[in] hw Pointer to the TCC hardware module
*
*/
void tcc_get_config_defaults(
struct tcc_config *const config,
Tcc *const hw)
{
/* TCC instance index */
uint8_t module_index = _tcc_get_inst_index(hw);
/* Base counter defaults */
config->counter.count = 0;
config->counter.period = _tcc_maxs[module_index];
config->counter.clock_source = GCLK_GENERATOR_0;
config->counter.clock_prescaler = TCC_CLOCK_PRESCALER_DIV1;
config->counter.reload_action = TCC_RELOAD_ACTION_GCLK;
config->counter.direction = TCC_COUNT_DIRECTION_UP;
config->counter.oneshot = false;
#ifdef FEATURE_TCC_GENERATE_DMA_TRIGGER
config->counter.dma_trigger_mode = TCC_COUNT_OVERFLOW_DMA_TRIGGER_MODE_CONTINUE;
#endif
/* Match/Capture defaults */
# define _TCC_CHANNEL_MATCH_VALUE_INIT(n, value) \
config->compare.match[n] = value;
MREPEAT(TCC_NUM_CHANNELS,
_TCC_CHANNEL_MATCH_VALUE_INIT, 0)
# undef _TCC_CHANNEL_MATCH_VALUE_INIT
/* Wave polarity defaults */
# define _TCC_CHANNEL_WAVE_POLARITY_INIT(n, value) \
config->compare.wave_polarity[n] = value;
MREPEAT(TCC_NUM_CHANNELS,
_TCC_CHANNEL_WAVE_POLARITY_INIT, TCC_WAVE_POLARITY_0)
# undef _TCC_CHANNEL_WAVE_POLARITY_INIT
config->compare.wave_generation = TCC_WAVE_GENERATION_NORMAL_FREQ;
config->compare.wave_ramp = TCC_RAMP_RAMP1;
# define _TCC_CHANNEL_FUNCTION_INIT(n, value) \
config->compare.channel_function[n] = value;
MREPEAT(TCC_NUM_CHANNELS,
_TCC_CHANNEL_FUNCTION_INIT, TCC_CHANNEL_FUNCTION_COMPARE)
# undef _TCC_CHANNEL_FUNCTION_INIT
/* Recoverable fault defaults */
# define _TCC_FAULT_FUNCTION_INIT(n, dummy) \
config->wave_ext.recoverable_fault[n].filter_value = 0; \
config->wave_ext.recoverable_fault[n].blanking_cycles = 0; \
config->wave_ext.recoverable_fault[n].restart = false; \
config->wave_ext.recoverable_fault[n].keep = false; \
config->wave_ext.recoverable_fault[n].qualification = false; \
config->wave_ext.recoverable_fault[n].source = TCC_FAULT_SOURCE_DISABLE; \
config->wave_ext.recoverable_fault[n].blanking = TCC_FAULT_BLANKING_DISABLE; \
config->wave_ext.recoverable_fault[n].halt_action = TCC_FAULT_HALT_ACTION_DISABLE; \
config->wave_ext.recoverable_fault[n].capture_action = TCC_FAULT_CAPTURE_DISABLE; \
config->wave_ext.recoverable_fault[n].capture_channel = TCC_FAULT_CAPTURE_CHANNEL_0;
MREPEAT(TCC_NUM_FAULTS, _TCC_FAULT_FUNCTION_INIT, 0)
# undef _TCC_FAULT_FUNCTION_INIT
/* Non-recoverable fault defaults */
# define _TCC_NRF_FUNCTION_INIT(n, dummy) \
config->wave_ext.non_recoverable_fault[n].filter_value = 0; \
config->wave_ext.non_recoverable_fault[n].output = TCC_FAULT_STATE_OUTPUT_OFF;
MREPEAT(TCC_NUM_WAVE_OUTPUTS, _TCC_NRF_FUNCTION_INIT, 0)
# undef _TCC_NRF_FUNCTION_INIT
/* Output inversion defaults */
# define _TCC_OUT_INVERT_INIT(n, value) \
config->wave_ext.invert[n] = value;
MREPEAT(TCC_NUM_WAVE_OUTPUTS, _TCC_OUT_INVERT_INIT, false)
# undef _TCC_OUT_INVERT_INIT
# define _TCC_CHANNEL_OUT_PIN_INIT(n, dummy) \
config->pins.enable_wave_out_pin[n] = false;\
config->pins.wave_out_pin[TCC_WAVE_OUTPUT_##n] = 0; \
config->pins.wave_out_pin_mux[TCC_WAVE_OUTPUT_##n] = 0;
MREPEAT(TCC_NUM_WAVE_OUTPUTS, _TCC_CHANNEL_OUT_PIN_INIT, 0)
# undef _TCC_CHANNEL_OUT_PIN_INIT
config->double_buffering_enabled = true;
config->run_in_standby = false;
}
/**
* \brief Build CTRLA register value from configuration.
*
* \param[in] module_index The software module instance index
* \param[in] config Pointer to the TCC configuration options struct
* \param[out] value_buffer Pointer to the buffer to fill with built value
*
* \return Configuration validation status.
*
* \retval STATUS_OK Configuration values are good and register
* value built and save to buffer
* \retval STATUS_ERR_INVALID_ARG Invalid parameter found:
* assigned dither mode is invalid for module;
* used capture channel is invalid for module
*/
static inline enum status_code _tcc_build_ctrla(
const uint8_t module_index,
const struct tcc_config *const config,
uint32_t *value_buffer)
{
uint32_t ctrla = 0;
int i;
for (i = 0; i < TCC_NUM_CHANNELS; i ++) {
if (config->capture.channel_function[i] ==
TCC_CHANNEL_FUNCTION_CAPTURE) {
if (i > _tcc_cc_nums[module_index]) {
/* Channel not supported */
return STATUS_ERR_INVALID_ARG;
}
ctrla |= (TCC_CTRLA_CPTEN0 << i);
}
}
if (config->run_in_standby) {
ctrla |= TCC_CTRLA_RUNSTDBY;
}
ctrla |= config->counter.reload_action << TCC_CTRLA_PRESCSYNC_Pos;
ctrla |= config->counter.clock_prescaler << TCC_CTRLA_PRESCALER_Pos;
*value_buffer = ctrla;
return STATUS_OK;
}
/**
* \brief Build CTRLB register value from configuration.
