53be4393aa
* add rt1170 bsp * add rt1020 bsp
2479 lines
90 KiB
C
2479 lines
90 KiB
C
/*
|
|
* Copyright (c) 2015, Freescale Semiconductor, Inc.
|
|
* Copyright 2016-2021 NXP
|
|
* All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include "fsl_lpi2c.h"
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
/*******************************************************************************
|
|
* Definitions
|
|
******************************************************************************/
|
|
|
|
/* Component ID definition, used by tools. */
|
|
#ifndef FSL_COMPONENT_ID
|
|
#define FSL_COMPONENT_ID "platform.drivers.lpi2c"
|
|
#endif
|
|
|
|
/* ! @brief LPI2C master fifo commands. */
|
|
enum
|
|
{
|
|
kTxDataCmd = LPI2C_MTDR_CMD(0x0U), /*!< Transmit DATA[7:0] */
|
|
kRxDataCmd = LPI2C_MTDR_CMD(0X1U), /*!< Receive (DATA[7:0] + 1) bytes */
|
|
kStopCmd = LPI2C_MTDR_CMD(0x2U), /*!< Generate STOP condition */
|
|
kStartCmd = LPI2C_MTDR_CMD(0x4U), /*!< Generate(repeated) START and transmit address in DATA[[7:0] */
|
|
};
|
|
|
|
/*!
|
|
* @brief Default watermark values.
|
|
*
|
|
* The default watermarks are set to zero.
|
|
*/
|
|
enum
|
|
{
|
|
kDefaultTxWatermark = 0,
|
|
kDefaultRxWatermark = 0,
|
|
};
|
|
|
|
/*! @brief States for the state machine used by transactional APIs. */
|
|
enum
|
|
{
|
|
kIdleState = 0,
|
|
kSendCommandState,
|
|
kIssueReadCommandState,
|
|
kTransferDataState,
|
|
kStopState,
|
|
kWaitForCompletionState,
|
|
};
|
|
|
|
/*! @brief Typedef for slave interrupt handler. */
|
|
typedef void (*lpi2c_slave_isr_t)(LPI2C_Type *base, lpi2c_slave_handle_t *handle);
|
|
|
|
/*******************************************************************************
|
|
* Prototypes
|
|
******************************************************************************/
|
|
static uint32_t LPI2C_GetCyclesForWidth(
|
|
uint32_t sourceClock_Hz, uint32_t width_ns, uint32_t minCycles, uint32_t maxCycles, uint32_t prescaler);
|
|
|
|
static status_t LPI2C_MasterWaitForTxReady(LPI2C_Type *base);
|
|
|
|
static status_t LPI2C_RunTransferStateMachine(LPI2C_Type *base, lpi2c_master_handle_t *handle, bool *isDone);
|
|
|
|
static void LPI2C_InitTransferStateMachine(lpi2c_master_handle_t *handle);
|
|
|
|
static status_t LPI2C_SlaveCheckAndClearError(LPI2C_Type *base, uint32_t flags);
|
|
|
|
static void LPI2C_CommonIRQHandler(LPI2C_Type *base, uint32_t instance);
|
|
|
|
/*******************************************************************************
|
|
* Variables
|
|
******************************************************************************/
|
|
|
|
/*! @brief Array to map LPI2C instance number to base pointer. */
|
|
static LPI2C_Type *const kLpi2cBases[] = LPI2C_BASE_PTRS;
|
|
|
|
/*! @brief Array to map LPI2C instance number to IRQ number, used internally for LPI2C master interrupt and EDMA
|
|
transactional APIs. */
|
|
IRQn_Type const kLpi2cIrqs[] = LPI2C_IRQS;
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
/*! @brief Array to map LPI2C instance number to clock gate enum. */
|
|
static clock_ip_name_t const kLpi2cClocks[] = LPI2C_CLOCKS;
|
|
|
|
#if defined(LPI2C_PERIPH_CLOCKS)
|
|
/*! @brief Array to map LPI2C instance number to pheripheral clock gate enum. */
|
|
static const clock_ip_name_t kLpi2cPeriphClocks[] = LPI2C_PERIPH_CLOCKS;
|
|
#endif
|
|
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
|
|
/*! @brief Pointer to master IRQ handler for each instance, used internally for LPI2C master interrupt and EDMA
|
|
transactional APIs. */
|
|
lpi2c_master_isr_t s_lpi2cMasterIsr;
|
|
|
|
/*! @brief Pointers to master handles for each instance, used internally for LPI2C master interrupt and EDMA
|
|
transactional APIs. */
|
|
void *s_lpi2cMasterHandle[ARRAY_SIZE(kLpi2cBases)];
|
|
|
|
/*! @brief Pointer to slave IRQ handler for each instance. */
|
|
static lpi2c_slave_isr_t s_lpi2cSlaveIsr;
|
|
|
|
/*! @brief Pointers to slave handles for each instance. */
|
|
static lpi2c_slave_handle_t *s_lpi2cSlaveHandle[ARRAY_SIZE(kLpi2cBases)];
|
|
|
|
/*******************************************************************************
|
|
* Code
|
|
******************************************************************************/
|
|
|
|
/*!
|
|
* brief Returns an instance number given a base address.
|
|
*
|
|
* If an invalid base address is passed, debug builds will assert. Release builds will just return
|
|
* instance number 0.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
* return LPI2C instance number starting from 0.
|
|
*/
|
|
uint32_t LPI2C_GetInstance(LPI2C_Type *base)
|
|
{
|
|
uint32_t instance;
|
|
for (instance = 0U; instance < ARRAY_SIZE(kLpi2cBases); ++instance)
|
|
{
|
|
if (kLpi2cBases[instance] == base)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(instance < ARRAY_SIZE(kLpi2cBases));
|
|
return instance;
|
|
}
|
|
|
|
/*!
|
|
* @brief Computes a cycle count for a given time in nanoseconds.
|
|
* @param sourceClock_Hz LPI2C functional clock frequency in Hertz.
|
|
* @param width_ns Desired with in nanoseconds.
|
|
* @param minCycles Minimum cycle count.
|
|
* @param maxCycles Maximum cycle count.
|
|
* @param prescaler LPI2C prescaler setting. If the cycle period is not affected by the prescaler value, set it to 0.
|
|
*/
|
|
static uint32_t LPI2C_GetCyclesForWidth(
|
|
uint32_t sourceClock_Hz, uint32_t width_ns, uint32_t minCycles, uint32_t maxCycles, uint32_t prescaler)
|
|
{
|
|
assert(sourceClock_Hz > 0U);
|
|
|
|
uint32_t divider = 1U;
|
|
|
|
while (prescaler != 0U)
|
|
{
|
|
divider *= 2U;
|
|
prescaler--;
|
|
}
|
|
|
|
uint32_t busCycle_ns = 1000000U / (sourceClock_Hz / divider / 1000U);
|
|
/* Calculate the cycle count, round up the calculated value. */
|
|
uint32_t cycles = (width_ns * 10U / busCycle_ns + 5U) / 10U;
|
|
|
|
/* If the calculated value is smaller than the minimum value, use the minimum value */
|
|
if (cycles < minCycles)
|
|
{
|
|
cycles = minCycles;
|
|
}
|
|
/* If the calculated value is larger than the maximum value, use the maxmum value */
|
|
if (cycles > maxCycles)
|
|
{
|
|
cycles = maxCycles;
|
|
}
|
|
|
|
return cycles;
|
|
}
|
|
|
|
/*!
|
|
* @brief Convert provided flags to status code, and clear any errors if present.
|
|
* @param base The LPI2C peripheral base address.
|
|
* @param status Current status flags value that will be checked.
|
|
* @retval #kStatus_Success
|
|
* @retval #kStatus_LPI2C_PinLowTimeout
|
|
* @retval #kStatus_LPI2C_ArbitrationLost
|
|
* @retval #kStatus_LPI2C_Nak
|
|
* @retval #kStatus_LPI2C_FifoError
|
|
*/
|
|
/* Not static so it can be used from fsl_lpi2c_edma.c. */
|
|
status_t LPI2C_MasterCheckAndClearError(LPI2C_Type *base, uint32_t status)
|
|
{
|
|
status_t result = kStatus_Success;
|
|
|
|
/* Check for error. These errors cause a stop to automatically be sent. We must */
|
|
/* clear the errors before a new transfer can start. */
|
|
status &= (uint32_t)kLPI2C_MasterErrorFlags;
|
|
if (0U != status)
|
|
{
|
|
/* Select the correct error code. Ordered by severity, with bus issues first. */
|
|
if (0U != (status & (uint32_t)kLPI2C_MasterPinLowTimeoutFlag))
|
|
{
|
|
result = kStatus_LPI2C_PinLowTimeout;
|
|
}
|
|
else if (0U != (status & (uint32_t)kLPI2C_MasterArbitrationLostFlag))
|
|
{
|
|
result = kStatus_LPI2C_ArbitrationLost;
|
|
}
|
|
else if (0U != (status & (uint32_t)kLPI2C_MasterNackDetectFlag))
|
|
{
|
|
result = kStatus_LPI2C_Nak;
|
|
}
|
|
else if (0U != (status & (uint32_t)kLPI2C_MasterFifoErrFlag))
|
|
{
|
|
result = kStatus_LPI2C_FifoError;
|
|
}
|
|
else
|
|
{
|
|
; /* Intentional empty */
|
|
}
|
|
|
|
/* Clear the flags. */
|
|
LPI2C_MasterClearStatusFlags(base, status);
|
|
|
|
/* Reset fifos. These flags clear automatically. */
|
|
base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK;
|
|
}
|
|
else
|
|
{
|
|
; /* Intentional empty */
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* @brief Wait until there is room in the tx fifo.
|
|
* @param base The LPI2C peripheral base address.
