rt-thread/components/drivers/sdio/block_dev.c

444 lines
9.9 KiB
C

/*
* File : block_dev.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-07-25 weety first version
*/
#include <rtthread.h>
#include <dfs_fs.h>
#include "mmcsd_core.h"
#include "mmcsd_cmd.h"
static rt_list_t blk_devices;
struct mmcsd_blk_device
{
struct rt_mmcsd_card *card;
rt_list_t list;
struct rt_device dev;
struct dfs_partition part;
struct rt_device_blk_geometry geometry;
};
#ifndef RT_MMCSD_MAX_PARTITION
#define RT_MMCSD_MAX_PARTITION 16
#endif
static rt_int32_t mmcsd_num_wr_blocks(struct rt_mmcsd_card *card)
{
rt_int32_t err;
rt_uint32_t blocks;
struct rt_mmcsd_req req;
struct rt_mmcsd_cmd cmd;
struct rt_mmcsd_data data;
rt_uint32_t timeout_us;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = APP_CMD;
cmd.arg = card->rca << 16;
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_AC;
err = mmcsd_send_cmd(card->host, &cmd, 0);
if (err)
return -RT_ERROR;
if (!controller_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
return -RT_ERROR;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SD_APP_SEND_NUM_WR_BLKS;
cmd.arg = 0;
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
data.timeout_ns = card->tacc_ns * 100;
data.timeout_clks = card->tacc_clks * 100;
timeout_us = data.timeout_ns / 1000;
timeout_us += data.timeout_clks * 1000 /
(card->host->io_cfg.clock / 1000);
if (timeout_us > 100000)
{
data.timeout_ns = 100000000;
data.timeout_clks = 0;
}
data.blksize = 4;
data.blks = 1;
data.flags = DATA_DIR_READ;
data.buf = &blocks;
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
req.cmd = &cmd;
req.data = &data;
mmcsd_send_request(card->host, &req);
if (cmd.err || data.err)
return -RT_ERROR;
return blocks;
}
static rt_err_t rt_mmcsd_req_blk(struct rt_mmcsd_card *card, rt_uint32_t sector, void *buf, rt_size_t blks, rt_uint8_t dir)
{
void *aligned_buf;
struct rt_mmcsd_cmd cmd, stop;
struct rt_mmcsd_data data;
struct rt_mmcsd_req req;
struct rt_mmcsd_host *host = card->host;
rt_uint32_t r_cmd, w_cmd;
mmcsd_host_lock(host);
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
rt_memset(&stop, 0, sizeof(struct rt_mmcsd_cmd));
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
req.cmd = &cmd;
req.data = &data;
cmd.arg = sector;
if (!(card->flags & CARD_FLAG_SDHC))
{
cmd.arg <<= 9;
}
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
data.blksize = SECTOR_SIZE;
data.blks = blks;
if (blks > 1)
{
if (!controller_is_spi(card->host) || !dir)
{
req.stop = &stop;
stop.cmd_code = STOP_TRANSMISSION;
stop.arg = 0;
stop.flags = RESP_SPI_R1B | RESP_R1B | CMD_AC;
}
r_cmd = READ_MULTIPLE_BLOCK;
w_cmd = WRITE_MULTIPLE_BLOCK;
}
else
{
req.stop = NULL;
r_cmd = READ_SINGLE_BLOCK;
w_cmd = WRITE_BLOCK;
}
if (!dir)
{
cmd.cmd_code = r_cmd;
data.flags |= DATA_DIR_READ;
}
else
{
cmd.cmd_code = w_cmd;
data.flags |= DATA_DIR_WRITE;
}
mmcsd_set_data_timeout(&data, card);
data.buf = buf;
mmcsd_send_request(host, &req);
if (!controller_is_spi(card->host) && dir != 0)
{
do
{
rt_int32_t err;
cmd.cmd_code = SEND_STATUS;
cmd.arg = card->rca << 16;
cmd.flags = RESP_R1 | CMD_AC;
err = mmcsd_send_cmd(card->host, &cmd, 5);
if (err)
{
rt_kprintf("error %d requesting status\n", err);
break;
}
/*
* Some cards mishandle the status bits,
* so make sure to check both the busy
* indication and the card state.
