rt-thread/bsp/at32/libraries/rt_drivers/drv_can.c

1010 lines
36 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-05-16 shelton first version
* 2023-01-31 shelton add support f425
* 2023-04-08 shelton add support f423
*/
#include "drv_can.h"
#ifdef BSP_USING_CAN
#define LOG_TAG "drv_can"
#include <drv_log.h>
#ifdef SOC_SERIES_AT32F403A
/* attention !!! baud calculation example: apbclk / ((ss + bs1 + bs2) * brp), ep: 120 / ((1 + 8 + 3) * 10) = 1MHz*/
/* attention !!! default apbclk 120 mhz */
static const struct at32_baud_rate can_baud_rate_tab[] =
{
{CAN1MBaud, {10 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN800kBaud, {15 , CAN_RSAW_2TQ, CAN_BTS1_7TQ, CAN_BTS2_2TQ}},
{CAN500kBaud, {20 , CAN_RSAW_2TQ, CAN_BTS1_9TQ, CAN_BTS2_2TQ}},
{CAN250kBaud, {40 , CAN_RSAW_2TQ, CAN_BTS1_9TQ, CAN_BTS2_2TQ}},
{CAN125kBaud, {80 , CAN_RSAW_2TQ, CAN_BTS1_9TQ, CAN_BTS2_2TQ}},
{CAN100kBaud, {75 , CAN_RSAW_2TQ, CAN_BTS1_13TQ, CAN_BTS2_2TQ}},
{CAN50kBaud, {150, CAN_RSAW_2TQ, CAN_BTS1_13TQ, CAN_BTS2_2TQ}},
{CAN20kBaud, {375, CAN_RSAW_2TQ, CAN_BTS1_13TQ, CAN_BTS2_2TQ}},
{CAN10kBaud, {750, CAN_RSAW_2TQ, CAN_BTS1_13TQ, CAN_BTS2_2TQ}}
};
#endif
#ifdef SOC_SERIES_AT32F407
/* attention !!! baud calculation example: apbclk / ((ss + bs1 + bs2) * brp), ep: 100 / ((1 + 7 + 2) * 10) = 1MHz*/
/* attention !!! default apbclk 100 mhz */
static const struct at32_baud_rate can_baud_rate_tab[] =
{
{CAN1MBaud, {10 , CAN_RSAW_3TQ, CAN_BTS1_7TQ, CAN_BTS2_2TQ}},
{CAN800kBaud, {25, CAN_RSAW_1TQ, CAN_BTS1_3TQ, CAN_BTS2_1TQ}},
{CAN500kBaud, {10, CAN_RSAW_3TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}},
{CAN250kBaud, {20, CAN_RSAW_3TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}},
{CAN125kBaud, {40, CAN_RSAW_3TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}},
{CAN100kBaud, {50, CAN_RSAW_3TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}},
{CAN50kBaud, {100, CAN_RSAW_2TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}},
{CAN20kBaud, {250, CAN_RSAW_2TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}},
{CAN10kBaud, {500, CAN_RSAW_2TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}}
};
#endif
#ifdef SOC_SERIES_AT32F413
/* attention !!! baud calculation example: apbclk / ((ss + bs1 + bs2) * brp), ep: 96 / ((1 + 8 + 3) * 8) = 1MHz*/
/* attention !!! default apbclk 96 mhz */
static const struct at32_baud_rate can_baud_rate_tab[] =
{
{CAN1MBaud, {8 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN800kBaud, {20, CAN_RSAW_1TQ, CAN_BTS1_3TQ, CAN_BTS2_2TQ}},
{CAN500kBaud, {16, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN250kBaud, {32, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN125kBaud, {64, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN100kBaud, {160, CAN_RSAW_1TQ, CAN_BTS1_3TQ, CAN_BTS2_2TQ}},
{CAN50kBaud, {320, CAN_RSAW_1TQ, CAN_BTS1_3TQ, CAN_BTS2_2TQ}},
{CAN20kBaud, {800, CAN_RSAW_1TQ, CAN_BTS1_3TQ, CAN_BTS2_2TQ}},
{CAN10kBaud, {800, CAN_RSAW_1TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
};
#endif
#ifdef SOC_SERIES_AT32F415
/* attention !!! baud calculation example: apbclk / ((ss + bs1 + bs2) * brp), ep: 72 / ((1 + 8 + 3) * 10) = 1MHz*/
/* attention !!! default apbclk 72 mhz */
static const struct at32_baud_rate can_baud_rate_tab[] =
{
{CAN1MBaud, {6 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN800kBaud, {10 , CAN_RSAW_2TQ, CAN_BTS1_6TQ, CAN_BTS2_2TQ}},
{CAN500kBaud, {12 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN250kBaud, {24 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN125kBaud, {48 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN100kBaud, {60 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN50kBaud, {120, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN20kBaud, {300, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN10kBaud, {600, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}
};
#endif
#ifdef SOC_SERIES_AT32F423
/* attention !!! baud calculation example: apbclk / ((ss + bs1 + bs2) * brp), ep: 72 / ((1 + 8 + 3) * 10) = 1MHz*/
