rt-thread/bsp/nuvoton/libraries/nuc980/Driver/Source/nu_can.c

1287 lines
41 KiB
C

/**************************************************************************//**
* @file can.c
* @version V2.00
* @brief NUC980 series CAN driver source file
*
* SPDX-License-Identifier: Apache-2.0
* @copyright (C) 2016 Nuvoton Technology Corp. All rights reserved.
*****************************************************************************/
#include "nu_can.h"
#include "nu_sys.h"
/** @addtogroup Standard_Driver Standard Driver
@{
*/
/** @addtogroup CAN_Driver CAN Driver
@{
*/
/** @addtogroup CAN_EXPORTED_FUNCTIONS CAN Exported Functions
@{
*/
/** @cond HIDDEN_SYMBOLS */
static uint8_t gu8LockCanIf[4ul][2ul] = {0ul}; /* The chip have 4 CANs. */
#define RETRY_COUNTS (0x10000000ul)
#define TSEG1_MIN 2ul
#define TSEG1_MAX 16ul
#define TSEG2_MIN 1ul
#define TSEG2_MAX 8ul
#define BRP_MIN 1ul
#define BRP_MAX 1024ul /* 6-bit BRP field + 4-bit BRPE field*/
#define SJW_MAX 4ul
#define BRP_INC 1ul
/* #define DEBUG_PRINTF printf */
#define DEBUG_PRINTF(...)
static uint32_t CAN_Clock = 75000000ul;
static uint32_t LockIF(CAN_T *tCAN);
static uint32_t LockIF_TL(CAN_T *tCAN);
static void ReleaseIF(CAN_T *tCAN, uint32_t u32IfNo);
static int can_update_spt(int sampl_pt, int tseg, int *tseg1, int *tseg2);
/**
* @brief Check if any interface is available then lock it for usage.
* @param[in] tCAN The pointer to CAN module base address.
* @retval 0 IF0 is free
* @retval 1 IF1 is free
* @retval 2 No IF is free
* @details Search the first free message interface, starting from 0. If a interface is
* available, set a flag to lock the interface.
*/
static uint32_t LockIF(CAN_T *tCAN)
{
uint32_t u32CanNo;
uint32_t u32FreeIfNo = 2ul;
uint32_t u32IntMask;
if (tCAN == CAN0)
u32CanNo = 0ul;
#if defined(CAN1)
else if (tCAN == CAN1)
u32CanNo = 1ul;
#endif
#if defined(CAN2)
else if (tCAN == CAN2)
u32CanNo = 2ul;
#endif
#if defined(CAN3)
else if (tCAN == CAN3)
u32CanNo = 3ul;
#endif
else
return u32FreeIfNo;
/* Disable CAN interrupt */
u32IntMask = tCAN->CON & (CAN_CON_IE_Msk | CAN_CON_SIE_Msk | CAN_CON_EIE_Msk);
tCAN->CON = tCAN->CON & ~(CAN_CON_IE_Msk | CAN_CON_SIE_Msk | CAN_CON_EIE_Msk);
/* Check interface 1 is available or not */
if ((tCAN->IF[0ul].CREQ & CAN_IF_CREQ_BUSY_Msk) == 0ul)
{
if (gu8LockCanIf[u32CanNo][0ul] == 0ul)
{
gu8LockCanIf[u32CanNo][0ul] = 1u;
u32FreeIfNo = 0ul;
}
else
{
}
}
else
{
}
/* Or check interface 2 is available or not */
if (u32FreeIfNo == 2ul)
{
if ((tCAN->IF[1ul].CREQ & CAN_IF_CREQ_BUSY_Msk) == 0ul)
{
if (gu8LockCanIf[u32CanNo][1ul] == 0ul)
{
gu8LockCanIf[u32CanNo][1ul] = 1u;
u32FreeIfNo = 1ul;
}
else
{
}
}
else
{
}
}
else
{
}
/* Enable CAN interrupt */
tCAN->CON |= u32IntMask;
return u32FreeIfNo;
}
/**
* @brief Check if any interface is available in a time limitation then lock it for usage.
* @param[in] tCAN The pointer to CAN module base address.
* @retval 0 IF0 is free
* @retval 1 IF1 is free
* @retval 2 No IF is free
* @details Search the first free message interface, starting from 0. If no interface is
* it will try again until time out. If a interface is available, set a flag to
* lock the interface.
*/
static uint32_t LockIF_TL(CAN_T *tCAN)
{
uint32_t u32Count;
uint32_t u32FreeIfNo;
for (u32Count = 0ul; u32Count < RETRY_COUNTS; u32Count++)
{
if ((u32FreeIfNo = LockIF(tCAN)) != 2ul)
{
break;
}
else
{
}
}
return u32FreeIfNo;
}
/**
* @brief Release locked interface.
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u32Info The interface number, 0 or 1.
* @return none
* @details Release the locked interface.
*/
static void ReleaseIF(CAN_T *tCAN, uint32_t u32IfNo)
{
uint32_t u32IntMask;
uint32_t u32CanNo;
if (u32IfNo >= 2ul)
{
}
else
{
if (tCAN == CAN0)
u32CanNo = 0ul;
#if defined(CAN1)
else if (tCAN == CAN1)
u32CanNo = 1ul;
#endif
#if defined(CAN2)
else if (tCAN == CAN2)
u32CanNo = 2ul;
#endif
#if defined(CAN3)
else if (tCAN == CAN3)
u32CanNo = 3ul;
#endif
else
return ;
/* Disable CAN interrupt */
u32IntMask = tCAN->CON & (CAN_CON_IE_Msk | CAN_CON_SIE_Msk | CAN_CON_EIE_Msk);
tCAN->CON = tCAN->CON & ~(CAN_CON_IE_Msk | CAN_CON_SIE_Msk | CAN_CON_EIE_Msk);
gu8LockCanIf[u32CanNo][u32IfNo] = 0u;
/* Enable CAN interrupt */
tCAN->CON |= u32IntMask;
}
}
static int can_update_spt(int sampl_pt, int tseg, int *tseg1, int *tseg2)
{
*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
if (*tseg2 < TSEG2_MIN)
{
*tseg2 = TSEG2_MIN;
}
else
{
}
if (*tseg2 > TSEG2_MAX)
{
*tseg2 = TSEG2_MAX;
}
else
{
}
*tseg1 = tseg - *tseg2;
if (*tseg1 > TSEG1_MAX)
{
*tseg1 = TSEG1_MAX;
*tseg2 = tseg - *tseg1;
}
else
{
}
return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
}
/** @endcond HIDDEN_SYMBOLS */
/**
* @brief Enter initialization mode
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u8Mask Following values can be used.
