rt-thread/bsp/at32/libraries/rt_drivers/drv_qspi.c

514 lines
12 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-05-16 shelton first version
*/
#include <rtdevice.h>
#include "drv_common.h"
#include "drv_qspi.h"
#ifdef BSP_USING_QSPI
#if !defined(BSP_USING_QSPI1) && !defined(BSP_USING_QSPI2)
#error "Please define at least one BSP_USING_QSPIx"
#endif
#define POSITION_VAL(VAL) (__CLZ(__RBIT(VAL)))
#define QSPI_FIFO_DEPTH (32 * 4)
#define DRV_DEBUG
#define LOG_TAG "drv.qspi"
#include <drv_log.h>
struct at32_hw_spi_cs
{
rt_uint16_t pin;
};
struct at32_qspi_bus
{
struct rt_spi_bus qspi_device;
qspi_type *qspi_x;
char *bus_name;
};
enum
{
#ifdef BSP_USING_QSPI1
QSPI1_INDEX,
#endif
#ifdef BSP_USING_QSPI2
QSPI2_INDEX,
#endif
};
static struct at32_qspi_bus at32_qspi_obj[] =
{
#ifdef BSP_USING_QSPI1
QSPI1_BUS_CONFIG,
#endif
#ifdef BSP_USING_QSPI2
QSPI2_BUS_CONFIG,
#endif
};
static int at32_qspi_init(struct rt_qspi_device *device, struct rt_qspi_configuration *qspi_cfg)
{
int result = RT_EOK;
unsigned int i = 0;
crm_clocks_freq_type clocks;
rt_uint8_t qspi_div_tab[] = {2, 4, 6, 8, 3, 5, 10, 12};
RT_ASSERT(device != RT_NULL);
RT_ASSERT(qspi_cfg != RT_NULL);
struct rt_spi_configuration *cfg = &qspi_cfg->parent;
struct at32_qspi_bus *qspi_bus = device->parent.bus->parent.user_data;
at32_msp_qspi_init(qspi_bus->qspi_x);
/* switch to cmd port */
qspi_xip_enable(qspi_bus->qspi_x, FALSE);
/* get clocks and config qspi clock div */
crm_clocks_freq_get(&clocks);
while (cfg->max_hz < clocks.ahb_freq / qspi_div_tab[i])
{
i++;
if (i == 8)
{
LOG_E("qspi init failed, qspi frequency(%d) is too low.", cfg->max_hz);
return -RT_ERROR;
}
}
/* set qspi sclk */
qspi_clk_division_set(qspi_bus->qspi_x, (qspi_clk_div_type)i);
if (!(cfg->mode & RT_SPI_CPOL))
{
/* qspi mode0 */
qspi_sck_mode_set(qspi_bus->qspi_x, QSPI_SCK_MODE_0);
}
else
{
/* qspi mode3 */
qspi_sck_mode_set(qspi_bus->qspi_x, QSPI_SCK_MODE_3);
}
/* flash size */
qspi_bus->qspi_x->fsize = POSITION_VAL(qspi_cfg->medium_size) - 1;
return result;
}
static void qspi_send_cmd(struct at32_qspi_bus *qspi_bus, struct rt_qspi_message *message, rt_bool_t dir)
{
qspi_cmd_type cmd;
RT_ASSERT(qspi_bus != RT_NULL);
RT_ASSERT(message != RT_NULL);
/* set qspi cmd struct */
cmd.instruction_code = message->instruction.content;
cmd.address_code = message->address.content;
cmd.second_dummy_cycle_num = message->dummy_cycles;
/* address length */
if (message->address.size == 0)
{
cmd.address_length = QSPI_CMD_ADRLEN_0_BYTE;
}
else if (message->address.size == 8)
{
cmd.address_length = QSPI_CMD_ADRLEN_1_BYTE;
}
else if (message->address.size == 16)
{
cmd.address_length = QSPI_CMD_ADRLEN_2_BYTE;
}
else if (message->address.size == 24)
{
cmd.address_length = QSPI_CMD_ADRLEN_3_BYTE;
}
else if (message->address.size == 32)
{
cmd.address_length = QSPI_CMD_ADRLEN_4_BYTE;
}
/* instruction length */
if (message->instruction.qspi_lines == 0)
{
cmd.instruction_length = QSPI_CMD_INSLEN_0_BYTE;
}
else
{
cmd.instruction_length = QSPI_CMD_INSLEN_1_BYTE;
}
/* operate mode */
switch(message->instruction.qspi_lines)
{
case 0:
case 1:
{
switch(message->address.qspi_lines)
{
case 0:
case 1:
{
switch(message->qspi_data_lines)
{
case 1:
{
cmd.operation_mode = QSPI_OPERATE_MODE_111;