/* attention !!! default apbclk 72 mhz */
static const struct at32_baud_rate can_baud_rate_tab[] =
{
{CAN1MBaud, {6 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN800kBaud, {10 , CAN_RSAW_2TQ, CAN_BTS1_6TQ, CAN_BTS2_2TQ}},
{CAN500kBaud, {12 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN250kBaud, {24 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN125kBaud, {48 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN100kBaud, {60 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN50kBaud, {120, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN20kBaud, {300, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN10kBaud, {600, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}
};
#endif
#ifdef SOC_SERIES_AT32F425
/* attention !!! baud calculation example: apbclk / ((ss + bs1 + bs2) * brp), ep: 96 / ((1 + 8 + 3) * 8) = 1MHz*/
/* attention !!! default apbclk 96 mhz */
static const struct at32_baud_rate can_baud_rate_tab[] =
{
{CAN1MBaud, {8 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN800kBaud, {10 , CAN_RSAW_2TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN500kBaud, {16 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN250kBaud, {32 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN125kBaud, {64 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN100kBaud, {80 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN50kBaud, {160, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN20kBaud, {400, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN10kBaud, {800, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}
};
#endif
#ifdef SOC_SERIES_AT32F435
/* attention !!! baud calculation example: apbclk / ((ss + bs1 + bs2) * brp), ep: 144 / ((1 + 8 + 3) * 12) = 1MHz*/
/* attention !!! default apbclk 144 mhz */
static const struct at32_baud_rate can_baud_rate_tab[] =
{
{CAN1MBaud, {12 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}},
{CAN800kBaud, {18 , CAN_RSAW_2TQ, CAN_BTS1_7TQ, CAN_BTS2_2TQ}},
{CAN500kBaud, {24 , CAN_RSAW_2TQ, CAN_BTS1_9TQ, CAN_BTS2_2TQ}},
{CAN250kBaud, {48 , CAN_RSAW_2TQ, CAN_BTS1_9TQ, CAN_BTS2_2TQ}},
{CAN125kBaud, {96 , CAN_RSAW_2TQ, CAN_BTS1_9TQ, CAN_BTS2_2TQ}},
{CAN100kBaud, {90 , CAN_RSAW_2TQ, CAN_BTS1_13TQ, CAN_BTS2_2TQ}},
{CAN50kBaud, {180, CAN_RSAW_2TQ, CAN_BTS1_13TQ, CAN_BTS2_2TQ}},
{CAN20kBaud, {450, CAN_RSAW_2TQ, CAN_BTS1_13TQ, CAN_BTS2_2TQ}},
{CAN10kBaud, {900, CAN_RSAW_2TQ, CAN_BTS1_13TQ, CAN_BTS2_2TQ}}
};
#endif
#ifdef SOC_SERIES_AT32F437
/* attention !!! baud calculation example: apbclk / ((ss + bs1 + bs2) * brp), ep: 125 / ((1 + 3 + 1) * 25) = 1MHz*/
/* attention !!! default apbclk 125 mhz */
static const struct at32_baud_rate can_baud_rate_tab[] =
{
{CAN1MBaud, {25 , CAN_RSAW_1TQ, CAN_BTS1_3TQ, CAN_BTS2_1TQ}},
//none
{CAN500kBaud, {25 , CAN_RSAW_2TQ, CAN_BTS1_7TQ, CAN_BTS2_2TQ}},
{CAN250kBaud, {25 , CAN_RSAW_3TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}},
{CAN125kBaud, {50 , CAN_RSAW_2TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}},
{CAN100kBaud, {125, CAN_RSAW_1TQ, CAN_BTS1_8TQ, CAN_BTS2_1TQ}},
{CAN50kBaud, {125, CAN_RSAW_2TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}},
{CAN20kBaud, {625, CAN_RSAW_1TQ, CAN_BTS1_8TQ, CAN_BTS2_1TQ}},
{CAN10kBaud, {625, CAN_RSAW_2TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}}
};
#endif
#if defined (SOC_SERIES_AT32F425)
#define CAN1_RX0_IRQ_NUM CAN1_IRQn
#define CAN1_RX1_IRQ_NUM CAN1_IRQn
#define CAN1_TX_IRQ_NUM CAN1_IRQn
#define CAN1_SE_IRQ_NUM CAN1_IRQn
#elif defined (SOC_SERIES_AT32F415) || defined (SOC_SERIES_AT32F435) || \
defined (SOC_SERIES_AT32F437) || defined (SOC_SERIES_AT32F423)
#define CAN1_RX0_IRQ_NUM CAN1_RX0_IRQn
#define CAN1_RX1_IRQ_NUM CAN1_RX1_IRQn
#define CAN1_TX_IRQ_NUM CAN1_TX_IRQn
#define CAN1_SE_IRQ_NUM CAN1_SE_IRQn
#define CAN1_RX0_IRQ_HANDLER CAN1_RX0_IRQHandler
#define CAN1_RX1_IRQ_HANDLER CAN1_RX1_IRQHandler
#define CAN1_TX_IRQ_HANDLER CAN1_TX_IRQHandler
#define CAN1_SE_IRQ_HANDLER CAN1_SE_IRQHandler
#else