* \ref CAN_CON_DAR_Msk Disable automatic retransmission.
* \ref CAN_CON_EIE_Msk Enable error interrupt.
* \ref CAN_CON_SIE_Msk Enable status interrupt.
* \ref CAN_CON_IE_Msk CAN interrupt.
* @return None
* @details This function is used to set CAN to enter initialization mode and enable access bit timing
* register. After bit timing configuration ready, user must call CAN_LeaveInitMode()
* to leave initialization mode and lock bit timing register to let new configuration
* take effect.
*/
void CAN_EnterInitMode(CAN_T *tCAN, uint8_t u8Mask)
{
tCAN->CON = u8Mask | (CAN_CON_INIT_Msk | CAN_CON_CCE_Msk);
}
/**
* @brief Leave initialization mode
* @param[in] tCAN The pointer to CAN module base address.
* @return None
* @details This function is used to set CAN to leave initialization mode to let
* bit timing configuration take effect after configuration ready.
*/
void CAN_LeaveInitMode(CAN_T *tCAN)
{
tCAN->CON &= (~(CAN_CON_INIT_Msk | CAN_CON_CCE_Msk));
while (tCAN->CON & CAN_CON_INIT_Msk)
{
/* Check INIT bit is released */
}
}
/**
* @brief Wait message into message buffer in basic mode.
* @param[in] tCAN The pointer to CAN module base address.
* @return None
* @details This function is used to wait message into message buffer in basic mode. Please notice the
* function is polling NEWDAT bit of MCON register by while loop and it is used in basic mode.
*/
void CAN_WaitMsg(CAN_T *tCAN)
{
tCAN->STATUS = 0x0ul; /* clr status */
while (1)
{
if (tCAN->IF[1].MCON & CAN_IF_MCON_NEWDAT_Msk) /* check new data */
{
/* New Data IN */
break;
}
else
{
}
if (tCAN->STATUS & CAN_STATUS_RXOK_Msk)
{
/* Rx OK */
}
else
{
}
if (tCAN->STATUS & CAN_STATUS_LEC_Msk)
{
/* Error */
}
else
{
}
}
}
/**
* @brief Get current bit rate
* @param[in] tCAN The pointer to CAN module base address.
* @return Current Bit-Rate (kilo bit per second)
* @details Return current CAN bit rate according to the user bit-timing parameter settings
*/
uint32_t CAN_GetCANBitRate(CAN_T *tCAN)
{
uint32_t u32Tseg1, u32Tseg2;
uint32_t u32Bpr;
u32Tseg1 = (tCAN->BTIME & CAN_BTIME_TSEG1_Msk) >> CAN_BTIME_TSEG1_Pos;
u32Tseg2 = (tCAN->BTIME & CAN_BTIME_TSEG2_Msk) >> CAN_BTIME_TSEG2_Pos;
u32Bpr = (tCAN->BTIME & CAN_BTIME_BRP_Msk) | (tCAN->BRPE << 6ul);
return (CAN_Clock / (u32Bpr + 1ul) / (u32Tseg1 + u32Tseg2 + 3ul));
}
/**
* @brief Switch the CAN into test mode.
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u8TestMask Specifies the configuration in test modes
* \ref CAN_TEST_BASIC_Msk Enable basic mode of test mode
* \ref CAN_TEST_SILENT_Msk Enable silent mode of test mode
* \ref CAN_TEST_LBACK_Msk Enable Loop Back Mode of test mode
* \ref CAN_TEST_Tx_Msk Control CAN_TX pin bit field
* @return None
* @details Switch the CAN into test mode. There are four test mode (BASIC/SILENT/LOOPBACK/
* LOOPBACK combined SILENT/CONTROL_TX_PIN)could be selected. After setting test mode,user
* must call CAN_LeaveInitMode() to let the setting take effect.
*/
void CAN_EnterTestMode(CAN_T *tCAN, uint8_t u8TestMask)
{
tCAN->CON |= CAN_CON_TEST_Msk;
tCAN->TEST = u8TestMask;
}
/**
* @brief Leave the test mode
* @param[in] tCAN The pointer to CAN module base address.
* @return None
* @details This function is used to Leave the test mode (switch into normal mode).
*/
void CAN_LeaveTestMode(CAN_T *tCAN)
{
tCAN->CON |= CAN_CON_TEST_Msk;
tCAN->TEST &= ~(CAN_TEST_LBACK_Msk | CAN_TEST_SILENT_Msk | CAN_TEST_BASIC_Msk);
tCAN->CON &= (~CAN_CON_TEST_Msk);
}
/**
* @brief Get the waiting status of a received message.
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u8MsgObj Specifies the Message object number, from 0 to 31.
* @retval non-zero The corresponding message object has a new data bit is set.
* @retval 0 No message object has new data.
* @details This function is used to get the waiting status of a received message.
*/
uint32_t CAN_IsNewDataReceived(CAN_T *tCAN, uint8_t u8MsgObj)
{
return (u8MsgObj < 16ul ? tCAN->NDAT1 & (1ul << u8MsgObj) : tCAN->NDAT2 & (1ul << (u8MsgObj - 16ul)));
}
/**
* @brief Send CAN message in BASIC mode of test mode
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] pCanMsg Pointer to the message structure containing data to transmit.
* @return TRUE: Transmission OK
* FALSE: Check busy flag of interface 0 is timeout
* @details The function is used to send CAN message in BASIC mode of test mode. Before call the API,
* the user should be call CAN_EnterTestMode(CAN_TEST_BASIC) and let CAN controller enter
* basic mode of test mode. Please notice IF1 Registers used as Tx Buffer in basic mode.