|
|
* @retval #kStatus_Success
|
|
* @retval #kStatus_LPI2C_PinLowTimeout
|
|
* @retval #kStatus_LPI2C_ArbitrationLost
|
|
* @retval #kStatus_LPI2C_Nak
|
|
* @retval #kStatus_LPI2C_FifoError
|
|
*/
|
|
static status_t LPI2C_MasterWaitForTxReady(LPI2C_Type *base)
|
|
{
|
|
status_t result = kStatus_Success;
|
|
uint32_t status;
|
|
size_t txCount;
|
|
size_t txFifoSize = (size_t)FSL_FEATURE_LPI2C_FIFO_SIZEn(base);
|
|
|
|
#if I2C_RETRY_TIMES != 0U
|
|
uint32_t waitTimes = I2C_RETRY_TIMES;
|
|
#endif
|
|
do
|
|
{
|
|
/* Get the number of words in the tx fifo and compute empty slots. */
|
|
LPI2C_MasterGetFifoCounts(base, NULL, &txCount);
|
|
txCount = txFifoSize - txCount;
|
|
|
|
/* Check for error flags. */
|
|
status = LPI2C_MasterGetStatusFlags(base);
|
|
result = LPI2C_MasterCheckAndClearError(base, status);
|
|
if (kStatus_Success != result)
|
|
{
|
|
break;
|
|
}
|
|
#if I2C_RETRY_TIMES != 0U
|
|
waitTimes--;
|
|
} while ((0U == txCount) && (0U != waitTimes));
|
|
|
|
if (0U == waitTimes)
|
|
{
|
|
result = kStatus_LPI2C_Timeout;
|
|
}
|
|
#else
|
|
} while (0U == txCount);
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* @brief Make sure the bus isn't already busy.
|
|
*
|
|
* A busy bus is allowed if we are the one driving it.
|
|
*
|
|
* @param base The LPI2C peripheral base address.
|
|
* @retval #kStatus_Success
|
|
* @retval #kStatus_LPI2C_Busy
|
|
*/
|
|
/* Not static so it can be used from fsl_lpi2c_edma.c. */
|
|
status_t LPI2C_CheckForBusyBus(LPI2C_Type *base)
|
|
{
|
|
status_t ret = kStatus_Success;
|
|
|
|
uint32_t status = LPI2C_MasterGetStatusFlags(base);
|
|
if ((0U != (status & (uint32_t)kLPI2C_MasterBusBusyFlag)) && (0U == (status & (uint32_t)kLPI2C_MasterBusyFlag)))
|
|
{
|
|
ret = kStatus_LPI2C_Busy;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*!
|
|
* brief Provides a default configuration for the LPI2C master peripheral.
|
|
*
|
|
* This function provides the following default configuration for the LPI2C master peripheral:
|
|
* code
|
|
* masterConfig->enableMaster = true;
|
|
* masterConfig->debugEnable = false;
|
|
* masterConfig->ignoreAck = false;
|
|
* masterConfig->pinConfig = kLPI2C_2PinOpenDrain;
|
|
* masterConfig->baudRate_Hz = 100000U;
|
|
* masterConfig->busIdleTimeout_ns = 0U;
|
|
* masterConfig->pinLowTimeout_ns = 0U;
|
|
* masterConfig->sdaGlitchFilterWidth_ns = 0U;
|
|
* masterConfig->sclGlitchFilterWidth_ns = 0U;
|
|
* masterConfig->hostRequest.enable = false;
|
|
* masterConfig->hostRequest.source = kLPI2C_HostRequestExternalPin;
|
|
* masterConfig->hostRequest.polarity = kLPI2C_HostRequestPinActiveHigh;
|
|
* endcode
|
|
*
|
|
* After calling this function, you can override any settings in order to customize the configuration,
|
|
* prior to initializing the master driver with LPI2C_MasterInit().
|
|
*
|
|
* param[out] masterConfig User provided configuration structure for default values. Refer to #lpi2c_master_config_t.
|
|
*/
|
|
void LPI2C_MasterGetDefaultConfig(lpi2c_master_config_t *masterConfig)
|
|
{
|
|
/* Initializes the configure structure to zero. */
|
|
(void)memset(masterConfig, 0, sizeof(*masterConfig));
|
|
|
|
masterConfig->enableMaster = true;
|
|
masterConfig->debugEnable = false;
|
|
masterConfig->enableDoze = true;
|
|
masterConfig->ignoreAck = false;
|
|
masterConfig->pinConfig = kLPI2C_2PinOpenDrain;
|
|
masterConfig->baudRate_Hz = 100000U;
|
|
masterConfig->busIdleTimeout_ns = 0U; /* Set to 0 to disable the function */
|
|
masterConfig->pinLowTimeout_ns = 0U; /* Set to 0 to disable the function */
|
|
masterConfig->sdaGlitchFilterWidth_ns = 0U; /* Set to 0 to disable the function */
|
|
masterConfig->sclGlitchFilterWidth_ns = 0U; /* Set to 0 to disable the function */
|
|
masterConfig->hostRequest.enable = false;
|
|
masterConfig->hostRequest.source = kLPI2C_HostRequestExternalPin;
|
|
masterConfig->hostRequest.polarity = kLPI2C_HostRequestPinActiveHigh;
|
|
}
|
|
|
|
/*!
|
|
* brief Initializes the LPI2C master peripheral.
|
|
*
|
|
* This function enables the peripheral clock and initializes the LPI2C master peripheral as described by the user
|
|
* provided configuration. A software reset is performed prior to configuration.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
* param masterConfig User provided peripheral configuration. Use LPI2C_MasterGetDefaultConfig() to get a set of
|
|
* defaults
|
|
* that you can override.
|
|
* param sourceClock_Hz Frequency in Hertz of the LPI2C functional clock. Used to calculate the baud rate divisors,
|
|
* filter widths, and timeout periods.
|
|
*/
|
|
void LPI2C_MasterInit(LPI2C_Type *base, const lpi2c_master_config_t *masterConfig, uint32_t sourceClock_Hz)
|
|
{
|
|
uint32_t prescaler;
|
|
uint32_t cycles;
|
|
uint32_t cfgr2;
|
|
uint32_t value;
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
|
|
uint32_t instance = LPI2C_GetInstance(base);
|
|
|
|
/* Ungate the clock. */
|
|
(void)CLOCK_EnableClock(kLpi2cClocks[instance]);
|
|
#if defined(LPI2C_PERIPH_CLOCKS)
|
|
/* Ungate the functional clock in initialize function. */
|
|
CLOCK_EnableClock(kLpi2cPeriphClocks[instance]);
|
|
#endif
|
|
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
|
|
/* Reset peripheral before configuring it. */
|
|
LPI2C_MasterReset(base);
|
|
|
|
/* Doze bit: 0 is enable, 1 is disable */
|
|
base->MCR = LPI2C_MCR_DBGEN(masterConfig->debugEnable) | LPI2C_MCR_DOZEN(!(masterConfig->enableDoze));
|
|
|
|
/* host request */
|
|
value = base->MCFGR0;
|
|
value &= (~(LPI2C_MCFGR0_HREN_MASK | LPI2C_MCFGR0_HRPOL_MASK | LPI2C_MCFGR0_HRSEL_MASK));
|
|
value |= LPI2C_MCFGR0_HREN(masterConfig->hostRequest.enable) |
|
|
LPI2C_MCFGR0_HRPOL(masterConfig->hostRequest.polarity) |
|
|
LPI2C_MCFGR0_HRSEL(masterConfig->hostRequest.source);
|
|
base->MCFGR0 = value;
|
|
|
|
/* pin config and ignore ack */
|
|
value = base->MCFGR1;
|
|
value &= ~(LPI2C_MCFGR1_PINCFG_MASK | LPI2C_MCFGR1_IGNACK_MASK);
|
|
value |= LPI2C_MCFGR1_PINCFG(masterConfig->pinConfig);
|
|
value |= LPI2C_MCFGR1_IGNACK(masterConfig->ignoreAck);
|
|
base->MCFGR1 = value;
|
|
|
|
LPI2C_MasterSetWatermarks(base, (size_t)kDefaultTxWatermark, (size_t)kDefaultRxWatermark);
|
|
|
|
/* Configure glitch filters. */
|
|
cfgr2 = base->MCFGR2;
|
|
if (0U != (masterConfig->sdaGlitchFilterWidth_ns))
|
|
{
|
|
/* Calculate SDA filter width. The width is equal to FILTSDA cycles of functional clock.
|
|
And set FILTSDA to 0 disables the fileter, so the min value is 1. */
|
|
cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz, masterConfig->sdaGlitchFilterWidth_ns, 1U,
|
|
(LPI2C_MCFGR2_FILTSDA_MASK >> LPI2C_MCFGR2_FILTSDA_SHIFT), 0U);
|
|
cfgr2 &= ~LPI2C_MCFGR2_FILTSDA_MASK;
|
|
cfgr2 |= LPI2C_MCFGR2_FILTSDA(cycles);
|
|
}
|
|
if (0U != masterConfig->sclGlitchFilterWidth_ns)
|
|
{
|
|
/* Calculate SDL filter width. The width is equal to FILTSCL cycles of functional clock.
|
|
And set FILTSCL to 0 disables the fileter, so the min value is 1. */
|
|
cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz, masterConfig->sclGlitchFilterWidth_ns, 1U,
|
|
(LPI2C_MCFGR2_FILTSCL_MASK >> LPI2C_MCFGR2_FILTSCL_SHIFT), 0U);
|
|
cfgr2 &= ~LPI2C_MCFGR2_FILTSCL_MASK;
|
|
cfgr2 |= LPI2C_MCFGR2_FILTSCL(cycles);
|
|
}
|
|
base->MCFGR2 = cfgr2;
|
|
|
|
/* Configure baudrate after the SDA/SCL glitch filter setting,
|
|
since the baudrate calculation needs them as parameter. */
|
|
LPI2C_MasterSetBaudRate(base, sourceClock_Hz, masterConfig->baudRate_Hz);
|
|
|
|
/* Configure bus idle and pin low timeouts after baudrate setting,
|
|
since the timeout calculation needs prescaler as parameter. */
|
|
prescaler = (base->MCFGR1 & LPI2C_MCFGR1_PRESCALE_MASK) >> LPI2C_MCFGR1_PRESCALE_SHIFT;
|
|
|
|
if (0U != (masterConfig->busIdleTimeout_ns))
|
|
{
|
|
/* Calculate bus idle timeout value. The value is equal to BUSIDLE cycles of functional clock divided by
|
|
prescaler. And set BUSIDLE to 0 disables the fileter, so the min value is 1. */
|
|
cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz, masterConfig->busIdleTimeout_ns, 1U,
|
|
(LPI2C_MCFGR2_BUSIDLE_MASK >> LPI2C_MCFGR2_BUSIDLE_SHIFT), prescaler);
|
|
cfgr2 &= ~LPI2C_MCFGR2_BUSIDLE_MASK;
|
|
cfgr2 |= LPI2C_MCFGR2_BUSIDLE(cycles);
|
|
}
|
|
base->MCFGR2 = cfgr2;
|
|
if (0U != masterConfig->pinLowTimeout_ns)
|
|
{
|
|
/* Calculate bus pin low timeout value. The value is equal to PINLOW cycles of functional clock divided by
|
|
prescaler. And set PINLOW to 0 disables the fileter, so the min value is 1. */
|
|
cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz, masterConfig->pinLowTimeout_ns / 256U, 1U,
|
|
(LPI2C_MCFGR2_BUSIDLE_MASK >> LPI2C_MCFGR2_BUSIDLE_SHIFT), prescaler);
|
|
base->MCFGR3 = (base->MCFGR3 & ~LPI2C_MCFGR3_PINLOW_MASK) | LPI2C_MCFGR3_PINLOW(cycles);
|
|
}
|
|
|
|
LPI2C_MasterEnable(base, masterConfig->enableMaster);
|
|
}
|
|
|
|
/*!