break;
}
case 2:
{
cmd.operation_mode = QSPI_OPERATE_MODE_112;
break;
}
case 4:
{
cmd.operation_mode = QSPI_OPERATE_MODE_114;
break;
}
default:
{
cmd.operation_mode = QSPI_OPERATE_MODE_111;
break;
}
}
break;
}
case 2:
{
cmd.operation_mode = QSPI_OPERATE_MODE_122;
break;
}
case 4:
{
cmd.operation_mode = QSPI_OPERATE_MODE_144;
break;
}
}
break;
}
case 2:
{
cmd.operation_mode = QSPI_OPERATE_MODE_222;
break;
}
case 4:
{
cmd.operation_mode = QSPI_OPERATE_MODE_444;
break;
}
default:
{
cmd.operation_mode = QSPI_OPERATE_MODE_111;
break;
}
}
cmd.pe_mode_enable = FALSE;
cmd.pe_mode_operate_code = 0;
cmd.read_status_enable = FALSE;
cmd.read_status_config = QSPI_RSTSC_SW_ONCE;
if(dir == 1)
{
cmd.write_data_enable = TRUE;
}
else
{
cmd.write_data_enable = FALSE;
}
cmd.data_counter = message->parent.length;
qspi_cmd_operation_kick(qspi_bus->qspi_x, &cmd);
/* no date need to be processed, wait command completed. */
if(cmd.data_counter == 0)
{
while(qspi_flag_get(qspi_bus->qspi_x, QSPI_CMDSTS_FLAG) == RESET);
qspi_flag_clear(qspi_bus->qspi_x, QSPI_CMDSTS_FLAG);
}
}
static error_status qspi_data_transmit(struct at32_qspi_bus *qspi_bus, rt_uint8_t* buf, rt_uint32_t length, rt_uint32_t timeout)
{
rt_uint32_t index = 0, ticks = 0, len = length;
for(index = 0; index < len; index++)
{
/* wait fifo ready */
ticks = 0;
while((qspi_flag_get(qspi_bus->qspi_x, QSPI_TXFIFORDY_FLAG) == RESET) && (ticks <= timeout))
{
ticks ++;
}
if(ticks >= timeout)
{
return ERROR;
}
/* write data */
qspi_byte_write(qspi_bus->qspi_x, *buf++);
}
/* wait command completed. */
ticks = 0;
while((qspi_flag_get(qspi_bus->qspi_x, QSPI_CMDSTS_FLAG) == RESET) && (ticks <= timeout))
{
ticks++;
}
if(ticks >= timeout)
{
return ERROR;
}
/* clear cmdsts flag */
qspi_flag_clear(qspi_bus->qspi_x, QSPI_CMDSTS_FLAG);
return SUCCESS;
}
static error_status qspi_data_receive(struct at32_qspi_bus *qspi_bus, rt_uint8_t* buf, rt_uint32_t length, rt_uint32_t timeout)
{
rt_uint32_t index = 0, ticks = 0, len = 0;
do
{
if(length >= QSPI_FIFO_DEPTH)
{
len = QSPI_FIFO_DEPTH;
}
else
{
len = length;
}
/* wait fifo ready */
ticks = 0;
while((qspi_flag_get(qspi_bus->qspi_x, QSPI_RXFIFORDY_FLAG) == RESET) && (ticks <= timeout))
{
ticks ++;
}
if(ticks >= timeout)
{
return ERROR;
}
/* read data */
for(index = 0; index < len; index++)
{
*buf++ = qspi_byte_read(qspi_bus->qspi_x);
}
length -= len;
} while(length);
/* wait command completed. */
ticks = 0;
while((qspi_flag_get(qspi_bus->qspi_x, QSPI_CMDSTS_FLAG) == RESET) && (ticks <= timeout))
{
ticks++;
}
if(ticks >= timeout)
{
return ERROR;
}
/* clear cmdsts flag */
qspi_flag_clear(qspi_bus->qspi_x, QSPI_CMDSTS_FLAG);
return SUCCESS;
}
static rt_uint32_t qspi_xfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
rt_size_t len = 0;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
struct rt_qspi_message *qspi_message = (struct rt_qspi_message *)message;
struct at32_qspi_bus *qspi_bus = device->bus->parent.user_data;
#ifdef BSP_QSPI_USING_SOFTCS
struct at32_hw_spi_cs *cs = device->parent.user_data;
#endif
const rt_uint8_t *sndb = message->send_buf;
rt_uint8_t *rcvb = message->recv_buf;
rt_int32_t length = message->length;
#ifdef BSP_QSPI_USING_SOFTCS
if (message->cs_take)
{
rt_pin_write(cs->pin, 0);