*/
int32_t CAN_BasicSendMsg(CAN_T *tCAN, STR_CANMSG_T *pCanMsg)
{
uint32_t i = 0ul;
int32_t rev = 1l;
while (tCAN->IF[0].CREQ & CAN_IF_CREQ_BUSY_Msk)
{
}
tCAN->STATUS &= (~CAN_STATUS_TXOK_Msk);
if (pCanMsg->IdType == CAN_STD_ID)
{
/* standard ID*/
tCAN->IF[0].ARB1 = 0ul;
tCAN->IF[0].ARB2 = (((pCanMsg->Id) & 0x7FFul) << 2ul) ;
}
else
{
/* extended ID*/
tCAN->IF[0].ARB1 = (pCanMsg->Id) & 0xFFFFul;
tCAN->IF[0].ARB2 = ((pCanMsg->Id) & 0x1FFF0000ul) >> 16ul | CAN_IF_ARB2_XTD_Msk;
}
if (pCanMsg->FrameType)
{
tCAN->IF[0].ARB2 |= CAN_IF_ARB2_DIR_Msk;
}
else
{
tCAN->IF[0].ARB2 &= (~CAN_IF_ARB2_DIR_Msk);
}
tCAN->IF[0].MCON = (tCAN->IF[0].MCON & (~CAN_IF_MCON_DLC_Msk)) | pCanMsg->DLC;
tCAN->IF[0].DAT_A1 = (uint16_t)((uint16_t)((uint16_t)pCanMsg->Data[1] << 8) | pCanMsg->Data[0]);
tCAN->IF[0].DAT_A2 = (uint16_t)((uint16_t)((uint16_t)pCanMsg->Data[3] << 8) | pCanMsg->Data[2]);
tCAN->IF[0].DAT_B1 = (uint16_t)((uint16_t)((uint16_t)pCanMsg->Data[5] << 8) | pCanMsg->Data[4]);
tCAN->IF[0].DAT_B2 = (uint16_t)((uint16_t)((uint16_t)pCanMsg->Data[7] << 8) | pCanMsg->Data[6]);
/* request transmission*/
tCAN->IF[0].CREQ &= (~CAN_IF_CREQ_BUSY_Msk);
if (tCAN->IF[0].CREQ & CAN_IF_CREQ_BUSY_Msk)
{
/* Cannot clear busy for sending ...*/
rev = 0l; /* return FALSE */
}
else
{
tCAN->IF[0].CREQ |= CAN_IF_CREQ_BUSY_Msk; /* sending */
for (i = 0ul; i < 0xFFFFFul; i++)
{
if ((tCAN->IF[0].CREQ & CAN_IF_CREQ_BUSY_Msk) == 0ul)
{
break;
}
else
{
}
}
if (i >= 0xFFFFFul)
{
/* Cannot send out... */
rev = 0l; /* return FALSE */
}
else
{
}
}
return rev;
}
/**
* @brief Get a message information in BASIC mode.
*
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] pCanMsg Pointer to the message structure where received data is copied.
*
* @return FALSE No any message received.
* TRUE Receive a message success.
*
*/
int32_t CAN_BasicReceiveMsg(CAN_T *tCAN, STR_CANMSG_T *pCanMsg)
{
int32_t rev = 1l;
if ((tCAN->IF[1].MCON & CAN_IF_MCON_NEWDAT_Msk) == 0ul)
{
/* In basic mode, receive data always save in IF2 */
rev = 0; /* return FALSE */
}
else
{
tCAN->STATUS &= (~CAN_STATUS_RXOK_Msk);
tCAN->IF[1].CMASK = CAN_IF_CMASK_ARB_Msk
| CAN_IF_CMASK_CONTROL_Msk
| CAN_IF_CMASK_DATAA_Msk
| CAN_IF_CMASK_DATAB_Msk;
if ((tCAN->IF[1].ARB2 & CAN_IF_ARB2_XTD_Msk) == 0ul)
{
/* standard ID*/
pCanMsg->IdType = CAN_STD_ID;
pCanMsg->Id = (tCAN->IF[1].ARB2 >> 2) & 0x07FFul;
}
else
{
/* extended ID*/
pCanMsg->IdType = CAN_EXT_ID;
pCanMsg->Id = (tCAN->IF[1].ARB2 & 0x1FFFul) << 16;
pCanMsg->Id |= (uint32_t)tCAN->IF[1].ARB1;
}
pCanMsg->FrameType = (((tCAN->IF[1].ARB2 & CAN_IF_ARB2_DIR_Msk) >> CAN_IF_ARB2_DIR_Pos)) ? 0ul : 1ul;
pCanMsg->DLC = (uint8_t)(tCAN->IF[1].MCON & CAN_IF_MCON_DLC_Msk);
pCanMsg->Data[0] = (uint8_t)(tCAN->IF[1].DAT_A1 & CAN_IF_DAT_A1_DATA0_Msk);
pCanMsg->Data[1] = (uint8_t)((tCAN->IF[1].DAT_A1 & CAN_IF_DAT_A1_DATA1_Msk) >> CAN_IF_DAT_A1_DATA1_Pos);
pCanMsg->Data[2] = (uint8_t)(tCAN->IF[1].DAT_A2 & CAN_IF_DAT_A2_DATA2_Msk);
pCanMsg->Data[3] = (uint8_t)((tCAN->IF[1].DAT_A2 & CAN_IF_DAT_A2_DATA3_Msk) >> CAN_IF_DAT_A2_DATA3_Pos);
pCanMsg->Data[4] = (uint8_t)(tCAN->IF[1].DAT_B1 & CAN_IF_DAT_B1_DATA4_Msk);
pCanMsg->Data[5] = (uint8_t)((tCAN->IF[1].DAT_B1 & CAN_IF_DAT_B1_DATA5_Msk) >> CAN_IF_DAT_B1_DATA5_Pos);
pCanMsg->Data[6] = (uint8_t)(tCAN->IF[1].DAT_B2 & CAN_IF_DAT_B2_DATA6_Msk);
pCanMsg->Data[7] = (uint8_t)((tCAN->IF[1].DAT_B2 & CAN_IF_DAT_B2_DATA7_Msk) >> CAN_IF_DAT_B2_DATA7_Pos);
}
return rev;
}
/**
* @brief Set Rx message object, include ID mask.
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u8MsgObj Specifies the Message object number, from 0 to 31.