|
|
* brief Deinitializes the LPI2C master peripheral.
|
|
*
|
|
* This function disables the LPI2C master peripheral and gates the clock. It also performs a software
|
|
* reset to restore the peripheral to reset conditions.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
*/
|
|
void LPI2C_MasterDeinit(LPI2C_Type *base)
|
|
{
|
|
/* Restore to reset state. */
|
|
LPI2C_MasterReset(base);
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
|
|
uint32_t instance = LPI2C_GetInstance(base);
|
|
|
|
/* Gate clock. */
|
|
(void)CLOCK_DisableClock(kLpi2cClocks[instance]);
|
|
#if defined(LPI2C_PERIPH_CLOCKS)
|
|
/* Gate the functional clock. */
|
|
CLOCK_DisableClock(kLpi2cPeriphClocks[instance]);
|
|
#endif
|
|
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
}
|
|
|
|
/*!
|
|
* brief Configures LPI2C master data match feature.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
* param matchConfig Settings for the data match feature.
|
|
*/
|
|
void LPI2C_MasterConfigureDataMatch(LPI2C_Type *base, const lpi2c_data_match_config_t *matchConfig)
|
|
{
|
|
/* Disable master mode. */
|
|
bool wasEnabled = (0U != ((base->MCR & LPI2C_MCR_MEN_MASK) >> LPI2C_MCR_MEN_SHIFT));
|
|
LPI2C_MasterEnable(base, false);
|
|
|
|
base->MCFGR1 = (base->MCFGR1 & ~LPI2C_MCFGR1_MATCFG_MASK) | LPI2C_MCFGR1_MATCFG(matchConfig->matchMode);
|
|
base->MCFGR0 = (base->MCFGR0 & ~LPI2C_MCFGR0_RDMO_MASK) | LPI2C_MCFGR0_RDMO(matchConfig->rxDataMatchOnly);
|
|
base->MDMR = LPI2C_MDMR_MATCH0(matchConfig->match0) | LPI2C_MDMR_MATCH1(matchConfig->match1);
|
|
|
|
/* Restore master mode. */
|
|
if (wasEnabled)
|
|
{
|
|
LPI2C_MasterEnable(base, true);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* brief Sets the I2C bus frequency for master transactions.
|
|
*
|
|
* The LPI2C master is automatically disabled and re-enabled as necessary to configure the baud
|
|
* rate. Do not call this function during a transfer, or the transfer is aborted.
|
|
*
|
|
* note Please note that the second parameter is the clock frequency of LPI2C module, the third
|
|
* parameter means user configured bus baudrate, this implementation is different from other I2C drivers
|
|
* which use baudrate configuration as second parameter and source clock frequency as third parameter.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
* param sourceClock_Hz LPI2C functional clock frequency in Hertz.
|
|
* param baudRate_Hz Requested bus frequency in Hertz.
|
|
*/
|
|
void LPI2C_MasterSetBaudRate(LPI2C_Type *base, uint32_t sourceClock_Hz, uint32_t baudRate_Hz)
|
|
{
|
|
bool wasEnabled;
|
|
uint8_t filtScl = (uint8_t)((base->MCFGR2 & LPI2C_MCFGR2_FILTSCL_MASK) >> LPI2C_MCFGR2_FILTSCL_SHIFT);
|
|
|
|
uint8_t divider = 1U;
|
|
uint8_t bestDivider = 1U;
|
|
uint8_t prescale = 0U;
|
|
uint8_t bestPre = 0U;
|
|
|
|
uint8_t clkCycle;
|
|
uint8_t bestclkCycle = 0U;
|
|
|
|
uint32_t absError = 0U;
|
|
uint32_t bestError = 0xffffffffu;
|
|
uint32_t computedRate;
|
|
|
|
uint32_t tmpReg = 0U;
|
|
|
|
/* Disable master mode. */
|
|
wasEnabled = (0U != ((base->MCR & LPI2C_MCR_MEN_MASK) >> LPI2C_MCR_MEN_SHIFT));
|
|
LPI2C_MasterEnable(base, false);
|
|
|
|
/* Baud rate = (sourceClock_Hz / 2 ^ prescale) / (CLKLO + 1 + CLKHI + 1 + SCL_LATENCY)
|
|
* SCL_LATENCY = ROUNDDOWN((2 + FILTSCL) / (2 ^ prescale))
|
|
*/
|
|
for (prescale = 0U; prescale <= 7U; prescale++)
|
|
{
|
|
/* Calculate the clkCycle, clkCycle = CLKLO + CLKHI, divider = 2 ^ prescale */
|
|
clkCycle = (uint8_t)((10U * sourceClock_Hz / divider / baudRate_Hz + 5U) / 10U - (2U + filtScl) / divider - 2U);
|
|
/* According to register description, The max value for CLKLO and CLKHI is 63.
|
|
however to meet the I2C specification of tBUF, CLKHI should be less than
|
|
clkCycle - 0.52 x sourceClock_Hz / baudRate_Hz / divider + 1U. Refer to the comment of the tmpHigh's
|
|
calculation for details. So we have:
|
|
CLKHI < clkCycle - 0.52 x sourceClock_Hz / baudRate_Hz / divider + 1U,
|
|
clkCycle = CLKHI + CLKLO and
|
|
sourceClock_Hz / baudRate_Hz / divider = clkCycle + 2 + ROUNDDOWN((2 + FILTSCL) / divider),
|
|
we can come up with: CLKHI < 0.92 x CLKLO - ROUNDDOWN(2 + FILTSCL) / divider
|
|
so the max boundary of CLKHI should be 0.92 x 63 - ROUNDDOWN(2 + FILTSCL) / divider,
|
|
and the max boundary of clkCycle is 1.92 x 63 - ROUNDDOWN(2 + FILTSCL) / divider. */
|
|
if (clkCycle > (120U - (2U + filtScl) / divider))
|
|
{
|
|
divider *= 2U;
|
|
continue;
|
|
}
|
|
/* Calculate the computed baudrate and compare it with the desired baudrate */
|
|
computedRate = (sourceClock_Hz / (uint32_t)divider) /
|
|
((uint32_t)clkCycle + 2U + (2U + (uint32_t)filtScl) / (uint32_t)divider);
|
|
absError = baudRate_Hz > computedRate ? baudRate_Hz - computedRate : computedRate - baudRate_Hz;
|
|
if (absError < bestError)
|
|
{
|
|
bestPre = prescale;
|
|
bestDivider = divider;
|
|
bestclkCycle = clkCycle;
|
|
bestError = absError;
|
|
|
|
/* If the error is 0, then we can stop searching because we won't find a better match. */
|
|
if (absError == 0U)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
divider *= 2U;
|
|
}
|
|
|
|
/* SCL low time tLO should be larger than or equal to SCL high time tHI:
|
|
tLO = ((CLKLO + 1) x (2 ^ PRESCALE)) >= tHI = ((CLKHI + 1 + SCL_LATENCY) x (2 ^ PRESCALE)),
|
|
which is CLKLO >= CLKHI + (2U + filtScl) / bestDivider.
|
|
Also since bestclkCycle = CLKLO + CLKHI, bestDivider = 2 ^ PRESCALE
|
|
which makes CLKHI <= (bestclkCycle - (2U + filtScl) / bestDivider) / 2U.
|
|
|
|
The max tBUF should be at least 0.52 times of the SCL clock cycle:
|
|
tBUF = ((CLKLO + 1) x (2 ^ PRESCALE) / sourceClock_Hz) > (0.52 / baudRate_Hz),
|
|
plus bestDivider = 2 ^ PRESCALE, bestclkCycle = CLKLO + CLKHI we can come up with
|
|
CLKHI <= (bestclkCycle - 0.52 x sourceClock_Hz / baudRate_Hz / bestDivider + 1U).
|
|
In this case to get a safe CLKHI calculation, we can assume:
|
|
*/
|
|
uint8_t tmpHigh = (bestclkCycle - (2U + filtScl) / bestDivider) / 2U;
|
|
while (tmpHigh > (bestclkCycle - 52U * sourceClock_Hz / baudRate_Hz / bestDivider / 100U + 1U))
|
|
{
|
|
tmpHigh = tmpHigh - 1U;
|
|
}
|
|
|
|
/* Calculate DATAVD and SETHOLD.