*
* \param[in] module_index The software module instance index
* \param[in] config Pointer to the TCC configuration options struct
* \param[out] value_buffer Pointer to the buffer to fill with built value
*/
static inline void _tcc_build_ctrlb(
const uint8_t module_index,
const struct tcc_config *const config,
uint8_t *value_buffer)
{
uint8_t ctrlb = 0;
if (config->counter.oneshot) {
ctrlb |= TCC_CTRLBSET_ONESHOT;
}
if (config->counter.direction == TCC_COUNT_DIRECTION_DOWN) {
ctrlb |= TCC_CTRLBSET_DIR;
}
*value_buffer = ctrlb;
}
/**
* \brief Build FAULTs register values from configuration.
*
* \param[in] module_index The software module instance index
* \param[in] config Pointer to the TCC configuration options struct
* \param[out] value_buffer Pointer to the buffer to fill with built values
*
* \retval STATUS_OK Configuration values are good and register
* value built and save to buffer
* \retval STATUS_ERR_INVALID_ARG Invalid parameter found: assigned fault
* capture channel is invalid; assigned filter
* value is invalid
*/
static inline enum status_code _tcc_build_faults(
const uint8_t module_index,
const struct tcc_config *const config,
uint32_t *value_buffer)
{
struct tcc_recoverable_fault_config *cfg;
uint8_t cc_num = _tcc_cc_nums[module_index];
uint32_t fault;
int i;
for (i = 0; i < TCC_NUM_FAULTS; i ++) {
cfg = (struct tcc_recoverable_fault_config *)
&config->wave_ext.recoverable_fault[i];
if (cfg->capture_channel >= cc_num) {
return STATUS_ERR_INVALID_ARG;
}
if (cfg->filter_value > 0xF) {
return STATUS_ERR_INVALID_ARG;
}
fault = TCC_FCTRLA_FILTERVAL(cfg->filter_value)
| TCC_FCTRLA_BLANKVAL(cfg->blanking_cycles)
| (cfg->restart ? TCC_FCTRLA_RESTART : 0)
| (cfg->keep ? TCC_FCTRLA_KEEP : 0)
| (cfg->qualification ? TCC_FCTRLA_QUAL : 0)
| TCC_FCTRLA_SRC(cfg->source)
| TCC_FCTRLA_BLANK(cfg->blanking)
| TCC_FCTRLA_HALT(cfg->halt_action)
| TCC_FCTRLA_CAPTURE(cfg->capture_action)
| TCC_FCTRLA_CHSEL(cfg->capture_channel);
value_buffer[i] = fault;
}
return STATUS_OK;
}
/**
* \brief Build DRVCTRL register values from configuration.
*
* \param[in] module_index The software module instance index
* \param[in] config Pointer to the TCC configuration options struct
* \param[out] value_buffer Pointer to the buffer to fill with built value
*
* \retval STATUS_OK Configuration values are good and register
* value built and save to buffer
* \retval STATUS_ERR_INVALID_ARG Invalid parameter found: assigned output line
* is invalid; filter value is invalid
*/
static inline enum status_code _tcc_build_drvctrl(
const uint8_t module_index,
const struct tcc_config *const config,
uint32_t *value_buffer)
{
uint32_t i;
uint8_t ow_num = _tcc_ow_nums[module_index];
uint32_t drvctrl;
drvctrl = 0;
for (i = 0; i < TCC_NUM_WAVE_OUTPUTS; i ++) {
if (config->wave_ext.invert[i]) {
if (i >= ow_num) {
return STATUS_ERR_INVALID_ARG;
}
drvctrl |= (TCC_DRVCTRL_INVEN0 << i);
}
if (config->wave_ext.non_recoverable_fault[i].output !=
TCC_FAULT_STATE_OUTPUT_OFF) {
if (i >= ow_num) {
return STATUS_ERR_INVALID_ARG;
}
if (config->wave_ext.non_recoverable_fault[i].output ==
TCC_FAULT_STATE_OUTPUT_1) {
drvctrl |= (TCC_DRVCTRL_NRE0 | TCC_DRVCTRL_NRV0) << i;
} else {
drvctrl |= (TCC_DRVCTRL_NRE0) << i;
}
}
}
*value_buffer = drvctrl;
return STATUS_OK;
}
/**
* \brief Build WAVE & WAVEB register values from configuration.
*
* \param[in] module_index The software module instance index
* \param[in] config Pointer to the TCC configuration options struct
* \param[out] value_buffer Pointer to the buffer to fill with built value
*
* \retval STATUS_OK Configuration values are good and register
* value built and save to buffer
* \retval STATUS_ERR_INVALID_ARG Invalid parameter found: assigned output line
* is invalid; circular and double buffering
* conflict; assigned function not supported by
* module
*/
static inline enum status_code _tcc_build_waves(
const uint8_t module_index,
const struct tcc_config *const config,
uint32_t *value_buffer)
{
int n;
uint8_t cc_num = _tcc_cc_nums[module_index];
struct tcc_match_wave_config const *wav_cfg = &config->compare;
uint32_t wave;
wave = TCC_WAVE_RAMP(wav_cfg->wave_ramp) |
TCC_WAVE_WAVEGEN(wav_cfg->wave_generation);
for (n = 0; n < TCC_NUM_CHANNELS; n++) {
if (wav_cfg->wave_polarity[n]) {
if (n >= cc_num) {
return STATUS_ERR_INVALID_ARG;
}
wave |= (TCC_WAVE_POL0 << n);
}
}
value_buffer[0] = wave;
return STATUS_OK;
}
/**
* \brief Initializes a hardware TCC module instance.
*
* Enables the clock and initializes the given TCC module, based on the given
* configuration values.
*
* \param[in,out] module_inst Pointer to the software module instance struct
* \param[in] hw Pointer to the TCC hardware module
* \param[in] config Pointer to the TCC configuration options struct
*
* \return Status of the initialization procedure.