* @param[in] u8idType Specifies the identifier type of the frames that will be transmitted
* This parameter can be one of the following values:
* \ref CAN_STD_ID (standard ID, 11-bit)
* \ref CAN_EXT_ID (extended ID, 29-bit)
* @param[in] u32id Specifies the identifier used for acceptance filtering.
* @param[in] u32idmask Specifies the identifier mask used for acceptance filtering.
* @param[in] u8singleOrFifoLast Specifies the end-of-buffer indicator.
* This parameter can be one of the following values:
* TRUE: for a single receive object or a FIFO receive object that is the last one of the FIFO.
* FALSE: for a FIFO receive object that is not the last one.
* @retval TRUE SUCCESS
* @retval FALSE No useful interface
* @details The function is used to configure a receive message object.
*/
int32_t CAN_SetRxMsgObjAndMsk(CAN_T *tCAN, uint8_t u8MsgObj, uint8_t u8idType, uint32_t u32id, uint32_t u32idmask, uint8_t u8singleOrFifoLast)
{
int32_t rev = 1l;
uint32_t u32MsgIfNum;
/* Get and lock a free interface */
if ((u32MsgIfNum = LockIF_TL(tCAN)) == 2ul)
{
rev = 0; /* return FALSE */
}
else
{
/* Command Setting */
tCAN->IF[u32MsgIfNum].CMASK = CAN_IF_CMASK_WRRD_Msk | CAN_IF_CMASK_MASK_Msk | CAN_IF_CMASK_ARB_Msk |
CAN_IF_CMASK_CONTROL_Msk | CAN_IF_CMASK_DATAA_Msk | CAN_IF_CMASK_DATAB_Msk;
if (u8idType == CAN_STD_ID) /* According STD/EXT ID format,Configure Mask and Arbitration register */
{
tCAN->IF[u32MsgIfNum].ARB1 = 0ul;
tCAN->IF[u32MsgIfNum].ARB2 = CAN_IF_ARB2_MSGVAL_Msk | (u32id & 0x7FFul) << 2;
}
else
{
tCAN->IF[u32MsgIfNum].ARB1 = u32id & 0xFFFFul;
tCAN->IF[u32MsgIfNum].ARB2 = CAN_IF_ARB2_MSGVAL_Msk | CAN_IF_ARB2_XTD_Msk | (u32id & 0x1FFF0000ul) >> 16;
}
tCAN->IF[u32MsgIfNum].MASK1 = (u32idmask & 0xFFFFul);
tCAN->IF[u32MsgIfNum].MASK2 = (u32idmask >> 16) & 0xFFFFul;
/* tCAN->IF[u32MsgIfNum].MCON |= CAN_IF_MCON_UMASK_Msk | CAN_IF_MCON_RXIE_Msk; */
tCAN->IF[u32MsgIfNum].MCON = CAN_IF_MCON_UMASK_Msk | CAN_IF_MCON_RXIE_Msk;
if (u8singleOrFifoLast)
{
tCAN->IF[u32MsgIfNum].MCON |= CAN_IF_MCON_EOB_Msk;
}
else
{
tCAN->IF[u32MsgIfNum].MCON &= (~CAN_IF_MCON_EOB_Msk);
}
tCAN->IF[u32MsgIfNum].DAT_A1 = 0ul;
tCAN->IF[u32MsgIfNum].DAT_A2 = 0ul;
tCAN->IF[u32MsgIfNum].DAT_B1 = 0ul;
tCAN->IF[u32MsgIfNum].DAT_B2 = 0ul;
tCAN->IF[u32MsgIfNum].CREQ = 1ul + u8MsgObj;
ReleaseIF(tCAN, u32MsgIfNum);
}
return rev;
}
/**
* @brief Set Rx message object
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u8MsgObj Specifies the Message object number, from 0 to 31.
* @param[in] u8idType Specifies the identifier type of the frames that will be transmitted
* This parameter can be one of the following values:
* \ref CAN_STD_ID (standard ID, 11-bit)
* \ref CAN_EXT_ID (extended ID, 29-bit)
* @param[in] u32id Specifies the identifier used for acceptance filtering.
* @param[in] u8singleOrFifoLast Specifies the end-of-buffer indicator.
* This parameter can be one of the following values:
* TRUE: for a single receive object or a FIFO receive object that is the last one of the FIFO.
* FALSE: for a FIFO receive object that is not the last one.
* @retval TRUE SUCCESS
* @retval FALSE No useful interface
* @details The function is used to configure a receive message object.
*/
int32_t CAN_SetRxMsgObj(CAN_T *tCAN, uint8_t u8MsgObj, uint8_t u8idType, uint32_t u32id, uint8_t u8singleOrFifoLast)
{
int32_t rev = 1l;
uint32_t u32MsgIfNum;
/* Get and lock a free interface */
if ((u32MsgIfNum = LockIF_TL(tCAN)) == 2ul)
{
rev = 0; /* return FALSE */
}
else
{
/* Command Setting */
tCAN->IF[u32MsgIfNum].CMASK = CAN_IF_CMASK_WRRD_Msk | CAN_IF_CMASK_MASK_Msk | CAN_IF_CMASK_ARB_Msk |
CAN_IF_CMASK_CONTROL_Msk | CAN_IF_CMASK_DATAA_Msk | CAN_IF_CMASK_DATAB_Msk;
if (u8idType == CAN_STD_ID) /* According STD/EXT ID format,Configure Mask and Arbitration register */
{
tCAN->IF[u32MsgIfNum].ARB1 = 0ul;
tCAN->IF[u32MsgIfNum].ARB2 = CAN_IF_ARB2_MSGVAL_Msk | (u32id & 0x7FFul) << 2;
}
else
{
tCAN->IF[u32MsgIfNum].ARB1 = u32id & 0xFFFFul;
tCAN->IF[u32MsgIfNum].ARB2 = CAN_IF_ARB2_MSGVAL_Msk | CAN_IF_ARB2_XTD_Msk | (u32id & 0x1FFF0000ul) >> 16;
}
/* tCAN->IF[u8MsgIfNum].MCON |= CAN_IF_MCON_UMASK_Msk | CAN_IF_MCON_RXIE_Msk; */
tCAN->IF[u32MsgIfNum].MCON = CAN_IF_MCON_UMASK_Msk | CAN_IF_MCON_RXIE_Msk;
if (u8singleOrFifoLast)
{
tCAN->IF[u32MsgIfNum].MCON |= CAN_IF_MCON_EOB_Msk;
}
else
{
tCAN->IF[u32MsgIfNum].MCON &= (~CAN_IF_MCON_EOB_Msk);
}
tCAN->IF[u32MsgIfNum].DAT_A1 = 0ul;
tCAN->IF[u32MsgIfNum].DAT_A2 = 0ul;
tCAN->IF[u32MsgIfNum].DAT_B1 = 0ul;
tCAN->IF[u32MsgIfNum].DAT_B2 = 0ul;
tCAN->IF[u32MsgIfNum].CREQ = 1ul + u8MsgObj;
ReleaseIF(tCAN, u32MsgIfNum);
}
return rev;
}
/**
* @brief Gets the message
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u8MsgObj Specifies the Message object number, from 0 to 31.