|
|
To meet the timing requirement of I2C spec for standard mode, fast mode and fast mode plus: */
|
|
/* The min tHD:STA/tSU:STA/tSU:STO should be at least 0.4 times of the SCL clock cycle, use 0.5 to be safe:
|
|
tHD:STA = ((SETHOLD + 1) x (2 ^ PRESCALE) / sourceClock_Hz) > (0.5 / baudRate_Hz), bestDivider = 2 ^ PRESCALE */
|
|
uint8_t tmpHold = (uint8_t)(sourceClock_Hz / baudRate_Hz / bestDivider / 2U) - 1U;
|
|
|
|
/* The max tVD:DAT/tVD:ACK/tHD:DAT should be at most 0.345 times of the SCL clock cycle, use 0.25 to be safe:
|
|
tVD:DAT = ((DATAVD + 1) x (2 ^ PRESCALE) / sourceClock_Hz) < (0.25 / baudRate_Hz), bestDivider = 2 ^ PRESCALE */
|
|
uint8_t tmpDataVd = (uint8_t)(sourceClock_Hz / baudRate_Hz / bestDivider / 4U) - 1U;
|
|
|
|
/* The min tSU:DAT should be at least 0.05 times of the SCL clock cycle:
|
|
tSU:DAT = ((2 + FILTSDA + 2 ^ PRESCALE) / sourceClock_Hz) >= (0.05 / baud),
|
|
plus bestDivider = 2 ^ PRESCALE, we can come up with:
|
|
FILTSDA >= (0.05 x sourceClock_Hz / baudRate_Hz - bestDivider - 2) */
|
|
if ((sourceClock_Hz / baudRate_Hz / 20U) > (bestDivider + 2U))
|
|
{
|
|
/* Read out the FILTSDA configuration, if it is smaller than expected, change the setting. */
|
|
uint8_t filtSda = (uint8_t)((base->MCFGR2 & LPI2C_MCFGR2_FILTSDA_MASK) >> LPI2C_MCFGR2_FILTSDA_SHIFT);
|
|
if (filtSda < (sourceClock_Hz / baudRate_Hz / 20U - bestDivider - 2U))
|
|
{
|
|
filtSda = (uint8_t)(sourceClock_Hz / baudRate_Hz / 20U) - bestDivider - 2U;
|
|
}
|
|
base->MCFGR2 = (base->MCFGR2 & ~LPI2C_MCFGR2_FILTSDA_MASK) | LPI2C_MCFGR2_FILTSDA(filtSda);
|
|
}
|
|
|
|
/* Set CLKHI, CLKLO, SETHOLD, DATAVD value. */
|
|
tmpReg = LPI2C_MCCR0_CLKHI((uint32_t)tmpHigh) |
|
|
LPI2C_MCCR0_CLKLO((uint32_t)((uint32_t)bestclkCycle - (uint32_t)tmpHigh)) |
|
|
LPI2C_MCCR0_SETHOLD((uint32_t)tmpHold) | LPI2C_MCCR0_DATAVD((uint32_t)tmpDataVd);
|
|
base->MCCR0 = tmpReg;
|
|
|
|
/* Set PRESCALE value. */
|
|
base->MCFGR1 = (base->MCFGR1 & ~LPI2C_MCFGR1_PRESCALE_MASK) | LPI2C_MCFGR1_PRESCALE(bestPre);
|
|
|
|
/* Restore master mode. */
|
|
if (wasEnabled)
|
|
{
|
|
LPI2C_MasterEnable(base, true);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* brief Sends a START signal and slave address on the I2C bus.
|
|
*
|
|
* This function is used to initiate a new master mode transfer. First, the bus state is checked to ensure
|
|
* that another master is not occupying the bus. Then a START signal is transmitted, followed by the
|
|
* 7-bit address specified in the a address parameter. Note that this function does not actually wait
|
|
* until the START and address are successfully sent on the bus before returning.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
* param address 7-bit slave device address, in bits [6:0].
|
|
* param dir Master transfer direction, either #kLPI2C_Read or #kLPI2C_Write. This parameter is used to set
|
|
* the R/w bit (bit 0) in the transmitted slave address.
|
|
* retval #kStatus_Success START signal and address were successfully enqueued in the transmit FIFO.
|
|
* retval #kStatus_LPI2C_Busy Another master is currently utilizing the bus.
|
|
*/
|
|
status_t LPI2C_MasterStart(LPI2C_Type *base, uint8_t address, lpi2c_direction_t dir)
|
|
{
|
|
/* Return an error if the bus is already in use not by us. */
|
|
status_t result = LPI2C_CheckForBusyBus(base);
|
|
if (kStatus_Success == result)
|
|
{
|
|
/* Clear all flags. */
|
|
LPI2C_MasterClearStatusFlags(base, (uint32_t)kLPI2C_MasterClearFlags);
|
|
|
|
/* Turn off auto-stop option. */
|
|
base->MCFGR1 &= ~LPI2C_MCFGR1_AUTOSTOP_MASK;
|
|
|
|
/* Wait until there is room in the fifo. */
|
|
result = LPI2C_MasterWaitForTxReady(base);
|
|
if (kStatus_Success == result)
|
|
{
|
|
/* Issue start command. */
|
|
base->MTDR = (uint32_t)kStartCmd | (((uint32_t)address << 1U) | (uint32_t)dir);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* brief Sends a STOP signal on the I2C bus.
|
|
*
|
|
* This function does not return until the STOP signal is seen on the bus, or an error occurs.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
* retval #kStatus_Success The STOP signal was successfully sent on the bus and the transaction terminated.
|
|
* retval #kStatus_LPI2C_Busy Another master is currently utilizing the bus.
|
|
* retval #kStatus_LPI2C_Nak The slave device sent a NAK in response to a byte.
|
|
* retval #kStatus_LPI2C_FifoError FIFO under run or overrun.
|
|
* retval #kStatus_LPI2C_ArbitrationLost Arbitration lost error.
|
|
* retval #kStatus_LPI2C_PinLowTimeout SCL or SDA were held low longer than the timeout.
|
|
*/
|
|
status_t LPI2C_MasterStop(LPI2C_Type *base)
|
|
{
|
|
/* Wait until there is room in the fifo. */
|
|
status_t result = LPI2C_MasterWaitForTxReady(base);
|
|
if (kStatus_Success == result)
|
|
{
|
|
/* Send the STOP signal */
|
|
base->MTDR = (uint32_t)kStopCmd;
|
|
|
|
/* Wait for the stop detected flag to set, indicating the transfer has completed on the bus. */
|
|
/* Also check for errors while waiting. */
|
|
#if I2C_RETRY_TIMES != 0U
|
|
uint32_t waitTimes = I2C_RETRY_TIMES;
|
|
#endif
|
|
|
|
#if I2C_RETRY_TIMES != 0U
|
|
while ((result == kStatus_Success) && (0U != waitTimes))
|
|
{
|
|
waitTimes--;
|
|
#else
|
|
while (result == kStatus_Success)
|
|
{
|
|
#endif
|
|
uint32_t status = LPI2C_MasterGetStatusFlags(base);
|
|
|
|
/* Check for error flags. */
|
|
result = LPI2C_MasterCheckAndClearError(base, status);
|
|
|
|
/* Check if the stop was sent successfully. */
|
|
if ((0U != (status & (uint32_t)kLPI2C_MasterStopDetectFlag)) &&
|
|
(0U != (status & (uint32_t)kLPI2C_MasterTxReadyFlag)))
|
|
{
|
|
LPI2C_MasterClearStatusFlags(base, (uint32_t)kLPI2C_MasterStopDetectFlag);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if I2C_RETRY_TIMES != 0U
|
|
if (0U == waitTimes)
|
|
{
|
|
result = kStatus_LPI2C_Timeout;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* brief Performs a polling receive transfer on the I2C bus.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
* param rxBuff The pointer to the data to be transferred.
|
|
* param rxSize The length in bytes of the data to be transferred.
|
|
* retval #kStatus_Success Data was received successfully.
|
|
* retval #kStatus_LPI2C_Busy Another master is currently utilizing the bus.
|
|
* retval #kStatus_LPI2C_Nak The slave device sent a NAK in response to a byte.
|
|
* retval #kStatus_LPI2C_FifoError FIFO under run or overrun.
|
|
* retval #kStatus_LPI2C_ArbitrationLost Arbitration lost error.
|
|
* retval #kStatus_LPI2C_PinLowTimeout SCL or SDA were held low longer than the timeout.
|
|
*/
|
|
status_t LPI2C_MasterReceive(LPI2C_Type *base, void *rxBuff, size_t rxSize)
|
|
{
|
|
assert(NULL != rxBuff);
|
|
|
|
status_t result = kStatus_Success;
|
|
uint8_t *buf;
|
|
size_t tmpRxSize = rxSize;
|
|
#if I2C_RETRY_TIMES != 0U
|
|
uint32_t waitTimes;
|
|
#endif
|
|
|
|
/* Check transfer data size. */
|
|
if (rxSize > (256UL * (uint32_t)FSL_FEATURE_LPI2C_FIFO_SIZEn(base)))
|
|
{
|
|
return kStatus_InvalidArgument;
|
|
}
|
|
|
|
/* Handle empty read. */
|
|
if (rxSize != 0U)
|
|
{
|
|
/* Wait until there is room in the command fifo. */
|
|
result = LPI2C_MasterWaitForTxReady(base);
|
|
if (kStatus_Success == result)
|
|
{
|
|
/* Issue command to receive data. A single write to MTDR can issue read operation of 0xFFU + 1 byte of data
|
|
at most, so when the rxSize is larger than 0x100U, push multiple read commands to MTDR until rxSize is
|
|
reached. */
|
|
while (tmpRxSize != 0U)
|
|
{
|
|
if (tmpRxSize > 256U)
|
|
{
|
|
base->MTDR = (uint32_t)(kRxDataCmd) | (uint32_t)LPI2C_MTDR_DATA(0xFFU);
|
|
tmpRxSize -= 256U;
|
|
}
|
|
else
|
|
{
|
|
base->MTDR = (uint32_t)(kRxDataCmd) | (uint32_t)LPI2C_MTDR_DATA(tmpRxSize - 1U);
|
|
tmpRxSize = 0U;
|
|
}
|
|
}
|
|
|
|
/* Receive data */
|
|
buf = (uint8_t *)rxBuff;
|
|
while (0U != (rxSize--))
|
|
{
|
|
#if I2C_RETRY_TIMES != 0U
|
|
waitTimes = I2C_RETRY_TIMES;
|
|
#endif
|
|
/* Read LPI2C receive fifo register. The register includes a flag to indicate whether */
|
|
/* the FIFO is empty, so we can both get the data and check if we need to keep reading */
|
|
/* using a single register read. */
|
|
uint32_t value = 0U;
|
|
do
|
|
{
|
|
/* Check for errors. */
|
|
result = LPI2C_MasterCheckAndClearError(base, LPI2C_MasterGetStatusFlags(base));
|
|
if (kStatus_Success != result)
|
|
{
|
|
break;
|
|
}
|
|
|
|
value = base->MRDR;
|
|
#if I2C_RETRY_TIMES != 0U
|
|
waitTimes--;
|
|
} while ((0U != (value & LPI2C_MRDR_RXEMPTY_MASK)) && (0U != waitTimes));
|
|
if (0U == waitTimes)
|
|
{
|
|
result = kStatus_LPI2C_Timeout;
|
|
}
|
|
#else
|
|
} while (0U != (value & LPI2C_MRDR_RXEMPTY_MASK));
|
|
#endif
|
|
if ((status_t)kStatus_Success != result)
|
|
{
|
|
break;
|
|
}
|
|
|
|
*buf++ = (uint8_t)(value & LPI2C_MRDR_DATA_MASK);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* brief Performs a polling send transfer on the I2C bus.