#define CAN1_RX0_IRQ_NUM USBFS_L_CAN1_RX0_IRQn
#define CAN1_RX1_IRQ_NUM CAN1_RX1_IRQn
#define CAN1_TX_IRQ_NUM USBFS_H_CAN1_TX_IRQn
#define CAN1_SE_IRQ_NUM CAN1_SE_IRQn
#define CAN1_RX0_IRQ_HANDLER USBFS_L_CAN1_RX0_IRQHandler
#define CAN1_RX1_IRQ_HANDLER CAN1_RX1_IRQHandler
#define CAN1_TX_IRQ_HANDLER USBFS_H_CAN1_TX_IRQHandler
#define CAN1_SE_IRQ_HANDLER CAN1_SE_IRQHandler
#endif
#ifdef BSP_USING_CAN1
static struct at32_can can_instance1 =
{
.name = "can1",
.config.can_x = CAN1,
};
#endif
#ifdef BSP_USING_CAN2
static struct at32_can can_instance2 =
{
.name = "can2",
.config.can_x = CAN2,
};
#endif
static rt_uint32_t get_can_baud_index(rt_uint32_t baud)
{
rt_uint32_t len, index;
len = sizeof(can_baud_rate_tab) / sizeof(can_baud_rate_tab[0]);
for (index = 0; index < len; index++)
{
if (can_baud_rate_tab[index].baud_rate == baud)
return index;
}
/* default baud is CAN1MBaud */
return 0;
}
static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg)
{
struct at32_can *can_instance;
rt_uint32_t baud_index;
RT_ASSERT(can);
RT_ASSERT(cfg);
can_instance = (struct at32_can *)can->parent.user_data;
RT_ASSERT(can_instance);
at32_msp_can_init((void *)can_instance->config.can_x);
baud_index = get_can_baud_index(cfg->baud_rate);
/* get baudrate parameters */
can_baudrate_default_para_init(&can_instance->config.baudrate_init_struct);
can_instance->config.baudrate_init_struct.rsaw_size = can_baud_rate_tab[baud_index].baud_struct.rsaw_size;
can_instance->config.baudrate_init_struct.bts1_size = can_baud_rate_tab[baud_index].baud_struct.bts1_size;
can_instance->config.baudrate_init_struct.bts2_size = can_baud_rate_tab[baud_index].baud_struct.bts2_size;
can_instance->config.baudrate_init_struct.baudrate_div = can_baud_rate_tab[baud_index].baud_struct.baudrate_div;
/* config can baudrate */
if(can_baudrate_set(can_instance->config.can_x, &(can_instance->config.baudrate_init_struct)) != SUCCESS)
{
return -RT_ERROR;
}
/* config can base parameters */
can_default_para_init(&(can_instance->config.base_init_struct));
switch (cfg->mode)
{
case RT_CAN_MODE_NORMAL:
can_instance->config.base_init_struct.mode_selection = CAN_MODE_COMMUNICATE;
break;
case RT_CAN_MODE_LISTEN:
can_instance->config.base_init_struct.mode_selection = CAN_MODE_LISTENONLY;
break;
case RT_CAN_MODE_LOOPBACK:
can_instance->config.base_init_struct.mode_selection = CAN_MODE_LOOPBACK;
break;
case RT_CAN_MODE_LOOPBACKANLISTEN:
can_instance->config.base_init_struct.mode_selection = CAN_MODE_LISTENONLY_LOOPBACK;
break;
}
can_instance->config.base_init_struct.aebo_enable = TRUE;
can_instance->config.base_init_struct.aed_enable = TRUE;
can_instance->config.base_init_struct.prsf_enable = FALSE;
can_instance->config.base_init_struct.mdrsel_selection = CAN_DISCARDING_FIRST_RECEIVED;
can_instance->config.base_init_struct.mmssr_selection = CAN_SENDING_BY_REQUEST;
/* init can base function */
if (can_base_init(can_instance->config.can_x, &(can_instance->config.base_init_struct)) != SUCCESS)
{
return -RT_ERROR;
}
/* config filter parameters */
can_filter_init(can_instance->config.can_x, &can_instance->config.filter_init_struct);
return RT_EOK;
}
static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg)
{
rt_uint32_t argval;
struct at32_can *can_instance;
struct rt_can_filter_config *filter_cfg;
RT_ASSERT(can != RT_NULL);
can_instance = (struct at32_can *)can->parent.user_data;
RT_ASSERT(can_instance != RT_NULL);
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
argval = (rt_uint32_t) arg;
if (argval == RT_DEVICE_FLAG_INT_RX)
{
if (CAN1 == can_instance->config.can_x)
{
nvic_irq_disable(CAN1_RX0_IRQ_NUM);
nvic_irq_disable(CAN1_RX1_IRQ_NUM);
}
#if defined (CAN2)
if (CAN2 == can_instance->config.can_x)
{
nvic_irq_disable(CAN2_RX0_IRQn);
nvic_irq_disable(CAN2_RX1_IRQn);
}
#endif
/* disable interrupt */
can_interrupt_enable(can_instance->config.can_x, CAN_RF0MIEN_INT, FALSE);
can_interrupt_enable(can_instance->config.can_x, CAN_RF0FIEN_INT, FALSE);