* @param[in] u8Release Specifies the message release indicator.
* This parameter can be one of the following values:
* TRUE: the message object is released when getting the data.
* FALSE:the message object is not released.
* @param[in] pCanMsg Pointer to the message structure where received data is copied.
* @retval TRUE Success
* @retval FALSE No any message received
* @details Gets the message, if received.
*/
int32_t CAN_ReadMsgObj(CAN_T *tCAN, uint8_t u8MsgObj, uint8_t u8Release, STR_CANMSG_T *pCanMsg)
{
int32_t rev = 1l;
uint32_t u32MsgIfNum;
if (!CAN_IsNewDataReceived(tCAN, u8MsgObj))
{
rev = 0; /* return FALSE */
}
else
{
/* Get and lock a free interface */
if ((u32MsgIfNum = LockIF_TL(tCAN)) == 2ul)
{
rev = 0; /* return FALSE */
}
else
{
tCAN->STATUS &= (~CAN_STATUS_RXOK_Msk);
/* read the message contents*/
tCAN->IF[u32MsgIfNum].CMASK = CAN_IF_CMASK_MASK_Msk
| CAN_IF_CMASK_ARB_Msk
| CAN_IF_CMASK_CONTROL_Msk
| CAN_IF_CMASK_CLRINTPND_Msk
| (u8Release ? CAN_IF_CMASK_TXRQSTNEWDAT_Msk : 0ul)
| CAN_IF_CMASK_DATAA_Msk
| CAN_IF_CMASK_DATAB_Msk;
tCAN->IF[u32MsgIfNum].CREQ = 1ul + u8MsgObj;
while (tCAN->IF[u32MsgIfNum].CREQ & CAN_IF_CREQ_BUSY_Msk)
{
/*Wait*/
}
if ((tCAN->IF[u32MsgIfNum].ARB2 & CAN_IF_ARB2_XTD_Msk) == 0ul)
{
/* standard ID*/
pCanMsg->IdType = CAN_STD_ID;
pCanMsg->Id = (tCAN->IF[u32MsgIfNum].ARB2 & CAN_IF_ARB2_ID_Msk) >> 2ul;
}
else
{
/* extended ID*/
pCanMsg->IdType = CAN_EXT_ID;
pCanMsg->Id = (((tCAN->IF[u32MsgIfNum].ARB2) & 0x1FFFul) << 16) | tCAN->IF[u32MsgIfNum].ARB1;
}
pCanMsg->DLC = (uint8_t)(tCAN->IF[u32MsgIfNum].MCON & CAN_IF_MCON_DLC_Msk);
pCanMsg->Data[0] = (uint8_t)(tCAN->IF[u32MsgIfNum].DAT_A1 & CAN_IF_DAT_A1_DATA0_Msk);
pCanMsg->Data[1] = (uint8_t)((tCAN->IF[u32MsgIfNum].DAT_A1 & CAN_IF_DAT_A1_DATA1_Msk) >> CAN_IF_DAT_A1_DATA1_Pos);
pCanMsg->Data[2] = (uint8_t)(tCAN->IF[u32MsgIfNum].DAT_A2 & CAN_IF_DAT_A2_DATA2_Msk);
pCanMsg->Data[3] = (uint8_t)((tCAN->IF[u32MsgIfNum].DAT_A2 & CAN_IF_DAT_A2_DATA3_Msk) >> CAN_IF_DAT_A2_DATA3_Pos);
pCanMsg->Data[4] = (uint8_t)(tCAN->IF[u32MsgIfNum].DAT_B1 & CAN_IF_DAT_B1_DATA4_Msk);
pCanMsg->Data[5] = (uint8_t)((tCAN->IF[u32MsgIfNum].DAT_B1 & CAN_IF_DAT_B1_DATA5_Msk) >> CAN_IF_DAT_B1_DATA5_Pos);
pCanMsg->Data[6] = (uint8_t)(tCAN->IF[u32MsgIfNum].DAT_B2 & CAN_IF_DAT_B2_DATA6_Msk);
pCanMsg->Data[7] = (uint8_t)((tCAN->IF[u32MsgIfNum].DAT_B2 & CAN_IF_DAT_B2_DATA7_Msk) >> CAN_IF_DAT_B2_DATA7_Pos);
ReleaseIF(tCAN, u32MsgIfNum);
}
}
return rev;
}
/**
* @brief Set bus baud-rate.
*
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u32BaudRate The target CAN baud-rate. The range of u32BaudRate is 1~1000KHz.
*
* @return u32CurrentBitRate Real baud-rate value.
*
* @details The function is used to set bus timing parameter according current clock and target baud-rate.