|
|
*
|
|
* Sends up to a txSize number of bytes to the previously addressed slave device. The slave may
|
|
* reply with a NAK to any byte in order to terminate the transfer early. If this happens, this
|
|
* function returns #kStatus_LPI2C_Nak.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
* param txBuff The pointer to the data to be transferred.
|
|
* param txSize The length in bytes of the data to be transferred.
|
|
* retval #kStatus_Success Data was sent successfully.
|
|
* retval #kStatus_LPI2C_Busy Another master is currently utilizing the bus.
|
|
* retval #kStatus_LPI2C_Nak The slave device sent a NAK in response to a byte.
|
|
* retval #kStatus_LPI2C_FifoError FIFO under run or over run.
|
|
* retval #kStatus_LPI2C_ArbitrationLost Arbitration lost error.
|
|
* retval #kStatus_LPI2C_PinLowTimeout SCL or SDA were held low longer than the timeout.
|
|
*/
|
|
status_t LPI2C_MasterSend(LPI2C_Type *base, void *txBuff, size_t txSize)
|
|
{
|
|
status_t result = kStatus_Success;
|
|
uint8_t *buf = (uint8_t *)txBuff;
|
|
|
|
assert(NULL != txBuff);
|
|
|
|
/* Send data buffer */
|
|
while (0U != (txSize--))
|
|
{
|
|
/* Wait until there is room in the fifo. This also checks for errors. */
|
|
result = LPI2C_MasterWaitForTxReady(base);
|
|
if (kStatus_Success != result)
|
|
{
|
|
break;
|
|
}
|
|
|
|
/* Write byte into LPI2C master data register. */
|
|
base->MTDR = *buf++;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* brief Performs a master polling transfer on the I2C bus.
|
|
*
|
|
* note The API does not return until the transfer succeeds or fails due
|
|
* to error happens during transfer.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
* param transfer Pointer to the transfer structure.
|
|
* retval #kStatus_Success Data was received successfully.
|
|
* retval #kStatus_LPI2C_Busy Another master is currently utilizing the bus.
|
|
* retval #kStatus_LPI2C_Nak The slave device sent a NAK in response to a byte.
|
|
* retval #kStatus_LPI2C_FifoError FIFO under run or overrun.
|
|
* retval #kStatus_LPI2C_ArbitrationLost Arbitration lost error.
|
|
* retval #kStatus_LPI2C_PinLowTimeout SCL or SDA were held low longer than the timeout.
|
|
*/
|
|
status_t LPI2C_MasterTransferBlocking(LPI2C_Type *base, lpi2c_master_transfer_t *transfer)
|
|
{
|
|
assert(NULL != transfer);
|
|
assert(transfer->subaddressSize <= sizeof(transfer->subaddress));
|
|
|
|
status_t result = kStatus_Success;
|
|
uint16_t commandBuffer[7];
|
|
uint32_t cmdCount = 0U;
|
|
|
|
/* Check transfer data size in read operation. */
|
|
if ((transfer->direction == kLPI2C_Read) &&
|
|
(transfer->dataSize > (256UL * (uint32_t)FSL_FEATURE_LPI2C_FIFO_SIZEn(base))))
|
|
{
|
|
return kStatus_InvalidArgument;
|
|
}
|
|
|
|
/* Return an error if the bus is already in use not by us. */
|
|
result = LPI2C_CheckForBusyBus(base);
|
|
if (kStatus_Success == result)
|
|
{
|
|
/* Clear all flags. */
|
|
LPI2C_MasterClearStatusFlags(base, (uint32_t)kLPI2C_MasterClearFlags);
|
|
|
|
/* Turn off auto-stop option. */
|
|
base->MCFGR1 &= ~LPI2C_MCFGR1_AUTOSTOP_MASK;
|
|
|
|
lpi2c_direction_t direction = (0U != transfer->subaddressSize) ? kLPI2C_Write : transfer->direction;
|
|
if (0U == (transfer->flags & (uint32_t)kLPI2C_TransferNoStartFlag))
|
|
{
|
|
commandBuffer[cmdCount++] =
|
|
(uint16_t)kStartCmd |
|
|
(uint16_t)((uint16_t)((uint16_t)transfer->slaveAddress << 1U) | (uint16_t)direction);
|
|
}
|
|
|
|
/* Subaddress, MSB first. */
|
|
if (0U != transfer->subaddressSize)
|
|
{
|
|
uint32_t subaddressRemaining = transfer->subaddressSize;
|
|
while (0U != subaddressRemaining--)
|
|
{
|
|
uint8_t subaddressByte = (uint8_t)((transfer->subaddress >> (8U * subaddressRemaining)) & 0xffU);
|
|
commandBuffer[cmdCount++] = subaddressByte;
|
|
}
|
|
}
|
|
|
|
/* Reads need special handling. */
|
|
if ((0U != transfer->dataSize) && (transfer->direction == kLPI2C_Read))
|
|
{
|
|
/* Need to send repeated start if switching directions to read. */
|
|
if (direction == kLPI2C_Write)
|
|
{
|
|
commandBuffer[cmdCount++] =
|
|
(uint16_t)kStartCmd |
|
|
(uint16_t)((uint16_t)((uint16_t)transfer->slaveAddress << 1U) | (uint16_t)kLPI2C_Read);
|
|
}
|
|
}
|
|
|
|
/* Send command buffer */
|
|
uint32_t index = 0U;
|
|
while (0U != cmdCount--)
|
|
{
|
|
/* Wait until there is room in the fifo. This also checks for errors. */
|
|
result = LPI2C_MasterWaitForTxReady(base);
|
|
if (kStatus_Success != result)
|
|
{
|
|
break;
|
|
}
|
|
|
|
/* Write byte into LPI2C master data register. */
|
|
base->MTDR = commandBuffer[index];
|
|
index++;
|
|
}
|
|
|
|
if (kStatus_Success == result)
|
|
{
|
|
/* Transmit data. */
|
|
if ((transfer->direction == kLPI2C_Write) && (transfer->dataSize > 0U))
|
|
{
|
|
/* Send Data. */
|
|
result = LPI2C_MasterSend(base, transfer->data, transfer->dataSize);
|
|
}
|
|
|
|
/* Receive Data. */
|
|
if ((transfer->direction == kLPI2C_Read) && (transfer->dataSize > 0U))
|
|
{
|
|
result = LPI2C_MasterReceive(base, transfer->data, transfer->dataSize);
|
|
}
|
|
|
|
if (kStatus_Success == result)
|
|
{
|
|
if ((transfer->flags & (uint32_t)kLPI2C_TransferNoStopFlag) == 0U)
|
|
{
|
|
result = LPI2C_MasterStop(base);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* brief Creates a new handle for the LPI2C master non-blocking APIs.
|
|
*
|
|
* The creation of a handle is for use with the non-blocking APIs. Once a handle
|
|
* is created, there is not a corresponding destroy handle. If the user wants to
|
|
* terminate a transfer, the LPI2C_MasterTransferAbort() API shall be called.
|
|
*
|
|
*
|
|
* note The function also enables the NVIC IRQ for the input LPI2C. Need to notice
|
|
* that on some SoCs the LPI2C IRQ is connected to INTMUX, in this case user needs to
|
|
* enable the associated INTMUX IRQ in application.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
* param[out] handle Pointer to the LPI2C master driver handle.
|
|
* param callback User provided pointer to the asynchronous callback function.
|
|
* param userData User provided pointer to the application callback data.
|
|
*/
|
|
void LPI2C_MasterTransferCreateHandle(LPI2C_Type *base,
|
|
lpi2c_master_handle_t *handle,
|
|
lpi2c_master_transfer_callback_t callback,
|
|
void *userData)
|
|
{
|
|
uint32_t instance;
|
|
|
|
assert(NULL != handle);
|
|
|
|
/* Clear out the handle. */
|
|
(void)memset(handle, 0, sizeof(*handle));
|
|
|
|
/* Look up instance number */
|
|
instance = LPI2C_GetInstance(base);
|
|
|
|
/* Save base and instance. */
|
|
handle->completionCallback = callback;
|
|
handle->userData = userData;
|
|
|
|
/* Save this handle for IRQ use. */
|
|
s_lpi2cMasterHandle[instance] = handle;
|
|
|
|
/* Set irq handler. */
|
|
s_lpi2cMasterIsr = LPI2C_MasterTransferHandleIRQ;
|
|
|
|
/* Clear internal IRQ enables and enable NVIC IRQ. */
|
|
LPI2C_MasterDisableInterrupts(base, (uint32_t)kLPI2C_MasterIrqFlags);
|
|
|
|
/* Enable NVIC IRQ, this only enables the IRQ directly connected to the NVIC.
|
|
In some cases the LPI2C IRQ is configured through INTMUX, user needs to enable
|
|
INTMUX IRQ in application code. */
|
|
(void)EnableIRQ(kLpi2cIrqs[instance]);
|
|
}
|
|
|
|
/*!
|
|
* @brief Execute states until FIFOs are exhausted.
|
|
* @param handle Master nonblocking driver handle.
|
|
* @param[out] isDone Set to true if the transfer has completed.
|
|
* @retval #kStatus_Success
|
|
* @retval #kStatus_LPI2C_PinLowTimeout
|
|
* @retval #kStatus_LPI2C_ArbitrationLost
|
|
* @retval #kStatus_LPI2C_Nak
|
|
* @retval #kStatus_LPI2C_FifoError
|
|
*/
|
|
static status_t LPI2C_RunTransferStateMachine(LPI2C_Type *base, lpi2c_master_handle_t *handle, bool *isDone)
|
|
{
|
|
uint32_t status;
|
|
status_t result = kStatus_Success;
|
|
lpi2c_master_transfer_t *xfer;
|
|
size_t txCount;
|
|
size_t rxCount;
|
|
size_t txFifoSize = (size_t)FSL_FEATURE_LPI2C_FIFO_SIZEn(base);
|
|
bool state_complete = false;
|
|
uint16_t sendval;
|
|
|
|
/* Set default isDone return value. */
|
|
*isDone = false;
|
|
|
|
/* Check for errors. */
|
|
status = LPI2C_MasterGetStatusFlags(base);
|
|
|
|
/* Get fifo counts. */
|
|
LPI2C_MasterGetFifoCounts(base, &rxCount, &txCount);
|
|
|
|
/* Get pointer to private data. */
|
|
xfer = &handle->transfer;
|
|
|
|
/* For the last byte, nack flag is expected.