*/
} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
(R1_CURRENT_STATE(cmd.resp[0]) == 7));
}
mmcsd_host_unlock(host);
if (cmd.err || data.err || stop.err)
{
rt_kprintf("mmcsd request blocks error\n");
rt_kprintf("%d,%d,%d, 0x%08x,0x%08x\n", cmd.err, data.err, stop.err, data.flags, sector);
return -RT_ERROR;
}
return RT_EOK;
}
static rt_err_t rt_mmcsd_init(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t rt_mmcsd_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_mmcsd_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t rt_mmcsd_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data;
switch (cmd)
{
case RT_DEVICE_CTRL_BLK_GETGEOME:
rt_memcpy(args, &blk_dev->geometry, sizeof(struct rt_device_blk_geometry));
break;
default:
break;
}
return RT_EOK;
}
static rt_size_t rt_mmcsd_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
rt_err_t err;
struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data;
struct dfs_partition *part = &blk_dev->part;
if (dev == RT_NULL)
{
rt_set_errno(-DFS_STATUS_EINVAL);
return 0;
}
rt_sem_take(part->lock, RT_WAITING_FOREVER);
err = rt_mmcsd_req_blk(blk_dev->card, part->offset + pos, buffer, size, 0);
rt_sem_release(part->lock);
/* the length of reading must align to SECTOR SIZE */
if (err)
{
rt_set_errno(-DFS_STATUS_EIO);
return 0;
}
return size;
}
static rt_size_t rt_mmcsd_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
rt_err_t err;
struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data;
struct dfs_partition *part = &blk_dev->part;
if (dev == RT_NULL)
{
rt_set_errno(-DFS_STATUS_EINVAL);
return 0;
}
rt_sem_take(part->lock, RT_WAITING_FOREVER);
err = rt_mmcsd_req_blk(blk_dev->card, part->offset + pos, (void *)buffer, size, 1);
rt_sem_release(part->lock);
/* the length of reading must align to SECTOR SIZE */
if (err)
{
rt_set_errno(-DFS_STATUS_EIO);
return 0;
}
return size;
}
static rt_int32_t mmcsd_set_blksize(struct rt_mmcsd_card *card)
{
struct rt_mmcsd_cmd cmd;
int err;
/* Block-addressed cards ignore MMC_SET_BLOCKLEN. */
if (card->flags & CARD_FLAG_SDHC)
return 0;
mmcsd_host_lock(card->host);
cmd.cmd_code = SET_BLOCKLEN;
cmd.arg = 512;
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_AC;
err = mmcsd_send_cmd(card->host, &cmd, 5);
mmcsd_host_unlock(card->host);
if (err)
{
rt_kprintf("MMCSD: unable to set block size to %d: %d\n", cmd.arg, err);
return -RT_ERROR;
}
return 0;
}
rt_int32_t rt_mmcsd_blk_probe(struct rt_mmcsd_card *card)
{
rt_int32_t err = 0;
rt_uint8_t i, status;
rt_uint8_t *sector;
char dname[4];
char sname[8];
struct mmcsd_blk_device *blk_dev = RT_NULL;
err = mmcsd_set_blksize(card);
if(err)
{
return err;
}
/* get the first sector to read partition table */
sector = (rt_uint8_t *) rt_malloc(SECTOR_SIZE);
if (sector == RT_NULL)
{
rt_kprintf("allocate partition sector buffer failed\n");
return -RT_ENOMEM;
}
status = rt_mmcsd_req_blk(card, 0, sector, 1, 0);
if (status == RT_EOK)
{
for(i=0; i < RT_MMCSD_MAX_PARTITION; i++)
{
blk_dev = rt_malloc(sizeof(struct mmcsd_blk_device));
if (!blk_dev)
{
rt_kprintf("mmcsd:malloc mem failde\n");
break;
}
rt_memset((void *)blk_dev, 0, sizeof(struct mmcsd_blk_device));
/* get the first partition */
status = dfs_filesystem_get_partition(&blk_dev->part, sector, i);
if (status == RT_EOK)
{
rt_snprintf(dname, 4, "sd%d", i);
rt_snprintf(sname, 8, "sem_sd%d", i);
blk_dev->part.lock = rt_sem_create(sname, 1, RT_IPC_FLAG_FIFO);
/* register mmcsd device */
blk_dev->dev.type = RT_Device_Class_Block;
blk_dev->dev.init = rt_mmcsd_init;
blk_dev->dev.open = rt_mmcsd_open;
blk_dev->dev.close = rt_mmcsd_close;
blk_dev->dev.read = rt_mmcsd_read;
blk_dev->dev.write = rt_mmcsd_write;
blk_dev->dev.control = rt_mmcsd_control;
blk_dev->dev.user_data = blk_dev;
blk_dev->card = card;
blk_dev->geometry.bytes_per_sector = 1<<9;
blk_dev->geometry.block_size = card->card_blksize;
blk_dev->geometry.sector_count = blk_dev->part.size;
rt_device_register(&blk_dev->dev, dname,
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
rt_list_insert_after(&blk_devices, &blk_dev->list);
}
else
{
if(i == 0)
{
/* there is no partition table */
blk_dev->part.offset = 0;
blk_dev->part.size = 0;
blk_dev->part.lock = rt_sem_create("sem_sd0", 1, RT_IPC_FLAG_FIFO);
/* register mmcsd device */
blk_dev->dev.type = RT_Device_Class_Block;
blk_dev->dev.init = rt_mmcsd_init;
blk_dev->dev.open = rt_mmcsd_open;
blk_dev->dev.close = rt_mmcsd_close;
blk_dev->dev.read = rt_mmcsd_read;
blk_dev->dev.write = rt_mmcsd_write;
blk_dev->dev.control = rt_mmcsd_control;
blk_dev->dev.user_data = blk_dev;
blk_dev->card = card;
blk_dev->geometry.bytes_per_sector = 1<<9;
blk_dev->geometry.block_size = card->card_blksize;
if (card->flags & CARD_FLAG_SDHC)
{
blk_dev->geometry.sector_count = (card->csd.c_size + 1) * 1024;
}
else
{
blk_dev->geometry.sector_count =
card->card_capacity * 1024 / 512;
}
rt_device_register(&blk_dev->dev, "sd0",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
rt_list_insert_after(&blk_devices, &blk_dev->list);
break;
}
else
{
rt_free(blk_dev);
blk_dev = RT_NULL;
break;
}
}
}
}
else
{
rt_kprintf("read mmcsd first sector failed\n");
err = -RT_ERROR;
}
/* release sector buffer */
rt_free(sector);
return err;
}
void rt_mmcsd_blk_remove(struct rt_mmcsd_card *card)
{
rt_list_t *l;
struct mmcsd_blk_device *blk_dev;
for (l = (&blk_devices)->next; l != &blk_devices; l = l->next)
{
blk_dev = (struct mmcsd_blk_device *)rt_list_entry(l, struct mmcsd_blk_device, list);
if (blk_dev->card == card)
{
rt_device_unregister(&blk_dev->dev);
rt_list_remove(&blk_dev->list);
rt_free(blk_dev);
}
}
}
void rt_mmcsd_blk_init(void)
{
rt_list_init(&blk_devices);
}