*/
uint32_t CAN_SetBaudRate(CAN_T *tCAN, uint32_t u32BaudRate)
{
long rate;
long best_error = 1000000000, error = 0;
int best_tseg = 0, best_brp = 0, brp = 0;
int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
int spt_error = 1000, spt = 0, sampl_pt;
uint64_t clock_freq = (uint64_t)0, u64PCLK_DIV = (uint64_t)1;
uint32_t sjw = (uint32_t)1;
CAN_EnterInitMode(tCAN, (uint8_t)0);
CAN_Clock = sysGetClock(SYS_PCLK2) * 1000000;
clock_freq = CAN_Clock / u64PCLK_DIV;
if (u32BaudRate >= (uint32_t)1000000)
{
u32BaudRate = (uint32_t)1000000;
}
/* Use CIA recommended sample points */
if (u32BaudRate > (uint32_t)800000)
{
sampl_pt = (int)750;
}
else if (u32BaudRate > (uint32_t)500000)
{
sampl_pt = (int)800;
}
else
{
sampl_pt = (int)875;
}
/* tseg even = round down, odd = round up */
for (tseg = (TSEG1_MAX + TSEG2_MAX) * 2ul + 1ul; tseg >= (TSEG1_MIN + TSEG2_MIN) * 2ul; tseg--)
{
tsegall = 1ul + tseg / 2ul;
/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
brp = clock_freq / (tsegall * u32BaudRate) + tseg % 2;
/* chose brp step which is possible in system */
brp = (brp / BRP_INC) * BRP_INC;
if ((brp < BRP_MIN) || (brp > BRP_MAX))
{
continue;
}
rate = clock_freq / (brp * tsegall);
error = u32BaudRate - rate;
/* tseg brp biterror */
if (error < 0)
{
error = -error;
}
if (error > best_error)
{
continue;
}
best_error = error;
if (error == 0)
{
spt = can_update_spt(sampl_pt, tseg / 2, &tseg1, &tseg2);
error = sampl_pt - spt;
if (error < 0)
{
error = -error;
}
if (error > spt_error)
{
continue;
}
spt_error = error;
}
best_tseg = tseg / 2;
best_brp = brp;
if (error == 0)
{
break;
}
}
spt = can_update_spt(sampl_pt, best_tseg, &tseg1, &tseg2);
/* check for sjw user settings */
/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
if (sjw > SJW_MAX)
{
sjw = SJW_MAX;
}
/* bt->sjw must not be higher than tseg2 */
if (tseg2 < sjw)
{
sjw = tseg2;
}
/* real bit-rate */
u32BaudRate = clock_freq / (best_brp * (tseg1 + tseg2 + 1));
tCAN->BTIME = ((uint32_t)(tseg2 - 1ul) << CAN_BTIME_TSEG2_Pos) | ((uint32_t)(tseg1 - 1ul) << CAN_BTIME_TSEG1_Pos) |
((uint32_t)(best_brp - 1ul) & CAN_BTIME_BRP_Msk) | (sjw << CAN_BTIME_SJW_Pos);
tCAN->BRPE = ((uint32_t)(best_brp - 1ul) >> 6) & 0x0Ful;
/* printf("\n bitrate = %d \n", CAN_GetCANBitRate(tCAN)); */
CAN_LeaveInitMode(tCAN);
return u32BaudRate;
}
/**
* @brief The function is used to disable all CAN interrupt.
*
* @param[in] tCAN The pointer to CAN module base address.
*
* @return None
*
* @details No Status Change Interrupt and Error Status Interrupt will be generated.
*/
void CAN_Close(CAN_T *tCAN)
{
CAN_DisableInt(tCAN, (CAN_CON_IE_Msk | CAN_CON_SIE_Msk | CAN_CON_EIE_Msk));
}
/**
* @brief Set CAN operation mode and target baud-rate.
*
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u32BaudRate The target CAN baud-rate. The range of u32BaudRate is 1~1000KHz.
* @param[in] u32Mode The CAN operation mode. Valid values are:
* - \ref CAN_NORMAL_MODE Normal operation.
* - \ref CAN_BASIC_MODE Basic mode.
* @return u32CurrentBitRate Real baud-rate value.
*
* @details Set bus timing parameter according current clock and target baud-rate.
* In Basic mode, IF1 Registers used as Tx Buffer, IF2 Registers used as Rx Buffer.
*/
uint32_t CAN_Open(CAN_T *tCAN, uint32_t u32BaudRate, uint32_t u32Mode)
{
uint32_t u32CurrentBitRate;
u32CurrentBitRate = CAN_SetBaudRate(tCAN, u32BaudRate);
if (u32Mode == CAN_BASIC_MODE)
{
CAN_EnterTestMode(tCAN, (uint8_t)CAN_TEST_BASIC_Msk);
}
else
{
}
return u32CurrentBitRate;
}
/**
* @brief The function is used to configure a transmit object.
*
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u32MsgNum Specifies the Message object number, from 0 to 31.
* @param[in] pCanMsg Pointer to the message structure where received data is copied.
*
* @retval FALSE No useful interface.
* @retval TRUE Config message object success.
*
* @details The two sets of interface registers (IF1 and IF2) control the software access to the Message RAM.
* They buffer the data to be transferred to and from the RAM, avoiding conflicts between software accesses and message reception/transmission.
*/
int32_t CAN_SetTxMsg(CAN_T *tCAN, uint32_t u32MsgNum, STR_CANMSG_T *pCanMsg)
{
int32_t rev = 1l;
uint32_t u32MsgIfNum;
if ((u32MsgIfNum = LockIF_TL(tCAN)) == 2ul)
{
rev = 0; /* return FALSE */
}
else
{
/* update the contents needed for transmission*/
tCAN->IF[u32MsgIfNum].CMASK = CAN_IF_CMASK_WRRD_Msk | CAN_IF_CMASK_MASK_Msk | CAN_IF_CMASK_ARB_Msk |
CAN_IF_CMASK_CONTROL_Msk | CAN_IF_CMASK_DATAA_Msk | CAN_IF_CMASK_DATAB_Msk;
if (pCanMsg->IdType == CAN_STD_ID)
{
/* standard ID*/
tCAN->IF[u32MsgIfNum].ARB1 = 0ul;
tCAN->IF[u32MsgIfNum].ARB2 = (((pCanMsg->Id) & 0x7FFul) << 2) | CAN_IF_ARB2_DIR_Msk | CAN_IF_ARB2_MSGVAL_Msk;
}
else
{
/* extended ID*/
tCAN->IF[u32MsgIfNum].ARB1 = (pCanMsg->Id) & 0xFFFFul;
tCAN->IF[u32MsgIfNum].ARB2 = ((pCanMsg->Id) & 0x1FFF0000ul) >> 16 |
CAN_IF_ARB2_DIR_Msk | CAN_IF_ARB2_XTD_Msk | CAN_IF_ARB2_MSGVAL_Msk;
}
if (pCanMsg->FrameType)
{
tCAN->IF[u32MsgIfNum].ARB2 |= CAN_IF_ARB2_DIR_Msk;
}
else
{
tCAN->IF[u32MsgIfNum].ARB2 &= (~CAN_IF_ARB2_DIR_Msk);
}
tCAN->IF[u32MsgIfNum].DAT_A1 = (uint16_t)((uint16_t)(((uint16_t)pCanMsg->Data[1] << 8)) | pCanMsg->Data[0]);
tCAN->IF[u32MsgIfNum].DAT_A2 = (uint16_t)((uint16_t)(((uint16_t)pCanMsg->Data[3] << 8)) | pCanMsg->Data[2]);
tCAN->IF[u32MsgIfNum].DAT_B1 = (uint16_t)((uint16_t)(((uint16_t)pCanMsg->Data[5] << 8)) | pCanMsg->Data[4]);
tCAN->IF[u32MsgIfNum].DAT_B2 = (uint16_t)((uint16_t)(((uint16_t)pCanMsg->Data[7] << 8)) | pCanMsg->Data[6]);
tCAN->IF[u32MsgIfNum].MCON = CAN_IF_MCON_NEWDAT_Msk | pCanMsg->DLC | CAN_IF_MCON_TXIE_Msk | CAN_IF_MCON_EOB_Msk;
tCAN->IF[u32MsgIfNum].CREQ = 1ul + u32MsgNum;
ReleaseIF(tCAN, u32MsgIfNum);
}
return rev;
}
/**
* @brief Set transmit request bit.