can_interrupt_enable(can_instance->config.can_x, CAN_RF0OIEN_INT, FALSE);
can_interrupt_enable(can_instance->config.can_x, CAN_RF1MIEN_INT, FALSE);
can_interrupt_enable(can_instance->config.can_x, CAN_RF1FIEN_INT, FALSE);
can_interrupt_enable(can_instance->config.can_x, CAN_RF1OIEN_INT, FALSE);
}
else if (argval == RT_DEVICE_FLAG_INT_TX)
{
if (CAN1 == can_instance->config.can_x)
{
nvic_irq_disable(CAN1_TX_IRQ_NUM);
}
#if defined (CAN2)
if (CAN2 == can_instance->config.can_x)
{
nvic_irq_disable(CAN2_TX_IRQn);
}
#endif
can_interrupt_enable(can_instance->config.can_x, CAN_TCIEN_INT, FALSE);
}
else if (argval == RT_DEVICE_CAN_INT_ERR)
{
if (CAN1 == can_instance->config.can_x)
{
nvic_irq_disable(CAN1_SE_IRQ_NUM);
}
#if defined (CAN2)
if (CAN2 == can_instance->config.can_x)
{
nvic_irq_disable(CAN2_SE_IRQn);
}
#endif
can_interrupt_enable(can_instance->config.can_x, CAN_EAIEN_INT, FALSE);
can_interrupt_enable(can_instance->config.can_x, CAN_EPIEN_INT, FALSE);
can_interrupt_enable(can_instance->config.can_x, CAN_BOIEN_INT, FALSE);
can_interrupt_enable(can_instance->config.can_x, CAN_ETRIEN_INT, FALSE);
can_interrupt_enable(can_instance->config.can_x, CAN_EOIEN_INT, FALSE);
}
break;
case RT_DEVICE_CTRL_SET_INT:
argval = (rt_uint32_t) arg;
if (argval == RT_DEVICE_FLAG_INT_RX)
{
can_interrupt_enable(can_instance->config.can_x, CAN_RF0MIEN_INT, TRUE);
can_interrupt_enable(can_instance->config.can_x, CAN_RF0FIEN_INT, TRUE);
can_interrupt_enable(can_instance->config.can_x, CAN_RF0OIEN_INT, TRUE);
can_interrupt_enable(can_instance->config.can_x, CAN_RF1MIEN_INT, TRUE);
can_interrupt_enable(can_instance->config.can_x, CAN_RF1FIEN_INT, TRUE);
can_interrupt_enable(can_instance->config.can_x, CAN_RF1OIEN_INT, TRUE);
if (CAN1 == can_instance->config.can_x)
{
nvic_irq_enable(CAN1_RX0_IRQ_NUM, 1, 0);
nvic_irq_enable(CAN1_RX1_IRQ_NUM, 1, 0);
}
#if defined (CAN2)
if (CAN2 == can_instance->config.can_x)
{
nvic_irq_enable(CAN2_RX0_IRQn, 1, 0);
nvic_irq_enable(CAN2_RX1_IRQn, 1, 0);
}
#endif
}
else if (argval == RT_DEVICE_FLAG_INT_TX)
{
can_interrupt_enable(can_instance->config.can_x, CAN_TCIEN_INT, TRUE);
if (CAN1 == can_instance->config.can_x)
{
nvic_irq_enable(CAN1_TX_IRQ_NUM, 1, 0);
}
#if defined (CAN2)
if (CAN2 == can_instance->config.can_x)
{
nvic_irq_enable(CAN2_TX_IRQn, 1, 0);
}
#endif
}
else if (argval == RT_DEVICE_CAN_INT_ERR)
{
can_interrupt_enable(can_instance->config.can_x, CAN_EAIEN_INT, TRUE);
can_interrupt_enable(can_instance->config.can_x, CAN_EPIEN_INT, TRUE);
can_interrupt_enable(can_instance->config.can_x, CAN_BOIEN_INT, TRUE);
can_interrupt_enable(can_instance->config.can_x, CAN_ETRIEN_INT, TRUE);
can_interrupt_enable(can_instance->config.can_x, CAN_EOIEN_INT, TRUE);
if (CAN1 == can_instance->config.can_x)
{
nvic_irq_enable(CAN1_SE_IRQ_NUM, 1, 0);
}
#if defined (CAN2)
if (CAN2 == can_instance->config.can_x)
{
nvic_irq_enable(CAN2_SE_IRQn, 1, 0);
}
#endif
}
break;
case RT_CAN_CMD_SET_FILTER:
{
rt_uint32_t id_h = 0;
rt_uint32_t id_l = 0;
rt_uint32_t mask_h = 0;
rt_uint32_t mask_l = 0;
rt_uint32_t mask_l_tail = 0;
if (RT_NULL == arg)
{
/* default filter config */
can_filter_init(can_instance->config.can_x, &can_instance->config.filter_init_struct);
}
else
{
filter_cfg = (struct rt_can_filter_config *)arg;
/* get default filter */
for (int i = 0; i < filter_cfg->count; i++)
{
if (filter_cfg->items[i].hdr_bank == -1)
{
can_instance->config.filter_init_struct.filter_number = i;
}
else
{
can_instance->config.filter_init_struct.filter_number = filter_cfg->items[i].hdr_bank;
}
/**
* ID | CAN_FxR1[31:24] | CAN_FxR1[23:16] | CAN_FxR1[15:8] | CAN_FxR1[7:0] |
* MASK | CAN_FxR2[31:24] | CAN_FxR1[23:16] | CAN_FxR1[15:8] | CAN_FxR1[7:0] |
* STD ID | STID[10:3] | STDID[2:0] |<- 21bit ->|
* EXT ID | EXTID[28:21] | EXTID[20:13] | EXTID[12:5] | EXTID[4:0] IDE RTR 0|
* @note the 32bit STD ID must << 21 to fill CAN_FxR1[31:21] and EXT ID must << 3,
* -> but the id bit of struct rt_can_filter_item is 29,
* -> so STD id << 18 and EXT id Don't need << 3, when get the high 16bit.