*
* \retval STATUS_OK The module was initialized successfully
* \retval STATUS_BUSY The hardware module was busy when the
* initialization procedure was attempted
* \retval STATUS_INVALID_ARG An invalid configuration option or argument
* was supplied
* \retval STATUS_ERR_DENIED The hardware module was already enabled
*/
enum status_code tcc_init(
struct tcc_module *const module_inst,
Tcc *const hw,
const struct tcc_config *const config)
{
int i;
/* Sanity check arguments */
Assert(hw);
Assert(module_inst);
Assert(config);
/* TCC instance index */
uint8_t module_index = _tcc_get_inst_index(hw);
/* Enable the user interface clock for TCC */
system_apb_clock_set_mask(SYSTEM_CLOCK_APB_APBC,
_tcc_apbcmasks[module_index]);
/* Check if it's enabled. */
if (hw->CTRLA.reg & TCC_CTRLA_ENABLE) {
return STATUS_ERR_DENIED;
}
/* Check if it's resetting */
if (hw->CTRLA.reg & TCC_CTRLA_SWRST) {
return STATUS_ERR_DENIED;
}
enum status_code status;
/* Check COUNT, PER, CCx */
uint32_t count_max = _tcc_maxs[module_index];
/* Check all counter values */
if ((config->counter.count > count_max)
|| (config->counter.period > count_max)
) {
return STATUS_ERR_INVALID_ARG;
}
/* Check all channel values */
for (i = 0; i < TCC_NUM_CHANNELS; i ++) {
if ((config->compare.match[i] > count_max)
) {
return STATUS_ERR_INVALID_ARG;
}
}
/* Check all outputs */
for (i = 0; i < TCC_NUM_WAVE_OUTPUTS; i ++) {
if (!config->pins.enable_wave_out_pin[i]) {
continue;
}
/* Output line is not supported */
if (i >= _tcc_ow_nums[module_index]) {
return STATUS_ERR_INVALID_ARG;
}
}
/* CTRLA settings */
uint32_t ctrla = 0;
status = _tcc_build_ctrla(module_index, config, &ctrla);
if (STATUS_OK != status) {
return status;
}
/* CTRLB settings */
uint8_t ctrlb;
_tcc_build_ctrlb(module_index, config, &ctrlb);
/* FAULTs settings */
uint32_t faults[TCC_NUM_FAULTS];
status = _tcc_build_faults(module_index, config, faults);
if (STATUS_OK != status) {
return status;
}
/* DRVCTRL */
uint32_t drvctrl = 0;
status = _tcc_build_drvctrl(module_index, config, &drvctrl);
if (STATUS_OK != status) {
return status;
}
/* WAVE */
uint32_t waves[1];
status = _tcc_build_waves(module_index, config, waves);
if (STATUS_OK != status) {
return status;
}
/* Initialize module */
#if TCC_ASYNC
/* Initialize parameters */
for (i = 0; i < TCC_CALLBACK_N; i ++) {
module_inst->callback[i] = NULL;
}
module_inst->register_callback_mask = 0;
module_inst->enable_callback_mask = 0;
_tcc_instances[module_index] = module_inst;
#endif
module_inst->hw = hw;
module_inst->double_buffering_enabled = config->double_buffering_enabled;
/* Setup clock for module */
struct system_gclk_chan_config gclk_chan_config;
system_gclk_chan_get_config_defaults(&gclk_chan_config);
gclk_chan_config.source_generator = config->counter.clock_source;
system_gclk_chan_set_config(_tcc_gclk_ids[module_index], &gclk_chan_config);
system_gclk_chan_enable(_tcc_gclk_ids[module_index]);
/* Initialize pins */
struct system_pinmux_config pin_config;
for (i = 0; i < _tcc_ow_nums[module_index]; i ++) {
if (!config->pins.enable_wave_out_pin[i]) {
continue;
}
system_pinmux_get_config_defaults(&pin_config);
pin_config.mux_position = config->pins.wave_out_pin_mux[i];
pin_config.direction = SYSTEM_PINMUX_PIN_DIR_OUTPUT;
system_pinmux_pin_set_config(
config->pins.wave_out_pin[i], &pin_config);
}
/* Write to registers */
hw->CTRLA.reg = ctrla;
while (hw->SYNCBUSY.reg & TCC_SYNCBUSY_CTRLB) {
/* Wait for sync */
}
hw->CTRLBCLR.reg = 0xFF;
while (hw->SYNCBUSY.reg & TCC_SYNCBUSY_CTRLB) {
/* Wait for sync */
}
hw->CTRLBSET.reg = ctrlb;
hw->FCTRLA.reg = faults[0];
hw->FCTRLB.reg = faults[1];
hw->DRVCTRL.reg = drvctrl;
#if (!SAML21) && (!SAMC20) && (!SAMC21) && (!SAML22) && (!SAMR30)
while (hw->SYNCBUSY.reg & (TCC_SYNCBUSY_WAVE | TCC_SYNCBUSY_WAVEB)) {
/* Wait for sync */
}
#endif
hw->WAVE.reg = waves[0];
while (hw->SYNCBUSY.reg & TCC_SYNCBUSY_COUNT) {
/* Wait for sync */
}
hw->COUNT.reg = config->counter.count;
#if (!SAML21) && (!SAMC20) && (!SAMC21) && (!SAML22) && (!SAMR30)
while (hw->SYNCBUSY.reg & (TCC_SYNCBUSY_PER | TCC_SYNCBUSY_PERB)) {
/* Wait for sync */
}
#endif
hw->PER.reg = (config->counter.period);
for (i = 0; i < _tcc_cc_nums[module_index]; i ++) {
#if (!SAML21) && (!SAMC20) && (!SAMC21) && (!SAML22) && (!SAMR30)
while (hw->SYNCBUSY.reg & (
(TCC_SYNCBUSY_CC0 | TCC_SYNCBUSY_CCB0) << i)) {
/* Wait for sync */
}
#endif
hw->CC[i].reg = (config->compare.match[i]);
}
return STATUS_OK;
}
/**
* \brief Enables the TCC module event input or output.
*
* Enables one or more input or output events to or from the TCC module.
* See \ref tcc_events for a list of events this module supports.
*
* \note Events cannot be altered while the module is enabled.
*
* \param[in] module_inst Pointer to the software module instance struct
* \param[in] events Struct containing flags of events to enable or
* configure
*
* \return Status of the events setup procedure.