*
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u32MsgNum Specifies the Message object number, from 0 to 31.
*
* @return TRUE: Start transmit message.
*
* @details If a transmission is requested by programming bit TxRqst/NewDat (IFn_CMASK[2]), the TxRqst (IFn_MCON[8]) will be ignored.
*/
int32_t CAN_TriggerTxMsg(CAN_T *tCAN, uint32_t u32MsgNum)
{
int32_t rev = 1l;
uint32_t u32MsgIfNum;
if ((u32MsgIfNum = LockIF_TL(tCAN)) == 2ul)
{
rev = 0; /* return FALSE */
}
else
{
tCAN->STATUS &= (~CAN_STATUS_TXOK_Msk);
/* read the message contents*/
tCAN->IF[u32MsgIfNum].CMASK = CAN_IF_CMASK_CLRINTPND_Msk
| CAN_IF_CMASK_TXRQSTNEWDAT_Msk;
tCAN->IF[u32MsgIfNum].CREQ = 1ul + u32MsgNum;
while (tCAN->IF[u32MsgIfNum].CREQ & CAN_IF_CREQ_BUSY_Msk)
{
/*Wait*/
}
tCAN->IF[u32MsgIfNum].CMASK = CAN_IF_CMASK_WRRD_Msk | CAN_IF_CMASK_TXRQSTNEWDAT_Msk;
tCAN->IF[u32MsgIfNum].CREQ = 1ul + u32MsgNum;
ReleaseIF(tCAN, u32MsgIfNum);
}
return rev;
}
/**
* @brief Enable CAN interrupt.
*
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u32Mask Interrupt Mask. Valid values are:
* - \ref CAN_CON_IE_Msk Module interrupt enable.
* - \ref CAN_CON_SIE_Msk Status change interrupt enable.
* - \ref CAN_CON_EIE_Msk Error interrupt enable.
*
* @return None
*
* @details The application software has two possibilities to follow the source of a message interrupt.
* First, it can follow the IntId in the Interrupt Register and second it can poll the Interrupt Pending Register.
*/
void CAN_EnableInt(CAN_T *tCAN, uint32_t u32Mask)
{
tCAN->CON = (tCAN->CON & ~(CAN_CON_IE_Msk | CAN_CON_SIE_Msk | CAN_CON_EIE_Msk)) |
(u32Mask & (CAN_CON_IE_Msk | CAN_CON_SIE_Msk | CAN_CON_EIE_Msk));
}
/**
* @brief Disable CAN interrupt.
*
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u32Mask Interrupt Mask. (CAN_CON_IE_Msk / CAN_CON_SIE_Msk / CAN_CON_EIE_Msk).
*
* @return None
*
* @details The interrupt remains active until the Interrupt Register is back to value zero (the cause of the interrupt is reset) or until IE is reset.
*/
void CAN_DisableInt(CAN_T *tCAN, uint32_t u32Mask)
{
tCAN->CON = tCAN->CON & ~((u32Mask & (CAN_CON_IE_Msk | CAN_CON_SIE_Msk | CAN_CON_EIE_Msk)));
}
/**
* @brief The function is used to configure a receive message object.
*
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u32MsgNum Specifies the Message object number, from 0 to 31.
* @param[in] u32IDType Specifies the identifier type of the frames that will be transmitted. Valid values are:
* - \ref CAN_STD_ID The 11-bit identifier.
* - \ref CAN_EXT_ID The 29-bit identifier.
* @param[in] u32ID Specifies the identifier used for acceptance filtering.
*
* @retval FALSE No useful interface.
* @retval TRUE Configure a receive message object success.
*
* @details If the RxIE bit (CAN_IFn_MCON[10]) is set, the IntPnd bit (CAN_IFn_MCON[13])
* will be set when a received Data Frame is accepted and stored in the Message Object.
*/
int32_t CAN_SetRxMsg(CAN_T *tCAN, uint32_t u32MsgNum, uint32_t u32IDType, uint32_t u32ID)
{
int32_t rev = (int32_t)TRUE;
uint32_t u32TimeOutCount = 0ul;
while (CAN_SetRxMsgObj(tCAN, (uint8_t)u32MsgNum, (uint8_t)u32IDType, u32ID, (uint8_t)TRUE) == (int32_t)FALSE)
{
if (++u32TimeOutCount >= RETRY_COUNTS)
{
rev = (int32_t)(FALSE); /* return FALSE */
break;
}
else
{
}
}
return rev;
}
/**
* @brief The function is used to configure a receive message object.
*
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u32MsgNum Specifies the Message object number, from 0 to 31.
* @param[in] u32IDType Specifies the identifier type of the frames that will be transmitted. Valid values are:
* - \ref CAN_STD_ID The 11-bit identifier.
* - \ref CAN_EXT_ID The 29-bit identifier.
* @param[in] u32ID Specifies the identifier used for acceptance filtering.
* @param[in] u32IDMask Specifies the identifier mask used for acceptance filtering.