* -> FilterIdHigh : (((STDid << 18) or (EXT id)) >> 13) & 0xFFFF,
* -> FilterIdLow: ((STDid << 18) or (EXT id << 3)) & 0xFFFF.
* @note the mask bit of struct rt_can_filter_item is 32,
* -> FilterMaskIdHigh: (((STD mask << 21) or (EXT mask <<3)) >> 16) & 0xFFFF
* -> FilterMaskIdLow: ((STD mask << 21) or (EXT mask <<3)) & 0xFFFF
*/
if (filter_cfg->items[i].mode == CAN_FILTER_MODE_ID_MASK)
{
mask_l_tail = 0x06;
}
else if (filter_cfg->items[i].mode == CAN_FILTER_MODE_ID_LIST)
{
mask_l_tail = (filter_cfg->items[i].ide << 2) |
(filter_cfg->items[i].rtr << 1);
}
if (filter_cfg->items[i].ide == RT_CAN_STDID)
{
id_h = ((filter_cfg->items[i].id << 18) >> 13) & 0xFFFF;
id_l = ((filter_cfg->items[i].id << 18) |
(filter_cfg->items[i].ide << 2) |
(filter_cfg->items[i].rtr << 1)) & 0xFFFF;
mask_h = ((filter_cfg->items[i].mask << 21) >> 16) & 0xFFFF;
mask_l = ((filter_cfg->items[i].mask << 21) | mask_l_tail) & 0xFFFF;
}
else if (filter_cfg->items[i].ide == RT_CAN_EXTID)
{
id_h = (filter_cfg->items[i].id >> 13) & 0xFFFF;
id_l = ((filter_cfg->items[i].id << 3) |
(filter_cfg->items[i].ide << 2) |
(filter_cfg->items[i].rtr << 1)) & 0xFFFF;
mask_h = ((filter_cfg->items[i].mask << 3) >> 16) & 0xFFFF;
mask_l = ((filter_cfg->items[i].mask << 3) | mask_l_tail) & 0xFFFF;
}
can_instance->config.filter_init_struct.filter_id_high = id_h;
can_instance->config.filter_init_struct.filter_id_low = id_l;
can_instance->config.filter_init_struct.filter_mask_high = mask_h;
can_instance->config.filter_init_struct.filter_mask_low = mask_l;
can_instance->config.filter_init_struct.filter_mode = (can_filter_mode_type)filter_cfg->items[i].mode;
/* filter conf */
can_filter_init(can_instance->config.can_x, &can_instance->config.filter_init_struct);
}
}
break;
}
case RT_CAN_CMD_SET_MODE:
argval = (rt_uint32_t) arg;
if (argval != RT_CAN_MODE_NORMAL &&
argval != RT_CAN_MODE_LISTEN &&
argval != RT_CAN_MODE_LOOPBACK &&
argval != RT_CAN_MODE_LOOPBACKANLISTEN)
{
return -RT_ERROR;
}
if (argval != can_instance->device.config.mode)
{
can_instance->device.config.mode = argval;
return _can_config(&can_instance->device, &can_instance->device.config);
}
break;
case RT_CAN_CMD_SET_BAUD:
argval = (rt_uint32_t) arg;
if (argval != CAN1MBaud &&
argval != CAN800kBaud &&
argval != CAN500kBaud &&
argval != CAN250kBaud &&
argval != CAN125kBaud &&
argval != CAN100kBaud &&
argval != CAN50kBaud &&
argval != CAN20kBaud &&
argval != CAN10kBaud)
{
return -RT_ERROR;
}
if (argval != can_instance->device.config.baud_rate)
{
can_instance->device.config.baud_rate = argval;
return _can_config(&can_instance->device, &can_instance->device.config);
}
break;
case RT_CAN_CMD_SET_PRIV:
argval = (rt_uint32_t) arg;
if (argval != RT_CAN_MODE_PRIV &&
argval != RT_CAN_MODE_NOPRIV)
{
return -RT_ERROR;
}
if (argval != can_instance->device.config.privmode)
{
can_instance->device.config.privmode = argval;
return _can_config(&can_instance->device, &can_instance->device.config);
}
break;
case RT_CAN_CMD_GET_STATUS:
{
rt_uint32_t errtype;
errtype = can_instance->config.can_x->ests;
can_instance->device.status.rcverrcnt = errtype >> 24;
can_instance->device.status.snderrcnt = (errtype >> 16 & 0xFF);
can_instance->device.status.lasterrtype = errtype & 0x70;
can_instance->device.status.errcode = errtype & 0x07;
rt_memcpy(arg, &can_instance->device.status, sizeof(can_instance->device.status));
}
break;
}
return RT_EOK;
}
static int _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
{
struct can_config *hcan;
hcan = &((struct at32_can *) can->parent.user_data)->config;
struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
can_tx_message_type tx_message;
/* check select mailbox is empty */
switch (box_num)
{
case CAN_TX_MAILBOX0:
if (hcan->can_x->tsts_bit.tm0ef != 1)
{
/* return function status */
return -RT_ERROR;
}
break;
case CAN_TX_MAILBOX1:
if (hcan->can_x->tsts_bit.tm1ef != 1)
{
/* return function status */
return -RT_ERROR;
}
break;
case CAN_TX_MAILBOX2:
if (hcan->can_x->tsts_bit.tm2ef != 1)
{
/* return function status */
return -RT_ERROR;
}
break;
default:
RT_ASSERT(0);
break;
}
if (RT_CAN_STDID == pmsg->ide)
{
tx_message.id_type = CAN_ID_STANDARD;
tx_message.standard_id = pmsg->id;
}
else
{
tx_message.id_type = CAN_ID_EXTENDED;
tx_message.extended_id = pmsg->id;
}
if (RT_CAN_DTR == pmsg->rtr)
{
tx_message.frame_type = CAN_TFT_DATA;
}
else
{
tx_message.frame_type = CAN_TFT_REMOTE;
}
/* set up the dlc */
tx_message.dlc = pmsg->len & 0x0FU;
/* set up the data field */
tx_message.data[0] = (uint32_t)pmsg->data[0];
tx_message.data[1] = (uint32_t)pmsg->data[1];
tx_message.data[2] = (uint32_t)pmsg->data[2];
tx_message.data[3] = (uint32_t)pmsg->data[3];
tx_message.data[4] = (uint32_t)pmsg->data[4];
tx_message.data[5] = (uint32_t)pmsg->data[5];
tx_message.data[6] = (uint32_t)pmsg->data[6];
tx_message.data[7] = (uint32_t)pmsg->data[7];
can_message_transmit(hcan->can_x, &tx_message);
return RT_EOK;
}
static int _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
{
struct can_config *hcan;
hcan = &((struct at32_can *) can->parent.user_data)->config;
struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
can_rx_message_type rx_message;
RT_ASSERT(can);
/* get data */
can_message_receive(hcan->can_x, (can_rx_fifo_num_type)fifo, &rx_message);
pmsg->data[0] = rx_message.data[0];
pmsg->data[1] = rx_message.data[1];
pmsg->data[2] = rx_message.data[2];
pmsg->data[3] = rx_message.data[3];
pmsg->data[4] = rx_message.data[4];
pmsg->data[5] = rx_message.data[5];
pmsg->data[6] = rx_message.data[6];
pmsg->data[7] = rx_message.data[7];
pmsg->len = rx_message.dlc;
if (rx_message.id_type == CAN_ID_STANDARD)
{
pmsg->id = rx_message.standard_id;
pmsg->ide = RT_CAN_STDID;
}
else
{
pmsg->id = rx_message.extended_id;
pmsg->ide = RT_CAN_EXTID;
}
pmsg->rtr = rx_message.frame_type;
pmsg->hdr_index = rx_message.filter_index;
return RT_EOK;
}
static const struct rt_can_ops _can_ops =
{
_can_config,
_can_control,
_can_sendmsg,
_can_recvmsg,
};
static void _can_rx_isr(struct rt_can_device *can, rt_uint32_t fifo)
{
struct can_config *hcan;
RT_ASSERT(can);
hcan = &((struct at32_can *) can->parent.user_data)->config;
switch (fifo)
{
case CAN_RX_FIFO0:
/* save to user list */
if (can_receive_message_pending_get(hcan->can_x, CAN_RX_FIFO0) && \
can_flag_get(hcan->can_x, CAN_RF0MN_FLAG))
{
rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
}
/* check full flag for fifo0 */
if (can_flag_get(hcan->can_x, CAN_RF0FF_FLAG) == SET)
{
/* clear fifo0 full flag */
can_flag_clear(hcan->can_x, CAN_RF0FF_FLAG);
}
/* check overrun flag for fifo0 */
if (can_flag_get(hcan->can_x, CAN_RF0OF_FLAG) == SET)
{
/* clear fifo0 overrun flag */
can_flag_clear(hcan->can_x, CAN_RF0OF_FLAG);
rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
}
break;
case CAN_RX_FIFO1:
/* save to user list */
if (can_receive_message_pending_get(hcan->can_x, CAN_RX_FIFO1) && \
can_flag_get(hcan->can_x, CAN_RF1MN_FLAG))
{
rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
}
/* check full flag for fifo1 */
if (can_flag_get(hcan->can_x, CAN_RF1FF_FLAG) == SET)
{
/* clear fifo1 full flag */
