2018-11-29 17:06:06 +08:00

721 lines
20 KiB
C

/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
*
* Change Logs:
* Date Author Notes
* 2018-11-5 SummerGift change to new framework
*/
#include "board.h"
#ifdef RT_USING_SPI
#if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5)
/* this driver can be disabled at menuconfig → RT-Thread Components → Device Drivers */
#include "drv_spi.h"
#include "drv_config.h"
//#define DRV_DEBUG
#define LOG_TAG "drv.spi"
#include <drv_log.h>
enum
{
#ifdef BSP_USING_SPI1
SPI1_INDEX,
#endif
#ifdef BSP_USING_SPI2
SPI2_INDEX,
#endif
#ifdef BSP_USING_SPI3
SPI3_INDEX,
#endif
#ifdef BSP_USING_SPI4
SPI4_INDEX,
#endif
#ifdef BSP_USING_SPI5
SPI5_INDEX,
#endif
};
static struct stm32_spi_config spi_config[] =
{
#ifdef BSP_USING_SPI1
SPI1_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI2
SPI2_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI3
SPI3_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI4
SPI4_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI5
SPI5_BUS_CONFIG,
#endif
};
static struct stm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])];
static rt_err_t stm32_spi_init(struct stm32_spi *spi_drv, struct rt_spi_configuration *cfg)
{
RT_ASSERT(spi_drv != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
if (cfg->mode & RT_SPI_SLAVE)
{
spi_handle->Init.Mode = SPI_MODE_SLAVE;
}
else
{
spi_handle->Init.Mode = SPI_MODE_MASTER;
}
if (cfg->mode & RT_SPI_3WIRE)
{
spi_handle->Init.Direction = SPI_DIRECTION_1LINE;
}
else
{
spi_handle->Init.Direction = SPI_DIRECTION_2LINES;
}
if (cfg->data_width == 8)
{
spi_handle->Init.DataSize = SPI_DATASIZE_8BIT;
spi_handle->TxXferSize = 8;
spi_handle->RxXferSize = 8;
}
else if (cfg->data_width == 16)
{
spi_handle->Init.DataSize = SPI_DATASIZE_16BIT;
}
else
{
return RT_EIO;
}
if (cfg->mode & RT_SPI_CPHA)
{
spi_handle->Init.CLKPhase = SPI_PHASE_2EDGE;
}
else
{
spi_handle->Init.CLKPhase = SPI_PHASE_1EDGE;
}
if (cfg->mode & RT_SPI_CPOL)
{
spi_handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
}
else
{
spi_handle->Init.CLKPolarity = SPI_POLARITY_LOW;
}
if (cfg->mode & RT_SPI_NO_CS)
{
spi_handle->Init.NSS = SPI_NSS_SOFT;
}
else
{
spi_handle->Init.NSS = SPI_NSS_SOFT;
}
uint32_t SPI_APB_CLOCK;
SPI_APB_CLOCK = HAL_RCC_GetPCLK2Freq();
if (cfg->max_hz >= SPI_APB_CLOCK / 2)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 4)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 8)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 16)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 32)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 64)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 128)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
}
else
{
/* min prescaler 256 */
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
}
LOG_D("sys freq: %d, pclk2 freq: %d, SPI limiting freq: %d, BaudRatePrescaler: %d",
HAL_RCC_GetSysClockFreq(),
SPI_APB_CLOCK,
cfg->max_hz,
spi_handle->Init.BaudRatePrescaler);
if (cfg->mode & RT_SPI_MSB)
{
spi_handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
}
else
{
spi_handle->Init.FirstBit = SPI_FIRSTBIT_LSB;
}
spi_handle->Init.TIMode = SPI_TIMODE_DISABLE;
spi_handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
spi_handle->State = HAL_SPI_STATE_RESET;
if (HAL_SPI_Init(spi_handle) != HAL_OK)
{
return RT_EIO;
}
#if defined(SOC_SERIES_STM32L4)
SET_BIT(spi_handle->Instance->CR2, SPI_RXFIFO_THRESHOLD_HF);
#endif
__HAL_SPI_ENABLE(spi_handle);
LOG_D("%s init done", spi_drv->config->bus_name);
return RT_EOK;
}
#ifdef BSP_SPI_USING_DMA
static uint8_t dummy = 0xFF;
static void spi_dma_transfer_prepare(struct rt_spi_bus * spi_bus, struct rt_spi_message* message)
{
struct stm32_spi *spi_drv = rt_container_of(spi_bus, struct stm32_spi, spi_bus);
DMA_HandleTypeDef * hdma_tx = (DMA_HandleTypeDef *)&spi_drv->dma.handle_tx;
DMA_HandleTypeDef * hdma_rx = (DMA_HandleTypeDef *)&spi_drv->dma.handle_rx;
HAL_DMA_DeInit(hdma_tx);
HAL_DMA_DeInit(hdma_rx);
/*
* Check if the DMA Stream is disabled before enabling it.