*
* @retval FALSE No useful interface.
* @retval TRUE Configure a receive message object success.
*
* @details If the RxIE bit (CAN_IFn_MCON[10]) is set, the IntPnd bit (CAN_IFn_MCON[13])
* will be set when a received Data Frame is accepted and stored in the Message Object.
*/
int32_t CAN_SetRxMsgAndMsk(CAN_T *tCAN, uint32_t u32MsgNum, uint32_t u32IDType, uint32_t u32ID, uint32_t u32IDMask)
{
int32_t rev = (int32_t)TRUE;
uint32_t u32TimeOutCount = 0ul;
while (CAN_SetRxMsgObjAndMsk(tCAN, (uint8_t)u32MsgNum, (uint8_t)u32IDType, u32ID, u32IDMask, (uint8_t)TRUE) == (int32_t)FALSE)
{
if (++u32TimeOutCount >= RETRY_COUNTS)
{
rev = (int32_t)FALSE;
break;
}
else
{
}
}
return rev;
}
/**
* @brief The function is used to configure several receive message objects.
*
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u32MsgNum The starting MSG RAM number(0 ~ 31).
* @param[in] u32MsgCount the number of MSG RAM of the FIFO.
* @param[in] u32IDType Specifies the identifier type of the frames that will be transmitted. Valid values are:
* - \ref CAN_STD_ID The 11-bit identifier.
* - \ref CAN_EXT_ID The 29-bit identifier.
* @param[in] u32ID Specifies the identifier used for acceptance filtering.
*
* @retval FALSE No useful interface.
* @retval TRUE Configure receive message objects success.
*
* @details The Interface Registers avoid conflict between the CPU accesses to the Message RAM and CAN message reception
* and transmission by buffering the data to be transferred.
*/
int32_t CAN_SetMultiRxMsg(CAN_T *tCAN, uint32_t u32MsgNum, uint32_t u32MsgCount, uint32_t u32IDType, uint32_t u32ID)
{
int32_t rev = (int32_t)TRUE;
uint32_t i;
uint32_t u32TimeOutCount;
uint32_t u32EOB_Flag = 0ul;
for (i = 1ul; i <= u32MsgCount; i++)
{
u32TimeOutCount = 0ul;
u32MsgNum += (i - 1ul);
if (i == u32MsgCount)
{
u32EOB_Flag = 1ul;
}
else
{
}
while (CAN_SetRxMsgObj(tCAN, (uint8_t)u32MsgNum, (uint8_t)u32IDType, u32ID, (uint8_t)u32EOB_Flag) == (int32_t)FALSE)
{
if (++u32TimeOutCount >= RETRY_COUNTS)
{
rev = (int32_t)FALSE;
break;
}
else
{
}
}
}
return rev;
}
/**
* @brief Send CAN message.
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u32MsgNum Specifies the Message object number, from 0 to 31.
* @param[in] pCanMsg Pointer to the message structure where received data is copied.
*
* @retval FALSE 1. When operation in basic mode: Transmit message time out. \n
* 2. When operation in normal mode: No useful interface. \n
* @retval TRUE Transmit Message success.
*
* @details The receive/transmit priority for the Message Objects is attached to the message number.
* Message Object 1 has the highest priority, while Message Object 32 has the lowest priority.
*/
int32_t CAN_Transmit(CAN_T *tCAN, uint32_t u32MsgNum, STR_CANMSG_T *pCanMsg)
{
int32_t rev = (int32_t)TRUE;
uint32_t u32Tmp;
u32Tmp = (tCAN->TEST & CAN_TEST_BASIC_Msk);
if ((tCAN->CON & CAN_CON_TEST_Msk) && u32Tmp)
{
rev = CAN_BasicSendMsg(tCAN, pCanMsg);
}
else
{
if (CAN_SetTxMsg(tCAN, u32MsgNum, pCanMsg) == FALSE)
{
rev = (int32_t)FALSE;
}
else
{
CAN_TriggerTxMsg(tCAN, u32MsgNum);
}
}
return rev;
}
/**
* @brief Gets the message, if received.
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u32MsgNum Specifies the Message object number, from 0 to 31.
* @param[in] pCanMsg Pointer to the message structure where received data is copied.
*
* @retval FALSE No any message received.
* @retval TRUE Receive Message success.
*
* @details The Interface Registers avoid conflict between the CPU accesses to the Message RAM and CAN message reception
* and transmission by buffering the data to be transferred.
*/
int32_t CAN_Receive(CAN_T *tCAN, uint32_t u32MsgNum, STR_CANMSG_T *pCanMsg)
{
int32_t rev = (int32_t)TRUE;
uint32_t u32Tmp;
u32Tmp = (tCAN->TEST & CAN_TEST_BASIC_Msk);
if ((tCAN->CON & CAN_CON_TEST_Msk) && u32Tmp)
{
rev = CAN_BasicReceiveMsg(tCAN, pCanMsg);
}
else
{
rev = CAN_ReadMsgObj(tCAN, (uint8_t)u32MsgNum, (uint8_t)TRUE, pCanMsg);
}
return rev;
}
/**
* @brief Clear interrupt pending bit.
* @param[in] tCAN The pointer to CAN module base address.
* @param[in] u32MsgNum Specifies the Message object number, from 0 to 31.
*
* @return None
*
* @details An interrupt remains pending until the application software has cleared it.
*/
void CAN_CLR_INT_PENDING_BIT(CAN_T *tCAN, uint8_t u32MsgNum)
{
uint32_t u32MsgIfNum;
if ((u32MsgIfNum = LockIF_TL(tCAN)) == 2ul)
{
u32MsgIfNum = 0ul;
}
else
{
}
tCAN->IF[u32MsgIfNum].CMASK = CAN_IF_CMASK_CLRINTPND_Msk | CAN_IF_CMASK_TXRQSTNEWDAT_Msk;
tCAN->IF[u32MsgIfNum].CREQ = 1ul + u32MsgNum;
ReleaseIF(tCAN, u32MsgIfNum);
}
/*@}*/ /* end of group CAN_EXPORTED_FUNCTIONS */
/*@}*/ /* end of group CAN_Driver */
/*@}*/ /* end of group Standard_Driver */
/*** (C) COPYRIGHT 2016 Nuvoton Technology Corp. ***/