can_flag_clear(hcan->can_x, CAN_RF1FF_FLAG);
}
/* check overrun flag for fifo1 */
if (can_flag_get(hcan->can_x, CAN_RF1OF_FLAG) == SET)
{
/* clear fifo1 overrun flag */
can_flag_clear(hcan->can_x, CAN_RF1OF_FLAG);
rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
}
break;
}
}
#ifdef BSP_USING_CAN1
/**
* @brief this function handles can1 tx interrupts. transmit fifo0/1/2 is empty can trigger this interrupt
*/
void CAN1_TX_IRQ_HANDLER(void)
{
rt_interrupt_enter();
struct can_config *hcan;
hcan = &can_instance1.config;
if (can_flag_get(hcan->can_x, CAN_TM0TCF_FLAG) == SET)
{
if (hcan->can_x->tsts_bit.tm0tsf == 1)
{
rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_DONE | 0 << 8);
}
else
{
rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
}
/* write 0 to clear transmission status flag */
can_flag_clear(hcan->can_x, CAN_TM0TCF_FLAG);
}
else if (can_flag_get(hcan->can_x, CAN_TM1TCF_FLAG) == SET)
{
if (hcan->can_x->tsts_bit.tm1tsf == 1)
{
rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_DONE | 1 << 8);
}
else
{
rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
}
/* write 0 to clear transmission status flag */
can_flag_clear(hcan->can_x, CAN_TM1TCF_FLAG);
}
else if (can_flag_get(hcan->can_x, CAN_TM2TCF_FLAG) == SET)
{
if (hcan->can_x->tsts_bit.tm2tsf == 1)
{
rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_DONE | 2 << 8);
}
else
{
rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
}
/* write 0 to clear transmission status flag */
can_flag_clear(hcan->can_x, CAN_TM2TCF_FLAG);
}
rt_interrupt_leave();
}
/**
* @brief this function handles can1 rx0 interrupts.
*/
void CAN1_RX0_IRQ_HANDLER(void)
{
rt_interrupt_enter();
_can_rx_isr(&can_instance1.device, CAN_RX_FIFO0);
rt_interrupt_leave();
}
/**
* @brief this function handles can1 rx1 interrupts.
*/
void CAN1_RX1_IRQ_HANDLER(void)
{
rt_interrupt_enter();
_can_rx_isr(&can_instance1.device, CAN_RX_FIFO1);
rt_interrupt_leave();
}
/**
* @brief this function handles can1 sce interrupts.
*/
void CAN1_SE_IRQ_HANDLER(void)
{
rt_uint32_t errtype;
struct can_config *hcan;
hcan = &can_instance1.config;
errtype = hcan->can_x->ests;
rt_interrupt_enter();
switch ((errtype & 0x70) >> 4)
{
case RT_CAN_BUS_BIT_PAD_ERR:
can_instance1.device.status.bitpaderrcnt++;
break;
case RT_CAN_BUS_FORMAT_ERR:
can_instance1.device.status.formaterrcnt++;
break;
case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */
can_instance1.device.status.ackerrcnt++;
if (!(can_instance1.config.can_x->tsts_bit.tm0tsf == 1))
rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
else if (!(can_instance1.config.can_x->tsts_bit.tm1tsf == 1))
rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
else if (!(can_instance1.config.can_x->tsts_bit.tm2tsf == 1))
rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
break;
case RT_CAN_BUS_IMPLICIT_BIT_ERR:
case RT_CAN_BUS_EXPLICIT_BIT_ERR:
can_instance1.device.status.biterrcnt++;
break;
case RT_CAN_BUS_CRC_ERR:
can_instance1.device.status.crcerrcnt++;
break;
}
can_instance1.device.status.lasterrtype = errtype & 0x70;
can_instance1.device.status.rcverrcnt = errtype >> 24;
can_instance1.device.status.snderrcnt = (errtype >> 16 & 0xFF);
can_instance1.device.status.errcode = errtype & 0x07;
/* clear error flags */
can_flag_clear(hcan->can_x, CAN_ETR_FLAG);
rt_interrupt_leave();
}
#endif
#if defined (SOC_SERIES_AT32F425)
void CAN1_IRQHandler(void)
{
CAN1_TX_IRQ_HANDLER();
CAN1_RX0_IRQ_HANDLER();
CAN1_RX1_IRQ_HANDLER();
CAN1_SE_IRQ_HANDLER();
}
#endif
#ifdef BSP_USING_CAN2
/**
* @brief this function handles can2 tx interrupts.