*
* \retval STATUS_OK The module was initialized successfully
* \retval STATUS_INVALID_ARG An invalid configuration option or argument
* was supplied
*/
enum status_code tcc_enable_events(
struct tcc_module *const module_inst,
struct tcc_events *const events)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Assert(events);
Tcc *const tcc_module = module_inst->hw;
/* Check if it's enabled or resetting. */
if (tcc_module->CTRLA.reg & (TCC_CTRLA_ENABLE | TCC_CTRLA_SWRST)) {
return STATUS_ERR_DENIED;
}
uint32_t evctrl = tcc_module->EVCTRL.reg;
/* Setup event output action */
if (events->output_config.modify_generation_selection) {
evctrl &= ~ TCC_EVCTRL_CNTSEL_Msk;
switch(events->output_config.generation_selection) {
case TCC_EVENT_GENERATION_SELECTION_START:
evctrl |= TCC_EVCTRL_CNTSEL_START;
break;
case TCC_EVENT_GENERATION_SELECTION_END:
evctrl |= TCC_EVCTRL_CNTSEL_END;
break;
case TCC_EVENT_GENERATION_SELECTION_BETWEEN:
evctrl |= TCC_EVCTRL_CNTSEL_BETWEEN;
break;
case TCC_EVENT_GENERATION_SELECTION_BOUNDARY:
evctrl |= TCC_EVCTRL_CNTSEL_BOUNDARY;
break;
default:
Assert(false);
/* Wrong configuration */
return STATUS_ERR_INVALID_ARG;
}
}
/* Setup input event0 */
if (events->on_input_event_perform_action[0]) {
evctrl |= TCC_EVCTRL_TCEI0;
}
if (events->input_config[0].invert) {
evctrl |= TCC_EVCTRL_TCINV0;
}
if (events->input_config[0].modify_action) {
evctrl &= ~ TCC_EVCTRL_EVACT0_Msk;
switch(events->input_config[0].action) {
case TCC_EVENT0_ACTION_OFF:
evctrl |= TCC_EVCTRL_EVACT0_OFF;
break;
case TCC_EVENT0_ACTION_RETRIGGER:
evctrl |= TCC_EVCTRL_EVACT0_RETRIGGER;
break;
case TCC_EVENT0_ACTION_COUNT_EVENT:
evctrl |= TCC_EVCTRL_EVACT0_COUNTEV;
break;
case TCC_EVENT0_ACTION_START:
evctrl |= TCC_EVCTRL_EVACT0_START;
break;
case TCC_EVENT0_ACTION_INCREMENT:
evctrl |= TCC_EVCTRL_EVACT0_INC;
break;
case TCC_EVENT0_ACTION_COUNT_DURING_ACTIVE:
evctrl |= TCC_EVCTRL_EVACT0_COUNT;
break;
case TCC_EVENT0_ACTION_NON_RECOVERABLE_FAULT:
evctrl |= TCC_EVCTRL_EVACT0_FAULT;
break;
default:
Assert(false);
/* Wrong configuration */
return STATUS_ERR_INVALID_ARG;
}
}
/* Setup input event1 */
if (events->on_input_event_perform_action[1]) {
evctrl |= TCC_EVCTRL_TCEI1;
}
if (events->input_config[1].invert) {
evctrl |= TCC_EVCTRL_TCINV1;
}
if (events->input_config[1].modify_action) {
evctrl &= ~ TCC_EVCTRL_EVACT1_Msk;
switch(events->input_config[1].action) {
case TCC_EVENT1_ACTION_OFF:
evctrl |= TCC_EVCTRL_EVACT1_OFF;
break;
case TCC_EVENT1_ACTION_RETRIGGER:
evctrl |= TCC_EVCTRL_EVACT1_RETRIGGER;
break;
case TCC_EVENT1_ACTION_DIR_CONTROL:
evctrl |= TCC_EVCTRL_EVACT1_DIR;
break;
case TCC_EVENT1_ACTION_STOP:
evctrl |= TCC_EVCTRL_EVACT1_STOP;
break;
case TCC_EVENT1_ACTION_DECREMENT:
evctrl |= TCC_EVCTRL_EVACT1_DEC;
break;
case TCC_EVENT1_ACTION_PERIOD_PULSE_WIDTH_CAPTURE:
evctrl |= TCC_EVCTRL_EVACT1_PPW |
TCC_EVCTRL_MCEI0 | TCC_EVCTRL_MCEI1;
break;
case TCC_EVENT1_ACTION_PULSE_WIDTH_PERIOD_CAPTURE:
evctrl |= TCC_EVCTRL_EVACT1_PWP |
TCC_EVCTRL_MCEI0 | TCC_EVCTRL_MCEI1;
break;
case TCC_EVENT1_ACTION_NON_RECOVERABLE_FAULT:
evctrl |= TCC_EVCTRL_EVACT1_FAULT;
break;
default:
Assert(false);
/* Wrong configuration */
return STATUS_ERR_INVALID_ARG;
}
}
uint32_t ch;
for(ch = 0; ch < TCC_NUM_CHANNELS; ch ++) {
if (events->generate_event_on_channel[ch]) {
evctrl |= (TCC_EVCTRL_MCEO(1) << ch);
}
if (events->on_event_perform_channel_action[ch]) {
evctrl |= (TCC_EVCTRL_MCEI(1) << ch);
}
}
if (events->generate_event_on_counter_overflow) {
evctrl |= TCC_EVCTRL_OVFEO;
}
if (events->generate_event_on_counter_retrigger) {
evctrl |= TCC_EVCTRL_TRGEO;
}
if (events->generate_event_on_counter_event) {
evctrl |= TCC_EVCTRL_CNTEO;
}
tcc_module->EVCTRL.reg = evctrl;
return STATUS_OK;
}
/**
* \brief Disables the event input or output of a TCC instance.
*
* Disables one or more input or output events for the given TCC module.
* See \ref tcc_events for a list of events this module supports.
*
* \note Events cannot be altered while the module is enabled.