* Note that this step is useful when the same Stream is used multiple times.
*/
#if defined(SOC_SERIES_STM32F4)
while (hdma_tx->Instance->CR & DMA_SxCR_EN);
while (hdma_rx->Instance->CR & DMA_SxCR_EN);
#endif
if(message->recv_buf != RT_NULL)
{
hdma_rx->Init.MemInc = DMA_MINC_ENABLE;
}
else
{
message->recv_buf = &dummy;
hdma_rx->Init.MemInc = DMA_MINC_DISABLE;
}
HAL_DMA_Init(hdma_rx);
__HAL_LINKDMA(&spi_drv->handle, hdmarx, spi_drv->dma.handle_rx);
if(message->send_buf != RT_NULL)
{
hdma_tx->Init.MemInc = DMA_MINC_ENABLE;
}
else
{
dummy = 0xFF;
message->send_buf = &dummy;
hdma_tx->Init.MemInc = DMA_MINC_DISABLE;
}
HAL_DMA_Init(hdma_tx);
/* link DMA with SPI */
__HAL_LINKDMA(&spi_drv->handle, hdmatx, spi_drv->dma.handle_tx);
LOG_D("%s RX Instance: %x, TX Instance: %x", spi_drv->config->bus_name, hdma_rx->Instance, hdma_tx->Instance);
LOG_D("%s dma config done, TX dma_irq number: %d, RX dma_irq number: %d",
spi_drv->config->bus_name,
spi_drv->config->dma_tx.dma_irq,
spi_drv->config->dma_rx.dma_irq);
/* NVIC configuration for DMA transfer complete interrupt*/
HAL_NVIC_SetPriority(spi_drv->config->dma_tx.dma_irq, 0, 1);
HAL_NVIC_EnableIRQ(spi_drv->config->dma_tx.dma_irq);
/* NVIC configuration for DMA transfer complete interrupt*/
HAL_NVIC_SetPriority(spi_drv->config->dma_rx.dma_irq, 0, 0);
HAL_NVIC_EnableIRQ(spi_drv->config->dma_rx.dma_irq);
}
#endif
static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
RT_ASSERT(message != RT_NULL);
struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
SPI_HandleTypeDef * spi_handle = &spi_drv->handle;
struct stm32_hw_spi_cs *cs = device->parent.user_data;
rt_int32_t length = message->length;
rt_int32_t data_width = spi_drv->cfg->data_width;
if (message->cs_take)
{
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_RESET);
}
#ifdef BSP_SPI_USING_DMA
if(message->length > 32)
{
if(data_width <= 8)
{
HAL_StatusTypeDef state;
LOG_D("%s dma transfer prepare and start", spi_drv->config->bus_name);
LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
spi_drv->config->bus_name,
(uint32_t)message->send_buf,
(uint32_t)message->recv_buf, message->length);
spi_dma_transfer_prepare(device->bus, message);
/* start once data exchange in DMA mode */
state = HAL_SPI_TransmitReceive_DMA(spi_handle,
(uint8_t*)message->send_buf,
(uint8_t*)message->recv_buf,
message->length);
if (state != HAL_OK)
{
LOG_D("spi flash configuration error : %d", state);
message->length = 0;
//while(1);
}
else
{
LOG_D("%s dma transfer done", spi_drv->config->bus_name);
}
/* For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
LOG_D("%s get state done", spi_drv->config->bus_name);
}
else
{
// TODO
}
} else
#endif
{
if (data_width == 8)
{
const rt_uint8_t * send_ptr = message->send_buf;
rt_uint8_t * recv_ptr = message->recv_buf;
while (length--)
{
rt_uint8_t data = ~0;
if(send_ptr != RT_NULL)
{
data = *send_ptr++;
}
/* send data once */
while (__HAL_SPI_GET_FLAG(spi_handle, SPI_FLAG_TXE) == RESET);
*(volatile rt_uint8_t *)(&spi_handle->Instance->DR) = data;
/* receive data once */
#if defined(SOC_SERIES_STM32L4)
SET_BIT(spi_handle->Instance->CR2, SPI_RXFIFO_THRESHOLD_HF);
#endif
while (__HAL_SPI_GET_FLAG(spi_handle, SPI_FLAG_RXNE) == RESET);
data = *(volatile rt_uint8_t *)(&spi_handle->Instance->DR);
if(recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
} else
{