*/
void CAN2_TX_IRQHandler(void)
{
rt_interrupt_enter();
struct can_config *hcan;
hcan = &can_instance2.config;
if (can_flag_get(hcan->can_x, CAN_TM0TCF_FLAG) == SET)
{
if (hcan->can_x->tsts_bit.tm0tsf == 1)
{
rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_DONE | 0 << 8);
}
else
{
rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
}
/* write 0 to clear transmission status flag rqcpx */
can_flag_clear(hcan->can_x, CAN_TM0TCF_FLAG);
}
else if (can_flag_get(hcan->can_x, CAN_TM1TCF_FLAG) == SET)
{
if (hcan->can_x->tsts_bit.tm1tsf == 1)
{
rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_DONE | 1 << 8);
}
else
{
rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
}
/* write 0 to clear transmission status flag rqcpx */
can_flag_clear(hcan->can_x, CAN_TM1TCF_FLAG);
}
else if (can_flag_get(hcan->can_x, CAN_TM2TCF_FLAG) == SET)
{
if (hcan->can_x->tsts_bit.tm2tsf == 1)
{
rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_DONE | 2 << 8);
}
else
{
rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
}
/* write 0 to clear transmission status flag rqcpx */
can_flag_clear(hcan->can_x, CAN_TM2TCF_FLAG);
}
rt_interrupt_leave();
}
/**
* @brief this function handles can2 rx0 interrupts.
*/
void CAN2_RX0_IRQHandler(void)
{
rt_interrupt_enter();
_can_rx_isr(&can_instance2.device, CAN_RX_FIFO0);
rt_interrupt_leave();
}
/**
* @brief this function handles can2 rx1 interrupts.
*/
void CAN2_RX1_IRQHandler(void)
{
rt_interrupt_enter();
_can_rx_isr(&can_instance2.device, CAN_RX_FIFO1);
rt_interrupt_leave();
}
/**
* @brief this function handles can2 sce interrupts.
*/
void CAN2_SE_IRQHandler(void)
{
rt_uint32_t errtype;
struct can_config *hcan;
hcan = &can_instance2.config;
errtype = hcan->can_x->ests;
rt_interrupt_enter();
switch ((errtype & 0x70) >> 4)
{
case RT_CAN_BUS_BIT_PAD_ERR:
can_instance2.device.status.bitpaderrcnt++;
break;
case RT_CAN_BUS_FORMAT_ERR:
can_instance2.device.status.formaterrcnt++;
break;
case RT_CAN_BUS_ACK_ERR:
can_instance2.device.status.ackerrcnt++;
if (!(can_instance2.config.can_x->tsts_bit.tm0tsf == 1))
rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
else if (!(can_instance2.config.can_x->tsts_bit.tm1tsf == 1))
rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
else if (!(can_instance2.config.can_x->tsts_bit.tm2tsf == 1))
rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
break;
case RT_CAN_BUS_IMPLICIT_BIT_ERR:
case RT_CAN_BUS_EXPLICIT_BIT_ERR:
can_instance2.device.status.biterrcnt++;
break;
case RT_CAN_BUS_CRC_ERR:
can_instance2.device.status.crcerrcnt++;
break;
}
can_instance2.device.status.lasterrtype = errtype & 0x70;
can_instance2.device.status.rcverrcnt = errtype >> 24;
can_instance2.device.status.snderrcnt = (errtype >> 16 & 0xFF);
can_instance2.device.status.errcode = errtype & 0x07;
/* clear error flags */
can_flag_clear(hcan->can_x, CAN_ETR_FLAG);
rt_interrupt_leave();
}
#endif
int rt_hw_can_init(void)
{
struct can_configure config = CANDEFAULTCONFIG;
config.privmode = RT_CAN_MODE_NOPRIV;
config.ticks = 50;
#ifdef RT_CAN_USING_HDR
config.maxhdr = 14;
#endif
/* config default filter */
can_filter_init_type filter_conf;
can_filter_default_para_init(&filter_conf);
filter_conf.filter_activate_enable = TRUE;
filter_conf.filter_bit = CAN_FILTER_32BIT;
#ifdef BSP_USING_CAN1
filter_conf.filter_number = 0;
can_instance1.config.filter_init_struct = filter_conf;
can_instance1.device.config = config;
/* register can1 device */
rt_hw_can_register(&can_instance1.device,
can_instance1.name,
&_can_ops,
&can_instance1);
#endif /* BSP_USING_CAN1 */
#ifdef BSP_USING_CAN2
filter_conf.filter_number = 0;
can_instance2.config.filter_init_struct = filter_conf;
can_instance2.device.config = config;
/* register can2 device */
rt_hw_can_register(&can_instance2.device,
can_instance2.name,
&_can_ops,
&can_instance2);
#endif /* BSP_USING_CAN2 */
return 0;
}
INIT_BOARD_EXPORT(rt_hw_can_init);
#endif /* BSP_USING_CAN */