*
* \param[in] module_inst Pointer to the software module instance struct
* \param[in] events Struct containing flags of events to disable
*/
void tcc_disable_events(
struct tcc_module *const module_inst,
struct tcc_events *const events)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Assert(events);
Tcc *const tcc_module = module_inst->hw;
/* Check if it's enabled or resetting. */
if (tcc_module->CTRLA.reg & (TCC_CTRLA_ENABLE | TCC_CTRLA_SWRST)) {
return;
}
uint32_t evctrl = 0;
uint32_t ch;
for(ch = 0; ch < TCC_NUM_CHANNELS; ch ++) {
if (events->generate_event_on_channel[ch]) {
evctrl |= (TCC_EVCTRL_MCEO(1) << ch);
}
if (events->on_event_perform_channel_action[ch]) {
evctrl |= (TCC_EVCTRL_MCEI(1) << ch);
}
}
if (events->generate_event_on_counter_overflow) {
evctrl |= TCC_EVCTRL_OVFEO;
}
if (events->generate_event_on_counter_retrigger) {
evctrl |= TCC_EVCTRL_TRGEO;
}
if (events->generate_event_on_counter_event) {
evctrl |= TCC_EVCTRL_CNTEO;
}
if (events->on_input_event_perform_action[0]) {
evctrl |= TCC_EVCTRL_TCEI0;
}
if (events->on_input_event_perform_action[1]) {
evctrl |= TCC_EVCTRL_TCEI1;
}
if (events->input_config[0].invert) {
evctrl |= TCC_EVCTRL_TCINV0;
}
if (events->input_config[1].invert) {
evctrl |= TCC_EVCTRL_TCINV1;
}
tcc_module->EVCTRL.reg &= ~evctrl;
}
/**
* \brief Sets count value for the given TCC module.
*
* Sets the timer count value of an initialized TCC module. The
* specified TCC module can remain running or stopped.
*
* \param[in] module_inst Pointer to the software module instance struct
* \param[in] count New timer count value to set
*
* \return Status which indicates whether the new value is set.
*
* \retval STATUS_OK The timer count was updated successfully
* \retval STATUS_ERR_INVALID_ARG An invalid timer counter size was specified
*/
enum status_code tcc_set_count_value(
const struct tcc_module *const module_inst,
const uint32_t count)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance*/
Tcc *const tcc_module = module_inst->hw;
/* Get a index of the module */
uint8_t module_index = _tcc_get_inst_index(tcc_module);
uint32_t max_count = _tcc_maxs[module_index];
if (count > max_count) {
return STATUS_ERR_INVALID_ARG;
}
while (tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_COUNT) {
/* Wait for sync */
}
/* Write to based on the TCC dithering */
tcc_module->COUNT.reg = (count);
return STATUS_OK;
}
/**
* \brief Get count value of the given TCC module.
*
* Retrieves the current count value of a TCC module. The specified TCC module
* can remain running or stopped.
*
* \param[in] module_inst Pointer to the software module instance struct
*
* \return Count value of the specified TCC module.
*/
uint32_t tcc_get_count_value(
const struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance*/
Tcc *const tcc_module = module_inst->hw;
uint32_t last_cmd;
/* Wait last command done */
do {
while (tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_CTRLB) {
/* Wait for sync */
}
last_cmd = tcc_module->CTRLBSET.reg & TCC_CTRLBSET_CMD_Msk;
if (TCC_CTRLBSET_CMD_NONE == last_cmd) {
/* Issue read command and break */
tcc_module->CTRLBSET.bit.CMD = TCC_CTRLBSET_CMD_READSYNC_Val;
while (tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_CTRLB) {
/* Wait for sync */
}
break;
} else if (TCC_CTRLBSET_CMD_READSYNC == last_cmd) {
/* Command have been issued */
break;
}
} while (1);
while (tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_COUNT) {
/* Wait for sync */
}
return (tcc_module->COUNT.reg);
}
/**
* \brief Gets the TCC module capture value.
*
* Retrieves the capture value in the indicated TCC module capture channel.
*
* \param[in] module_inst Pointer to the software module instance struct
* \param[in] channel_index Index of the Compare Capture channel to read
*
* \return Capture value stored in the specified timer channel.
*/
uint32_t tcc_get_capture_value(
const struct tcc_module *const module_inst,
const enum tcc_match_capture_channel channel_index)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Assert(channel_index < _tcc_cc_nums[_tcc_get_inst_index(module_inst->hw)]);
/* Get a pointer to the module's hardware instance */
Tcc *const tcc_module = module_inst->hw;
while(tcc_module->SYNCBUSY.reg & (TCC_SYNCBUSY_CC0 << channel_index)) {
/* Sync wait */
}
return tcc_module->CC[channel_index].reg;
}
/**
* \internal
* \brief Sets a TCC module compare value/buffer.
*
* Writes a compare value to the given TCC module compare/capture channel or
* buffer one.
*
* \param[in] module_inst Pointer to the software module instance struct
* \param[in] channel_index Index of the compare channel to write to
* \param[in] compare New compare value/buffer value to set
* \param[in] double_buffering_enabled Set to \c true to write to CCBx
*
* \return Status of the compare update procedure.
*
* \retval STATUS_OK The compare value was updated successfully
* \retval STATUS_ERR_INVALID_ARG An invalid channel index was supplied or
* compare value exceed resolution
*/
static enum status_code _tcc_set_compare_value(
const struct tcc_module *const module_inst,
const enum tcc_match_capture_channel channel_index,
const uint32_t compare,
const bool double_buffering_enabled)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
Tcc *const tcc_module = module_inst->hw;
/* Get a index of the module */
uint8_t module_index = _tcc_get_inst_index(tcc_module);
/* Check index */
if (channel_index >= _tcc_cc_nums[module_index]) {
return STATUS_ERR_INVALID_ARG;
}
uint32_t max_count = _tcc_maxs[module_index];
/* Check compare value */
if (compare > max_count) {
return STATUS_ERR_INVALID_ARG;
}
if (double_buffering_enabled) {
#if (SAML21) || (SAMC20) || (SAMC21) || (SAML22) || (SAMR30)
tcc_module->CCBUF[channel_index].reg = compare;
#else
while(tcc_module->STATUS.reg &
(TCC_STATUS_CCBV0 << channel_index)) {
/* Valid check */
}
while(tcc_module->SYNCBUSY.reg &
(TCC_SYNCBUSY_CCB0 << channel_index)) {
/* Sync wait */
}
tcc_module->CCB[channel_index].reg = compare;
#endif
} else {
while(tcc_module->SYNCBUSY.reg & (TCC_SYNCBUSY_CC0 << channel_index)) {
/* Sync wait */
}
tcc_module->CC[channel_index].reg = compare;
}
return STATUS_OK;
}
/**
* \brief Sets a TCC module compare value.