|
|
Do not check and clear kLPI2C_MasterNackDetectFlag for the last byte,
|
|
in case FIFO is emptied when stop command has not been sent. */
|
|
if (handle->remainingBytes == 0U)
|
|
{
|
|
/* When data size is not zero which means it is not only one byte of address is sent, and */
|
|
/* when the txfifo is empty, or have one byte which is the stop command, then the nack status can be ignored. */
|
|
if ((xfer->dataSize != 0U) &&
|
|
((txCount == 0U) || ((txCount == 1U) && (handle->state == (uint8_t)kWaitForCompletionState) &&
|
|
((xfer->flags & (uint32_t)kLPI2C_TransferNoStopFlag) == 0U))))
|
|
{
|
|
status &= ~(uint32_t)kLPI2C_MasterNackDetectFlag;
|
|
}
|
|
}
|
|
|
|
result = LPI2C_MasterCheckAndClearError(base, status);
|
|
|
|
if (kStatus_Success == result)
|
|
{
|
|
/* Compute room in tx fifo */
|
|
txCount = txFifoSize - txCount;
|
|
|
|
while (!state_complete)
|
|
{
|
|
/* Execute the state. */
|
|
switch (handle->state)
|
|
{
|
|
case (uint8_t)kSendCommandState:
|
|
/* Make sure there is room in the tx fifo for the next command. */
|
|
if (0U == txCount--)
|
|
{
|
|
state_complete = true;
|
|
break;
|
|
}
|
|
|
|
/* Issue command. buf is a uint8_t* pointing at the uint16 command array. */
|
|
sendval = ((uint16_t)handle->buf[0]) | (((uint16_t)handle->buf[1]) << 8U);
|
|
base->MTDR = sendval;
|
|
handle->buf++;
|
|
handle->buf++;
|
|
|
|
/* Count down until all commands are sent. */
|
|
if (--handle->remainingBytes == 0U)
|
|
{
|
|
/* Choose next state and set up buffer pointer and count. */
|
|
if (0U != xfer->dataSize)
|
|
{
|
|
/* Either a send or receive transfer is next. */
|
|
handle->state = (uint8_t)kTransferDataState;
|
|
handle->buf = (uint8_t *)xfer->data;
|
|
handle->remainingBytes = (uint16_t)xfer->dataSize;
|
|
if (xfer->direction == kLPI2C_Read)
|
|
{
|
|
/* Disable TX interrupt */
|
|
LPI2C_MasterDisableInterrupts(base, (uint32_t)kLPI2C_MasterTxReadyFlag);
|
|
/* Issue command to receive data. A single write to MTDR can issue read operation of
|
|
0xFFU + 1 byte of data at most, so when the dataSize is larger than 0x100U, push
|
|
multiple read commands to MTDR until dataSize is reached. */
|
|
size_t tmpRxSize = xfer->dataSize;
|
|
while (tmpRxSize != 0U)
|
|
{
|
|
LPI2C_MasterGetFifoCounts(base, NULL, &txCount);
|
|
while (txFifoSize == txCount)
|
|
{
|
|
LPI2C_MasterGetFifoCounts(base, NULL, &txCount);
|
|
}
|
|
|
|
if (tmpRxSize > 256U)
|
|
{
|
|
base->MTDR = (uint32_t)(kRxDataCmd) | (uint32_t)LPI2C_MTDR_DATA(0xFFU);
|
|
tmpRxSize -= 256U;
|
|
}
|
|
else
|
|
{
|
|
base->MTDR = (uint32_t)(kRxDataCmd) | (uint32_t)LPI2C_MTDR_DATA(tmpRxSize - 1U);
|
|
tmpRxSize = 0U;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* No transfer, so move to stop state. */
|
|
handle->state = (uint8_t)kStopState;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case (uint8_t)kIssueReadCommandState:
|
|
/* Make sure there is room in the tx fifo for the read command. */
|
|
if (0U == txCount--)
|
|
{
|
|
state_complete = true;
|
|
break;
|
|
}
|
|
|
|
base->MTDR = (uint32_t)kRxDataCmd | LPI2C_MTDR_DATA(xfer->dataSize - 1U);
|
|
|
|
/* Move to transfer state. */
|
|
handle->state = (uint8_t)kTransferDataState;
|
|
if (xfer->direction == kLPI2C_Read)
|
|
{
|
|
/* Disable TX interrupt */
|
|
LPI2C_MasterDisableInterrupts(base, (uint32_t)kLPI2C_MasterTxReadyFlag);
|
|
}
|
|
break;
|
|
|
|
case (uint8_t)kTransferDataState:
|
|
if (xfer->direction == kLPI2C_Write)
|
|
{
|
|
/* Make sure there is room in the tx fifo. */
|
|
if (0U == txCount--)
|
|
{
|
|
state_complete = true;
|
|
break;
|
|
}
|
|
|
|
/* Put byte to send in fifo. */
|
|
base->MTDR = *(handle->buf)++;
|
|
}
|
|
else
|
|
{
|
|
/* XXX handle receive sizes > 256, use kIssueReadCommandState */
|
|
/* Make sure there is data in the rx fifo. */
|
|
if (0U == rxCount--)
|
|
{
|
|
state_complete = true;
|
|
break;
|
|
}
|
|
|
|
/* Read byte from fifo. */
|
|
*(handle->buf)++ = (uint8_t)(base->MRDR & LPI2C_MRDR_DATA_MASK);
|
|
}
|
|
|
|
/* Move to stop when the transfer is done. */
|
|
if (--handle->remainingBytes == 0U)
|
|
{
|
|
if (xfer->direction == kLPI2C_Write)
|
|
{
|
|
state_complete = true;
|
|
}
|
|
handle->state = (uint8_t)kStopState;
|
|
}
|
|
break;
|
|
|
|
case (uint8_t)kStopState:
|
|
/* Only issue a stop transition if the caller requested it. */
|
|
if ((xfer->flags & (uint32_t)kLPI2C_TransferNoStopFlag) == 0U)
|
|
{
|
|
/* Make sure there is room in the tx fifo for the stop command. */
|
|
if (0U == txCount--)
|
|
{
|
|
state_complete = true;
|
|
break;
|
|
}
|
|
|
|
base->MTDR = (uint32_t)kStopCmd;
|
|
}
|
|
else
|
|
{
|
|
/* If all data is read and no stop flag is required to send, we are done. */
|
|
if (xfer->direction == kLPI2C_Read)
|
|
{
|
|
*isDone = true;
|
|
}
|
|
state_complete = true;
|
|
}
|
|
handle->state = (uint8_t)kWaitForCompletionState;
|
|
break;
|
|
|
|
case (uint8_t)kWaitForCompletionState:
|
|
if ((xfer->flags & (uint32_t)kLPI2C_TransferNoStopFlag) == 0U)
|
|
{
|
|
/* We stay in this state until the stop state is detected. */
|
|
if (0U != (status & (uint32_t)kLPI2C_MasterStopDetectFlag))
|
|
{
|
|
*isDone = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If all data is pushed to FIFO and no stop flag is required to send, we need to make sure they
|
|
are all send out to bus. */
|
|
if ((xfer->direction == kLPI2C_Write) && ((base->MFSR & LPI2C_MFSR_TXCOUNT_MASK) == 0U))
|
|
{
|
|
/* We stay in this state until the data is sent out to bus. */
|
|
*isDone = true;
|
|
}
|
|
}
|
|
state_complete = true;
|
|
break;
|
|
default:
|
|
assert(false);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* @brief Prepares the transfer state machine and fills in the command buffer.
|
|
* @param handle Master nonblocking driver handle.
|
|
*/
|
|
static void LPI2C_InitTransferStateMachine(lpi2c_master_handle_t *handle)
|
|
{
|
|
lpi2c_master_transfer_t *xfer = &handle->transfer;
|
|
|
|
/* Handle no start option. */
|
|
if (0U != (xfer->flags & (uint32_t)kLPI2C_TransferNoStartFlag))
|
|
{
|
|
if (xfer->direction == kLPI2C_Read)
|
|
{
|
|
/* Need to issue read command first. */
|
|
handle->state = (uint8_t)kIssueReadCommandState;
|
|
}
|
|
else
|
|
{
|
|
/* Start immediately in the data transfer state. */
|
|
handle->state = (uint8_t)kTransferDataState;
|
|
}
|
|
|
|
handle->buf = (uint8_t *)xfer->data;
|
|
handle->remainingBytes = (uint16_t)xfer->dataSize;
|
|
}
|
|
else
|
|
{
|
|
uint16_t *cmd = (uint16_t *)&handle->commandBuffer;
|
|
uint32_t cmdCount = 0U;
|
|
|
|
/* Initial direction depends on whether a subaddress was provided, and of course the actual */
|
|
/* data transfer direction. */
|
|
lpi2c_direction_t direction = (0U != xfer->subaddressSize) ? kLPI2C_Write : xfer->direction;
|
|
|
|
/* Start command. */
|
|
cmd[cmdCount++] =
|
|
(uint16_t)kStartCmd | (uint16_t)((uint16_t)((uint16_t)xfer->slaveAddress << 1U) | (uint16_t)direction);
|
|
|
|
/* Subaddress, MSB first. */
|
|
if (0U != xfer->subaddressSize)
|
|
{
|
|
uint32_t subaddressRemaining = xfer->subaddressSize;
|
|
while (0U != (subaddressRemaining--))
|
|
{
|
|
uint8_t subaddressByte = (uint8_t)((xfer->subaddress >> (8U * subaddressRemaining)) & 0xffU);
|
|
cmd[cmdCount++] = subaddressByte;
|
|
}
|
|
}
|
|
|
|
/* Reads need special handling. */
|
|
if ((0U != xfer->dataSize) && (xfer->direction == kLPI2C_Read))
|
|
{
|
|
/* Need to send repeated start if switching directions to read. */
|
|
if (direction == kLPI2C_Write)
|
|
{
|
|
cmd[cmdCount++] = (uint16_t)kStartCmd |
|
|
(uint16_t)((uint16_t)((uint16_t)xfer->slaveAddress << 1U) | (uint16_t)kLPI2C_Read);
|
|
}
|
|
}
|
|
|
|
/* Set up state machine for transferring the commands. */
|
|
handle->state = (uint8_t)kSendCommandState;
|
|
handle->remainingBytes = (uint16_t)cmdCount;
|
|
handle->buf = (uint8_t *)&handle->commandBuffer;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* brief Performs a non-blocking transaction on the I2C bus.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
* param handle Pointer to the LPI2C master driver handle.