}
#endif
/* send data */
if (sndb)
{
/* dir == 1, send */
qspi_send_cmd(qspi_bus, qspi_message, 1);
if (qspi_message->parent.length != 0)
{
if(qspi_data_transmit(qspi_bus, (rt_uint8_t *)sndb, length, 0xFFFF) == SUCCESS)
{
len = length;
}
else
{
LOG_E("qspi send data failed!");
goto __exit;
}
}
else
{
len = 1;
}
}
/* recv data */
else if (rcvb)
{
/* dir == 0, recv */
qspi_send_cmd(qspi_bus, qspi_message, 0);
if(qspi_data_receive(qspi_bus, (rt_uint8_t *)rcvb, length, 0xFFFF) == SUCCESS)
{
len = length;
}
else
{
LOG_E("qspi recv data failed!");
goto __exit;
}
}
__exit:
#ifdef BSP_QSPI_USING_SOFTCS
if (message->cs_release)
{
rt_pin_write(cs->pin, 1);
}
#endif
return len;
}
static rt_err_t qspi_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
struct rt_qspi_device *qspi_device = (struct rt_qspi_device *)device;
return at32_qspi_init(qspi_device, &qspi_device->config);
}
static const struct rt_spi_ops at32_qspi_ops =
{
.configure = qspi_configure,
.xfer = qspi_xfer,
};
/**
* @brief this function attach device to qspi bus.
* @param device_name qspi device name
* @param pin qspi cs pin number
* @param data_line_width qspi data lines width, such as 1, 2, 4
* @param enter_qspi_mode callback function that lets flash enter qspi mode
* @param exit_qspi_mode callback function that lets flash exit qspi mode
* @retval 0 : success
* -1 : failed
*/
rt_err_t at32_qspi_bus_attach_device(const char *bus_name, const char *device_name, rt_uint32_t pin, rt_uint8_t data_line_width, void (*enter_qspi_mode)(), void (*exit_qspi_mode)())
{
struct rt_qspi_device *qspi_device = RT_NULL;
struct at32_hw_spi_cs *cs_pin = RT_NULL;
rt_err_t result = RT_EOK;
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
RT_ASSERT(data_line_width == 1 || data_line_width == 2 || data_line_width == 4);
qspi_device = (struct rt_qspi_device *)rt_malloc(sizeof(struct rt_qspi_device));
if (qspi_device == RT_NULL)
{
LOG_E("no memory, qspi bus attach device failed!");
result = -RT_ENOMEM;
goto __exit;
}
cs_pin = (struct at32_hw_spi_cs *)rt_malloc(sizeof(struct at32_hw_spi_cs));
if (cs_pin == RT_NULL)
{
LOG_E("no memory, qspi bus attach device failed!");
result = -RT_ENOMEM;
goto __exit;
}
qspi_device->enter_qspi_mode = enter_qspi_mode;
qspi_device->exit_qspi_mode = exit_qspi_mode;
qspi_device->config.qspi_dl_width = data_line_width;
cs_pin->pin = pin;
#ifdef BSP_QSPI_USING_SOFTCS
rt_pin_mode(pin, PIN_MODE_OUTPUT);
rt_pin_write(pin, 1);
#endif
result = rt_spi_bus_attach_device(&qspi_device->parent, device_name, bus_name, (void *)cs_pin);
__exit:
if (result != RT_EOK)
{
if (qspi_device)
{
rt_free(qspi_device);
}
if (cs_pin)
{
rt_free(cs_pin);
}
}
return result;
}
static int rt_hw_qspi_bus_init(void)
{
int i = 0;
int result = RT_EOK;
for(i = 0; i < sizeof(at32_qspi_obj) / sizeof(at32_qspi_obj[0]); i++)
{
at32_qspi_obj[i].qspi_device.parent.user_data = &at32_qspi_obj[i];
if(rt_qspi_bus_register(&at32_qspi_obj[i].qspi_device, at32_qspi_obj[i].bus_name, &at32_qspi_ops) == RT_EOK)
{
LOG_D("%s register success", at32_qspi_obj[i].bus_name);
}
else
{
LOG_D("%s register failed", at32_qspi_obj[i].bus_name);
result = -RT_ERROR;
}
}
return result;
}
INIT_BOARD_EXPORT(rt_hw_qspi_bus_init);
#endif /* BSP_USING_QSPI */