*
* Writes a compare value to the given TCC module compare/capture channel.
*
* If double buffering is enabled it always write to the buffer
* register. The value will then be updated immediately by calling
* \ref tcc_force_double_buffer_update(), or be updated when the lock update bit
* is cleared and the UPDATE condition happen.
*
* \param[in] module_inst Pointer to the software module instance struct
* \param[in] channel_index Index of the compare channel to write to
* \param[in] compare New compare value to set
*
* \return Status of the compare update procedure.
*
* \retval STATUS_OK The compare value was updated successfully
* \retval STATUS_ERR_INVALID_ARG An invalid channel index was supplied or
* compare value exceed resolution
*/
enum status_code tcc_set_compare_value(
const struct tcc_module *const module_inst,
const enum tcc_match_capture_channel channel_index,
const uint32_t compare)
{
/* Sanity check arguments */
Assert(module_inst);
return _tcc_set_compare_value(module_inst, channel_index, compare,
module_inst->double_buffering_enabled);
}
/**
* \brief Sets a TCC module compare value and buffer value.
*
* Writes compare value and buffer to the given TCC module compare/capture
* channel. Usually as preparation for double buffer or circulared double buffer
* (circular buffer).
*
* \param[in] module_inst Pointer to the software module instance struct
* \param[in] channel_index Index of the compare channel to write to
* \param[in] compare New compare value to set
* \param[in] compare_buffer New compare buffer value to set
*
* \return Status of the compare update procedure.
*
* \retval STATUS_OK The compare value was updated successfully
* \retval STATUS_ERR_INVALID_ARG An invalid channel index was supplied or
* compare value exceed resolution
*/
enum status_code tcc_set_double_buffer_compare_values(
struct tcc_module *const module_inst,
const enum tcc_match_capture_channel channel_index,
const uint32_t compare, const uint32_t compare_buffer)
{
/* Sanity check arguments */
Assert(module_inst);
enum status_code status;
status = _tcc_set_compare_value(module_inst, channel_index, compare, false);
if (status != STATUS_OK) {
return status;
}
return _tcc_set_compare_value(module_inst, channel_index, compare_buffer,
true);
}
/**
* \internal
* \brief Set the timer TOP/PERIOD buffer/value.
*
* This function writes the given value to the PER/PERB register.
*
* \param[in] module_inst Pointer to the software module instance struct
* \param[in] top_value New value to be loaded into the PER/PERB register
* \param[in] double_buffering_enabled Set to \c true to write to PERB
*
* \return Status of the TOP set procedure.
*
* \retval STATUS_OK The timer TOP value was updated successfully
* \retval STATUS_ERR_INVALID_ARG An invalid channel index was supplied or
* top/period value exceed resolution
*/
static enum status_code _tcc_set_top_value(
const struct tcc_module *const module_inst,
const uint32_t top_value,
const bool double_buffering_enabled)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
Tcc *const tcc_module = module_inst->hw;
/* Get a index of the module */
uint8_t module_index = _tcc_get_inst_index(tcc_module);
uint32_t max_count = _tcc_maxs[module_index];
/* Check compare value */
if (top_value > max_count) {
return STATUS_ERR_INVALID_ARG;
}
if (double_buffering_enabled) {
#if (SAML21) || (SAMC20) || (SAMC21) || (SAML22) || (SAMR30)
tcc_module->PERBUF.reg = top_value;
#else
while(tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_PERB) {
/* Sync wait */
}
tcc_module->PERB.reg = top_value;
#endif
} else {
while(tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_PER) {
/* Sync wait */
}
tcc_module->PER.reg = top_value;
}
return STATUS_OK;
}
/**
* \brief Set the timer TOP/PERIOD value.
*
* This function writes the given value to the PER/PERB register.
*
* If double buffering is enabled it always write to the buffer
* register (PERB). The value will then be updated immediately by calling
* \ref tcc_force_double_buffer_update(), or be updated when the lock update bit
* is cleared and the UPDATE condition happen.
*
* When using MFRQ, the top value is defined by the CC0 register value and the
* PER value is ignored, so
* \ref tcc_set_compare_value (module,channel_0,value) must be used instead of
* this function to change the actual top value in that case.
* For all other waveforms operation the top value is defined by PER register
* value.
*
* \param[in] module_inst Pointer to the software module instance struct
* \param[in] top_value New value to be loaded into the PER/PERB register
*
* \return Status of the TOP set procedure.
*
* \retval STATUS_OK The timer TOP value was updated successfully
* \retval STATUS_ERR_INVALID_ARG An invalid channel index was supplied or
* top/period value exceed resolution
*/
enum status_code tcc_set_top_value(
const struct tcc_module *const module_inst,
const uint32_t top_value)
{
/* Sanity check arguments */
Assert(module_inst);
return _tcc_set_top_value(module_inst, top_value,
module_inst->double_buffering_enabled);
}
/**
* \brief Set the timer TOP/PERIOD value and buffer value.
*
* This function writes the given value to the PER and PERB register. Usually as
* preparation for double buffer or circulared double buffer (circular buffer).
*
* When using MFRQ, the top values are defined by the CC0 and CCB0, the PER and
* PERB values are ignored, so
* \ref tcc_set_double_buffer_compare_values (module,channel_0,value,buffer) must
* be used instead of this function to change the actual top values in that
* case. For all other waveforms operation the top values are defined by PER and
* PERB registers values.
*
* \param[in] module_inst Pointer to the software module instance struct
* \param[in] top_value New value to be loaded into the PER register
* \param[in] top_buffer_value New value to be loaded into the PERB register
*
* \return Status of the TOP set procedure.