|
|
* param transfer The pointer to the transfer descriptor.
|
|
* retval #kStatus_Success The transaction was started successfully.
|
|
* retval #kStatus_LPI2C_Busy Either another master is currently utilizing the bus, or a non-blocking
|
|
* transaction is already in progress.
|
|
*/
|
|
status_t LPI2C_MasterTransferNonBlocking(LPI2C_Type *base,
|
|
lpi2c_master_handle_t *handle,
|
|
lpi2c_master_transfer_t *transfer)
|
|
{
|
|
assert(NULL != handle);
|
|
assert(NULL != transfer);
|
|
assert(transfer->subaddressSize <= sizeof(transfer->subaddress));
|
|
|
|
status_t result;
|
|
|
|
/* Check transfer data size in read operation. */
|
|
if ((transfer->direction == kLPI2C_Read) &&
|
|
(transfer->dataSize > (256U * (uint32_t)FSL_FEATURE_LPI2C_FIFO_SIZEn(base))))
|
|
{
|
|
return kStatus_InvalidArgument;
|
|
}
|
|
|
|
/* Return busy if another transaction is in progress. */
|
|
if (handle->state != (uint8_t)kIdleState)
|
|
{
|
|
result = kStatus_LPI2C_Busy;
|
|
}
|
|
else
|
|
{
|
|
result = LPI2C_CheckForBusyBus(base);
|
|
}
|
|
|
|
if ((status_t)kStatus_Success == result)
|
|
{
|
|
/* Disable LPI2C IRQ sources while we configure stuff. */
|
|
LPI2C_MasterDisableInterrupts(base, (uint32_t)kLPI2C_MasterIrqFlags);
|
|
|
|
/* Reset FIFO in case there are data. */
|
|
base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK;
|
|
|
|
/* Save transfer into handle. */
|
|
handle->transfer = *transfer;
|
|
|
|
/* Generate commands to send. */
|
|
LPI2C_InitTransferStateMachine(handle);
|
|
|
|
/* Clear all flags. */
|
|
LPI2C_MasterClearStatusFlags(base, (uint32_t)kLPI2C_MasterClearFlags);
|
|
|
|
/* Turn off auto-stop option. */
|
|
base->MCFGR1 &= ~LPI2C_MCFGR1_AUTOSTOP_MASK;
|
|
|
|
/* Enable LPI2C internal IRQ sources. NVIC IRQ was enabled in CreateHandle() */
|
|
LPI2C_MasterEnableInterrupts(base, (uint32_t)kLPI2C_MasterIrqFlags);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* brief Returns number of bytes transferred so far.
|
|
* param base The LPI2C peripheral base address.
|
|
* param handle Pointer to the LPI2C master driver handle.
|
|
* param[out] count Number of bytes transferred so far by the non-blocking transaction.
|
|
* retval #kStatus_Success
|
|
* retval #kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
|
|
*/
|
|
status_t LPI2C_MasterTransferGetCount(LPI2C_Type *base, lpi2c_master_handle_t *handle, size_t *count)
|
|
{
|
|
status_t result = kStatus_Success;
|
|
|
|
assert(NULL != handle);
|
|
|
|
if (NULL == count)
|
|
{
|
|
result = kStatus_InvalidArgument;
|
|
}
|
|
|
|
/* Catch when there is not an active transfer. */
|
|
else if (handle->state == (uint8_t)kIdleState)
|
|
{
|
|
*count = 0;
|
|
result = kStatus_NoTransferInProgress;
|
|
}
|
|
else
|
|
{
|
|
uint8_t state;
|
|
uint16_t remainingBytes;
|
|
uint32_t dataSize;
|
|
|
|
/* Cache some fields with IRQs disabled. This ensures all field values */
|
|
/* are synchronized with each other during an ongoing transfer. */
|
|
uint32_t irqs = LPI2C_MasterGetEnabledInterrupts(base);
|
|
LPI2C_MasterDisableInterrupts(base, irqs);
|
|
state = handle->state;
|
|
remainingBytes = handle->remainingBytes;
|
|
dataSize = handle->transfer.dataSize;
|
|
LPI2C_MasterEnableInterrupts(base, irqs);
|
|
|
|
/* Get transfer count based on current transfer state. */
|
|
switch (state)
|
|
{
|
|
case (uint8_t)kIdleState:
|
|
case (uint8_t)kSendCommandState:
|
|
case (uint8_t)
|
|
kIssueReadCommandState: /* XXX return correct value for this state when >256 reads are supported */
|
|
*count = 0;
|
|
break;
|
|
|
|
case (uint8_t)kTransferDataState:
|
|
*count = dataSize - remainingBytes;
|
|
break;
|
|
|
|
case (uint8_t)kStopState:
|
|
case (uint8_t)kWaitForCompletionState:
|
|
default:
|
|
*count = dataSize;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* brief Terminates a non-blocking LPI2C master transmission early.
|
|
*
|
|
* note It is not safe to call this function from an IRQ handler that has a higher priority than the
|
|
* LPI2C peripheral's IRQ priority.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
* param handle Pointer to the LPI2C master driver handle.
|
|
* retval #kStatus_Success A transaction was successfully aborted.
|
|
* retval #kStatus_LPI2C_Idle There is not a non-blocking transaction currently in progress.
|
|
*/
|
|
void LPI2C_MasterTransferAbort(LPI2C_Type *base, lpi2c_master_handle_t *handle)
|
|
{
|
|
if (handle->state != (uint8_t)kIdleState)
|
|
{
|
|
/* Disable internal IRQ enables. */
|
|
LPI2C_MasterDisableInterrupts(base, (uint32_t)kLPI2C_MasterIrqFlags);
|
|
|
|
/* Reset fifos. */
|
|
base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK;
|
|
|
|
/* If master is still busy and has not send out stop signal yet. */
|
|
if ((LPI2C_MasterGetStatusFlags(base) & ((uint32_t)kLPI2C_MasterStopDetectFlag |
|
|
(uint32_t)kLPI2C_MasterBusyFlag)) == (uint32_t)kLPI2C_MasterBusyFlag)
|
|
{
|
|
/* Send a stop command to finalize the transfer. */
|
|
base->MTDR = (uint32_t)kStopCmd;
|
|
}
|
|
|
|
/* Reset handle. */
|
|
handle->state = (uint8_t)kIdleState;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* brief Reusable routine to handle master interrupts.
|
|
* note This function does not need to be called unless you are reimplementing the
|
|
* nonblocking API's interrupt handler routines to add special functionality.
|
|
* param base The LPI2C peripheral base address.
|
|
* param lpi2cMasterHandle Pointer to the LPI2C master driver handle.
|
|
*/
|
|
void LPI2C_MasterTransferHandleIRQ(LPI2C_Type *base, void *lpi2cMasterHandle)
|
|
{
|
|
assert(lpi2cMasterHandle != NULL);
|
|
|
|
lpi2c_master_handle_t *handle = (lpi2c_master_handle_t *)lpi2cMasterHandle;
|
|
bool isDone = false;
|
|
status_t result;
|
|
|
|
/* Don't do anything if we don't have a valid handle. */
|
|
if (NULL != handle)
|
|
{
|
|
if (handle->state != (uint8_t)kIdleState)
|
|
{
|
|
result = LPI2C_RunTransferStateMachine(base, handle, &isDone);
|
|
|
|
if ((result != kStatus_Success) || isDone)
|
|
{
|
|
/* Handle error, terminate xfer */
|
|
if (result != kStatus_Success)
|
|
{
|
|
LPI2C_MasterTransferAbort(base, handle);
|
|
}
|
|
|
|
/* Disable internal IRQ enables. */
|
|
LPI2C_MasterDisableInterrupts(base, (uint32_t)kLPI2C_MasterIrqFlags);
|
|
|
|
/* Set handle to idle state. */
|
|
handle->state = (uint8_t)kIdleState;
|
|
|
|
/* Invoke callback. */
|
|
if (NULL != handle->completionCallback)
|
|
{
|
|
handle->completionCallback(base, handle, result, handle->userData);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* brief Provides a default configuration for the LPI2C slave peripheral.
|
|
*
|
|
* This function provides the following default configuration for the LPI2C slave peripheral:
|
|
* code
|
|
* slaveConfig->enableSlave = true;
|
|
* slaveConfig->address0 = 0U;
|
|
* slaveConfig->address1 = 0U;
|
|
* slaveConfig->addressMatchMode = kLPI2C_MatchAddress0;
|
|
* slaveConfig->filterDozeEnable = true;
|
|
* slaveConfig->filterEnable = true;
|
|
* slaveConfig->enableGeneralCall = false;
|
|
* slaveConfig->sclStall.enableAck = false;
|
|
* slaveConfig->sclStall.enableTx = true;
|
|
* slaveConfig->sclStall.enableRx = true;
|
|
* slaveConfig->sclStall.enableAddress = true;
|
|
* slaveConfig->ignoreAck = false;
|
|
* slaveConfig->enableReceivedAddressRead = false;
|
|
* slaveConfig->sdaGlitchFilterWidth_ns = 0;
|
|
* slaveConfig->sclGlitchFilterWidth_ns = 0;
|
|
* slaveConfig->dataValidDelay_ns = 0;
|
|
* slaveConfig->clockHoldTime_ns = 0;
|
|
* endcode
|
|
*
|
|
* After calling this function, override any settings to customize the configuration,
|
|
* prior to initializing the master driver with LPI2C_SlaveInit(). Be sure to override at least the a
|
|
* address0 member of the configuration structure with the desired slave address.