const rt_uint16_t * send_ptr = message->send_buf;
rt_uint16_t * recv_ptr = message->recv_buf;
while (length--)
{
rt_uint16_t data = ~0;
if(send_ptr != RT_NULL)
{
data = *send_ptr++;
}
/* send data once */
while (__HAL_SPI_GET_FLAG(spi_handle, SPI_FLAG_TXE) == RESET);
*(volatile rt_uint16_t *)(&spi_handle->Instance->DR) = data;
/* receive data once */
#if defined(SOC_SERIES_STM32L4)
SET_BIT(spi_handle->Instance->CR2, SPI_RXFIFO_THRESHOLD_HF);
#endif
while (__HAL_SPI_GET_FLAG(spi_handle, SPI_FLAG_RXNE) == RESET);
data = *(volatile rt_uint16_t *)(&spi_handle->Instance->DR);
if(recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
}
}
/* Wait until Busy flag is reset before disabling SPI */
while (__HAL_SPI_GET_FLAG(spi_handle, SPI_FLAG_BSY) == SET);
if (message->cs_release)
{
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET);
}
return message->length;
}
static rt_err_t spi_configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
spi_drv->cfg = configuration;
return stm32_spi_init(spi_drv, configuration);
}
static const struct rt_spi_ops stm_spi_ops =
{
.configure = spi_configure,
.xfer = spixfer,
};
static int rt_hw_spi_bus_init(void)
{
rt_err_t result;
for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
{
spi_bus_obj[i].config = &spi_config[i];
spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
#ifdef BSP_SPI_USING_DMA
/* Configure the DMA handler for Transmission process */
spi_bus_obj[i].dma.handle_tx.Instance = spi_config[i].dma_tx.Instance;
#if defined(SOC_SERIES_STM32F4)
spi_bus_obj[i].dma.handle_tx.Init.Channel = spi_config[i].dma_tx.channel;
#elif defined(SOC_SERIES_STM32L4)
spi_bus_obj[i].dma.handle_tx.Init.Request = spi_config[i].dma_tx.request;
#endif
spi_bus_obj[i].dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
spi_bus_obj[i].dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
spi_bus_obj[i].dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_tx.Init.Mode = DMA_NORMAL;
spi_bus_obj[i].dma.handle_tx.Init.Priority = DMA_PRIORITY_LOW;
#if defined(SOC_SERIES_STM32F4)
spi_bus_obj[i].dma.handle_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
spi_bus_obj[i].dma.handle_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
spi_bus_obj[i].dma.handle_tx.Init.MemBurst = DMA_MBURST_INC4;
spi_bus_obj[i].dma.handle_tx.Init.PeriphBurst = DMA_PBURST_INC4;
#endif
spi_bus_obj[i].dma.handle_rx.Instance = spi_config[i].dma_rx.Instance;
#if defined(SOC_SERIES_STM32F4)
spi_bus_obj[i].dma.handle_rx.Init.Channel = spi_config[i].dma_rx.channel;
#elif defined(SOC_SERIES_STM32L4)
spi_bus_obj[i].dma.handle_rx.Init.Request = spi_config[i].dma_rx.request;
#endif
spi_bus_obj[i].dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
spi_bus_obj[i].dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
spi_bus_obj[i].dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_rx.Init.Mode = DMA_NORMAL;
spi_bus_obj[i].dma.handle_rx.Init.Priority = DMA_PRIORITY_HIGH;
#if defined(SOC_SERIES_STM32F4)
spi_bus_obj[i].dma.handle_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
spi_bus_obj[i].dma.handle_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
spi_bus_obj[i].dma.handle_rx.Init.MemBurst = DMA_MBURST_INC4;
spi_bus_obj[i].dma.handle_rx.Init.PeriphBurst = DMA_PBURST_INC4;
#endif
{
rt_uint32_t tmpreg = 0x00U;
#if defined(SOC_SERIES_STM32F1)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHBENR, spi_config[i].dma_rx.dma_rcc);
tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_rx.dma_rcc);
#elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32L4)
SET_BIT(RCC->AHB1ENR, spi_config[i].dma_rx.dma_rcc);
/* Delay after an RCC peripheral clock enabling */
tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_rx.dma_rcc);
#endif
UNUSED(tmpreg); /* To avoid compiler warnings */
}
LOG_D("%s DMA clock init done", spi_config[i].bus_name);
#endif /* BSP_SPI_USING_DMA */
result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &stm_spi_ops);
RT_ASSERT(result == RT_EOK);
LOG_D("%s bus init done", spi_config[i].bus_name);
}
return result;
}
/**
* Attach the spi device to SPI bus, this function must be used after initialization.
*/
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_TypeDef* cs_gpiox, uint16_t cs_gpio_pin)
{
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
rt_err_t result;
struct rt_spi_device *spi_device;
struct stm32_hw_spi_cs *cs_pin;
/* initialize the cs pin && select the slave*/
GPIO_InitTypeDef GPIO_Initure;
GPIO_Initure.Pin = cs_gpio_pin;
GPIO_Initure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_Initure.Pull = GPIO_PULLUP;
GPIO_Initure.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(cs_gpiox, &GPIO_Initure);
HAL_GPIO_WritePin(cs_gpiox, cs_gpio_pin, GPIO_PIN_SET);
/* attach the device to spi bus*/
spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
cs_pin = (struct stm32_hw_spi_cs *)rt_malloc(sizeof(struct stm32_hw_spi_cs));
RT_ASSERT(cs_pin != RT_NULL);
cs_pin->GPIOx = cs_gpiox;
cs_pin->GPIO_Pin = cs_gpio_pin;
result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
if (result != RT_EOK)
{
LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
}
RT_ASSERT(result == RT_EOK);
LOG_D("%s attach to %s done", device_name, bus_name);
return result;
}
#if defined(BSP_USING_SPI1) && defined(BSP_SPI_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI1_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI1_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI1) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_USING_SPI2) && defined(BSP_SPI_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI2_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI2_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI2) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_USING_SPI3) && defined(BSP_SPI_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI3_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI3_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI3) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_USING_SPI4) && defined(BSP_SPI_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI4_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI4_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI4) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_USING_SPI5) && defined(BSP_SPI_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI5_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI5_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI5) && defined(BSP_SPI_USING_DMA) */
int rt_hw_spi_init(void)
{
return rt_hw_spi_bus_init();
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
#endif /* BSP_USING_SPI1 || BSP_USING_SPI2 || BSP_USING_SPI3 || BSP_USING_SPI4 || BSP_USING_SPI5 */
#endif /* RT_USING_SPI */