*
* \retval STATUS_OK The timer TOP value was updated successfully
* \retval STATUS_ERR_INVALID_ARG An invalid channel index was supplied or
* top/period value exceed resolution
*/
enum status_code tcc_set_double_buffer_top_values(
const struct tcc_module *const module_inst,
const uint32_t top_value, const uint32_t top_buffer_value)
{
/* Sanity check arguments */
Assert(module_inst);
enum status_code status;
status = _tcc_set_top_value(module_inst, top_value, false);
if (status != STATUS_OK) {
return status;
}
return _tcc_set_top_value(module_inst, top_buffer_value, true);
}
/**
* \brief Sets the TCC module waveform output pattern.
*
* Force waveform output line to generate specific pattern (0, 1, or as is).
*
* If double buffering is enabled it always write to the buffer
* register. The value will then be updated immediately by calling
* \ref tcc_force_double_buffer_update(), or be updated when the lock update bit
* is cleared and the UPDATE condition happen.
*
* \param[in] module_inst Pointer to the software module instance struct
* \param[in] line_index Output line index
* \param[in] pattern Output pattern to use (\ref tcc_output_pattern)
*
* \return Status of the pattern set procedure.
*
* \retval STATUS_OK The PATT register is updated successfully
* \retval STATUS_ERR_INVALID_ARG An invalid line index was supplied
*/
enum status_code tcc_set_pattern(
const struct tcc_module *const module_inst,
const uint32_t line_index,
const enum tcc_output_pattern pattern)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
Tcc *const tcc_module = module_inst->hw;
/* Get a index of the module */
uint8_t module_index = _tcc_get_inst_index(tcc_module);
/* Get number of output lines */
uint8_t ow_num = _tcc_ow_nums[module_index];
/* Check if line number is OK */
if (line_index >= ow_num) {
return STATUS_ERR_INVALID_ARG;
}
uint32_t patt_value;
while(tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_PATT) {
/* Sync wait */
}
patt_value = tcc_module->PATT.reg;
if (TCC_OUTPUT_PATTERN_DISABLE == pattern) {
patt_value &= ~(TCC_PATT_PGE0 << line_index);
} else if (TCC_OUTPUT_PATTERN_0 == pattern) {
patt_value &= ~(TCC_PATT_PGV0 << line_index);
patt_value |= (TCC_PATT_PGE0 << line_index);
} else {
patt_value |= ((TCC_PATT_PGE0 | TCC_PATT_PGV0) << line_index);
}
if (module_inst->double_buffering_enabled) {
#if (SAML21) || (SAMC20) || (SAMC21) || (SAML22) || (SAMR30)
tcc_module->PATTBUF.reg = patt_value;
#else
while(tcc_module->SYNCBUSY.reg & TCC_SYNCBUSY_PATTB) {
/* Sync wait */
}
tcc_module->PATTB.reg = patt_value;
#endif
} else {
tcc_module->PATT.reg = patt_value;
}
return STATUS_OK;
}
/**
* \brief Retrieves the current module status.
*
* Retrieves the status of the module, giving overall state information.
*
* \param[in] module_inst Pointer to the TCC software instance struct
*
* \return Bitmask of \c TCC_STATUS_* flags.
*
* \retval TCC_STATUS_CHANNEL_MATCH_CAPTURE(n) Channel n match/capture has occured
* \retval TCC_STATUS_CHANNEL_OUTPUT(n) Channel n match/capture output state
* \retval TCC_STATUS_NON_RECOVERABLE_FAULT_OCCUR(x) Non-recoverable fault x has occured
* \retval TCC_STATUS_RECOVERABLE_FAULT_OCCUR(n) Recoverable fault n has occured
* \retval TCC_STATUS_NON_RECOVERABLE_FAULT_PRESENT(x) Non-recoverable fault x input present
* \retval TCC_STATUS_RECOVERABLE_FAULT_PRESENT(n) Recoverable fault n input present
* \retval TCC_STATUS_SYNC_READY None of register is syncing
* \retval TCC_STATUS_CAPTURE_OVERFLOW Timer capture data has overflowed
* \retval TCC_STATUS_COUNTER_EVENT Timer counter event has occurred
* \retval TCC_STATUS_COUNT_OVERFLOW Timer count value has overflowed
* \retval TCC_STATUS_COUNTER_RETRIGGERED Timer counter has been retriggered
* \retval TCC_STATUS_STOP Timer counter has been stopped
* \retval TCC_STATUS_RAMP_CYCLE_INDEX Wave ramp index for cycle
*/
uint32_t tcc_get_status(
struct tcc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
uint32_t int_flags = module_inst->hw->INTFLAG.reg;
uint32_t status_flags = module_inst->hw->STATUS.reg;
uint32_t status = 0;
int i;
/* SYNC */
if (module_inst->hw->SYNCBUSY.reg == 0) {
status |= TCC_STATUS_SYNC_READY;
}
/* Channels */
for (i = 0; i < TCC_NUM_CHANNELS; i++) {
if (int_flags & TCC_INTFLAG_MC(i)) {
status |= TCC_STATUS_CHANNEL_MATCH_CAPTURE(i);
}
if (status_flags & TCC_STATUS_CMP(i)) {
status |= TCC_STATUS_CHANNEL_OUTPUT(i);
}
}
/* Non-recoverable fault state */
if ((int_flags & TCC_INTFLAG_FAULT1) ||
(status_flags & TCC_STATUS_FAULT1)) {
status |= TCC_STATUS_NON_RECOVERABLE_FAULT_OCCUR(1);
}
if ((int_flags & TCC_INTFLAG_FAULT0) ||
(status_flags & TCC_STATUS_FAULT0)) {
status |= TCC_STATUS_NON_RECOVERABLE_FAULT_OCCUR(0);
}
/* Non-recoverable fault inputs */
if (status_flags & TCC_STATUS_FAULT0IN) {
status |= TCC_STATUS_NON_RECOVERABLE_FAULT_PRESENT(0);
}
if (status_flags & TCC_STATUS_FAULT1IN) {
status |= TCC_STATUS_NON_RECOVERABLE_FAULT_PRESENT(1);
}
/* Recoverable fault state */
if ((int_flags & TCC_INTFLAG_FAULTB) ||
(status_flags & TCC_STATUS_FAULTB)) {
status |= TCC_STATUS_RECOVERABLE_FAULT_OCCUR(1);
}
if ((int_flags & TCC_INTFLAG_FAULTA) ||
(status_flags & TCC_STATUS_FAULTA)) {
status |= TCC_STATUS_RECOVERABLE_FAULT_OCCUR(0);
}
/* Recoverable fault inputs */
if (status_flags & TCC_STATUS_FAULTAIN) {
status |= TCC_STATUS_RECOVERABLE_FAULT_PRESENT(0);
}
if (status_flags & TCC_STATUS_FAULTBIN) {
status |= TCC_STATUS_RECOVERABLE_FAULT_PRESENT(1);
}
/* Check for TCC capture overflow */
if (int_flags & TCC_INTFLAG_ERR) {
status |= TCC_STATUS_CAPTURE_OVERFLOW;
}
/* Check for TCC count counter */
if (int_flags & TCC_INTFLAG_CNT) {
status |= TCC_STATUS_COUNTER_EVENT;
}
/* Check for TCC count retrigger */
if (int_flags & TCC_INTFLAG_TRG) {
status |= TCC_STATUS_COUNTER_RETRIGGERED;
}
/* Check for TCC count overflow */
if (int_flags & TCC_INTFLAG_OVF) {
status |= TCC_STATUS_COUNT_OVERFLOW;
}
/* Check for TCC count stop */
if (status_flags & TCC_STATUS_STOP) {
status |= TCC_STATUS_STOPPED;
}
/* Check for TCC RAMP index */
if (status_flags & TCC_STATUS_IDX) {
status |= TCC_STATUS_RAMP_CYCLE_INDEX;
}
return status;
}
/**
* \brief Clears a module status flag.
*
* Clears the given status flag of the module.
*
* \param[in] module_inst Pointer to the TCC software instance struct
* \param[in] status_flags Bitmask of \c TCC_STATUS_* flags to clear
*/
void tcc_clear_status(
struct tcc_module *const module_inst,
const uint32_t status_flags)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
uint32_t int_clr = 0;
uint32_t status_clr = 0;
int i;
/* Channels */
for (i = 0; i < TCC_NUM_CHANNELS; i++) {
if (status_flags & TCC_STATUS_CHANNEL_MATCH_CAPTURE(i)) {
int_clr |= TCC_INTFLAG_MC(i);
}
}
/* Faults */
if (status_flags & TCC_STATUS_NON_RECOVERABLE_FAULT_OCCUR(1)) {
int_clr |= TCC_INTFLAG_FAULT1;
status_clr |= TCC_STATUS_FAULT1;
}
if (status_flags & TCC_STATUS_NON_RECOVERABLE_FAULT_OCCUR(0)) {
int_clr |= TCC_INTFLAG_FAULT0;
status_clr |= TCC_STATUS_FAULT0;
}
if (status_flags & TCC_STATUS_RECOVERABLE_FAULT_OCCUR(1)) {
int_clr |= TCC_INTFLAG_FAULTB;
status_clr |= TCC_STATUS_FAULTB;
}
if (status_flags & TCC_STATUS_RECOVERABLE_FAULT_OCCUR(0)) {
int_clr |= TCC_INTFLAG_FAULTA;
status_clr |= TCC_STATUS_FAULTA;
}
/* Check for TCC capture overflow */
if (status_flags & TCC_STATUS_CAPTURE_OVERFLOW) {
int_clr |= TCC_INTFLAG_ERR;
}
/* Check for TCC count counter */
if (status_flags & TCC_STATUS_COUNTER_EVENT) {
int_clr |= TCC_INTFLAG_CNT;
}
/* Check for TCC count retrigger */
if (status_flags & TCC_STATUS_COUNTER_RETRIGGERED) {
int_clr = TCC_INTFLAG_TRG;
}
/* Check for TCC count overflow */
if (status_flags & TCC_STATUS_COUNT_OVERFLOW) {
int_clr |= TCC_INTFLAG_OVF;
}
/* Clear status flag */
module_inst->hw->STATUS.reg = status_clr;
/* Clear interrupt flag */
module_inst->hw->INTFLAG.reg = int_clr;
}
/**
* \brief Enable circular option for double buffered compare values.
*
* Enable circular option for the double buffered channel compare values.
* On each UPDATE condition, the contents of CCBx and CCx are switched, meaning
* that the contents of CCBx are transferred to CCx and the contents of CCx are
* transferred to CCBx.
*
* \param[in] module_inst Pointer to the TCC software instance struct
* \param[in] channel_index Index of the compare channel to set up to
*
* \retval STATUS_OK The module was initialized successfully
* \retval STATUS_INVALID_ARG An invalid channel index is supplied
*/
enum status_code tcc_enable_circular_buffer_compare(
struct tcc_module *const module_inst,
enum tcc_match_capture_channel channel_index)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
Tcc *const tcc_module = module_inst->hw;
/* Get a index of the module */
uint8_t module_index = _tcc_get_inst_index(tcc_module);
/* Check index */
if (channel_index > 3) {
return STATUS_ERR_INVALID_ARG;
}
if (channel_index >= _tcc_cc_nums[module_index]) {
return STATUS_ERR_INVALID_ARG;
}
tcc_module->WAVE.reg |= (TCC_WAVE_CICCEN0 << channel_index);
return STATUS_OK;
}
/**
* \brief Disable circular option for double buffered compare values.
*
* Stop circularing the double buffered compare values.
*
* \param[in] module_inst Pointer to the TCC software instance struct
* \param[in] channel_index Index of the compare channel to set up to
*
* \retval STATUS_OK The module was initialized successfully
* \retval STATUS_INVALID_ARG An invalid channel index is supplied
*/
enum status_code tcc_disable_circular_buffer_compare(
struct tcc_module *const module_inst,
enum tcc_match_capture_channel channel_index)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
Tcc *const tcc_module = module_inst->hw;
/* Get a index of the module */
uint8_t module_index = _tcc_get_inst_index(tcc_module);
/* Check index */
if (channel_index > 3) {
return STATUS_ERR_INVALID_ARG;
}
if (channel_index >= _tcc_cc_nums[module_index]) {
return STATUS_ERR_INVALID_ARG;
}
tcc_module->WAVE.reg &= ~(TCC_WAVE_CICCEN0 << channel_index);
return STATUS_OK;
}