|
|
*
|
|
* param[out] slaveConfig User provided configuration structure that is set to default values. Refer to
|
|
* #lpi2c_slave_config_t.
|
|
*/
|
|
void LPI2C_SlaveGetDefaultConfig(lpi2c_slave_config_t *slaveConfig)
|
|
{
|
|
/* Initializes the configure structure to zero. */
|
|
(void)memset(slaveConfig, 0, sizeof(*slaveConfig));
|
|
|
|
slaveConfig->enableSlave = true;
|
|
slaveConfig->address0 = 0U;
|
|
slaveConfig->address1 = 0U;
|
|
slaveConfig->addressMatchMode = kLPI2C_MatchAddress0;
|
|
slaveConfig->filterDozeEnable = true;
|
|
slaveConfig->filterEnable = true;
|
|
slaveConfig->enableGeneralCall = false;
|
|
slaveConfig->sclStall.enableAck = false;
|
|
slaveConfig->sclStall.enableTx = true;
|
|
slaveConfig->sclStall.enableRx = true;
|
|
slaveConfig->sclStall.enableAddress = false;
|
|
slaveConfig->ignoreAck = false;
|
|
slaveConfig->enableReceivedAddressRead = false;
|
|
slaveConfig->sdaGlitchFilterWidth_ns = 0U; /* Set to 0 to disable the function */
|
|
slaveConfig->sclGlitchFilterWidth_ns = 0U; /* Set to 0 to disable the function */
|
|
slaveConfig->dataValidDelay_ns = 0U;
|
|
/* When enabling the slave tx SCL stall, set the default clock hold time to 250ns according
|
|
to I2C spec for standard mode baudrate(100k). User can manually change it to 100ns or 50ns
|
|
for fast-mode(400k) or fast-mode+(1m). */
|
|
slaveConfig->clockHoldTime_ns = 250U;
|
|
}
|
|
|
|
/*!
|
|
* brief Initializes the LPI2C slave peripheral.
|
|
*
|
|
* This function enables the peripheral clock and initializes the LPI2C slave peripheral as described by the user
|
|
* provided configuration.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
* param slaveConfig User provided peripheral configuration. Use LPI2C_SlaveGetDefaultConfig() to get a set of defaults
|
|
* that you can override.
|
|
* param sourceClock_Hz Frequency in Hertz of the LPI2C functional clock. Used to calculate the filter widths,
|
|
* data valid delay, and clock hold time.
|
|
*/
|
|
void LPI2C_SlaveInit(LPI2C_Type *base, const lpi2c_slave_config_t *slaveConfig, uint32_t sourceClock_Hz)
|
|
{
|
|
uint32_t tmpReg;
|
|
uint32_t tmpCycle;
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
|
|
uint32_t instance = LPI2C_GetInstance(base);
|
|
|
|
/* Ungate the clock. */
|
|
(void)CLOCK_EnableClock(kLpi2cClocks[instance]);
|
|
#if defined(LPI2C_PERIPH_CLOCKS)
|
|
/* Ungate the functional clock in initialize function. */
|
|
CLOCK_EnableClock(kLpi2cPeriphClocks[instance]);
|
|
#endif
|
|
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
|
|
/* Restore to reset conditions. */
|
|
LPI2C_SlaveReset(base);
|
|
|
|
/* Configure peripheral. */
|
|
base->SAMR = LPI2C_SAMR_ADDR0(slaveConfig->address0) | LPI2C_SAMR_ADDR1(slaveConfig->address1);
|
|
|
|
base->SCFGR1 =
|
|
LPI2C_SCFGR1_ADDRCFG(slaveConfig->addressMatchMode) | LPI2C_SCFGR1_IGNACK(slaveConfig->ignoreAck) |
|
|
LPI2C_SCFGR1_RXCFG(slaveConfig->enableReceivedAddressRead) | LPI2C_SCFGR1_GCEN(slaveConfig->enableGeneralCall) |
|
|
LPI2C_SCFGR1_ACKSTALL(slaveConfig->sclStall.enableAck) | LPI2C_SCFGR1_TXDSTALL(slaveConfig->sclStall.enableTx) |
|
|
LPI2C_SCFGR1_RXSTALL(slaveConfig->sclStall.enableRx) |
|
|
LPI2C_SCFGR1_ADRSTALL(slaveConfig->sclStall.enableAddress);
|
|
|
|
/* Calculate SDA filter width. The width is equal to FILTSDA+3 cycles of functional clock.
|
|
And set FILTSDA to 0 disables the fileter, so the min value is 4. */
|
|
tmpReg = LPI2C_SCFGR2_FILTSDA(
|
|
LPI2C_GetCyclesForWidth(sourceClock_Hz, slaveConfig->sdaGlitchFilterWidth_ns, 4U,
|
|
(LPI2C_SCFGR2_FILTSDA_MASK >> LPI2C_SCFGR2_FILTSDA_SHIFT) + 3U, 0U) -
|
|
3U);
|
|
|
|
/* Calculate SDL filter width. The width is equal to FILTSCL+3 cycles of functional clock.
|
|
And set FILTSCL to 0 disables the fileter, so the min value is 4. */
|
|
tmpCycle = LPI2C_GetCyclesForWidth(sourceClock_Hz, slaveConfig->sclGlitchFilterWidth_ns, 4U,
|
|
(LPI2C_SCFGR2_FILTSCL_MASK >> LPI2C_SCFGR2_FILTSCL_SHIFT) + 3U, 0U);
|
|
tmpReg |= LPI2C_SCFGR2_FILTSCL(tmpCycle - 3U);
|
|
|
|
/* Calculate data valid time. The time is equal to FILTSCL+DATAVD+3 cycles of functional clock.
|
|
So the min value is FILTSCL+3. */
|
|
tmpReg |= LPI2C_SCFGR2_DATAVD(
|
|
LPI2C_GetCyclesForWidth(sourceClock_Hz, slaveConfig->dataValidDelay_ns, tmpCycle,
|
|
tmpCycle + (LPI2C_SCFGR2_DATAVD_MASK >> LPI2C_SCFGR2_DATAVD_SHIFT), 0U) -
|
|
tmpCycle);
|
|
|
|
/* Calculate clock hold time. The time is equal to CLKHOLD+3 cycles of functional clock.
|
|
So the min value is 3. */
|
|
base->SCFGR2 =
|
|
tmpReg | LPI2C_SCFGR2_CLKHOLD(
|
|
LPI2C_GetCyclesForWidth(sourceClock_Hz, slaveConfig->clockHoldTime_ns, 3U,
|
|
(LPI2C_SCFGR2_CLKHOLD_MASK >> LPI2C_SCFGR2_CLKHOLD_SHIFT) + 3U, 0U) -
|
|
3U);
|
|
|
|
/* Save SCR to last so we don't enable slave until it is configured */
|
|
base->SCR = LPI2C_SCR_FILTDZ(!slaveConfig->filterDozeEnable) | LPI2C_SCR_FILTEN(slaveConfig->filterEnable) |
|
|
LPI2C_SCR_SEN(slaveConfig->enableSlave);
|
|
}
|
|
|
|
/*!
|
|
* brief Deinitializes the LPI2C slave peripheral.
|
|
*
|
|
* This function disables the LPI2C slave peripheral and gates the clock. It also performs a software
|
|
* reset to restore the peripheral to reset conditions.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
*/
|
|
void LPI2C_SlaveDeinit(LPI2C_Type *base)
|
|
{
|
|
LPI2C_SlaveReset(base);
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
|
|
uint32_t instance = LPI2C_GetInstance(base);
|
|
|
|
/* Gate the clock. */
|
|
(void)CLOCK_DisableClock(kLpi2cClocks[instance]);
|
|
|
|
#if defined(LPI2C_PERIPH_CLOCKS)
|
|
/* Gate the functional clock. */
|
|
CLOCK_DisableClock(kLpi2cPeriphClocks[instance]);
|
|
#endif
|
|
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
}
|
|
|
|
/*!
|
|
* @brief Convert provided flags to status code, and clear any errors if present.
|
|
* @param base The LPI2C peripheral base address.
|
|
* @param status Current status flags value that will be checked.
|
|
* @retval #kStatus_Success
|
|
* @retval #kStatus_LPI2C_BitError
|
|
* @retval #kStatus_LPI2C_FifoError
|
|
*/
|
|
static status_t LPI2C_SlaveCheckAndClearError(LPI2C_Type *base, uint32_t flags)
|
|
{
|
|
status_t result = kStatus_Success;
|
|
|
|
flags &= (uint32_t)kLPI2C_SlaveErrorFlags;
|
|
if (0U != flags)
|
|
{
|
|
if (0U != (flags & (uint32_t)kLPI2C_SlaveBitErrFlag))
|
|
{
|
|
result = kStatus_LPI2C_BitError;
|
|
}
|
|
else if (0U != (flags & (uint32_t)kLPI2C_SlaveFifoErrFlag))
|
|
{
|
|
result = kStatus_LPI2C_FifoError;
|
|
}
|
|
else
|
|
{
|
|
; /* Intentional empty */
|
|
}
|
|
|
|
/* Clear the errors. */
|
|
LPI2C_SlaveClearStatusFlags(base, flags);
|
|
}
|
|
else
|
|
{
|
|
; /* Intentional empty */
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* brief Performs a polling send transfer on the I2C bus.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
* param txBuff The pointer to the data to be transferred.
|
|
* param txSize The length in bytes of the data to be transferred.
|
|
* param[out] actualTxSize
|
|
* return Error or success status returned by API.
|
|
*/
|
|
status_t LPI2C_SlaveSend(LPI2C_Type *base, void *txBuff, size_t txSize, size_t *actualTxSize)
|
|
{
|
|
status_t result = kStatus_Success;
|
|
uint8_t *buf = (uint8_t *)txBuff;
|
|
size_t remaining = txSize;
|
|
|
|
assert(NULL != txBuff);
|
|
|
|
#if I2C_RETRY_TIMES != 0U
|
|
uint32_t waitTimes = I2C_RETRY_TIMES;
|
|
#endif
|
|
|
|
/* Clear stop flag. */
|
|
LPI2C_SlaveClearStatusFlags(base,
|
|
(uint32_t)kLPI2C_SlaveStopDetectFlag | (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag);
|
|
|
|
while (0U != remaining)
|
|
{
|
|
uint32_t flags;
|
|
|
|
/* Wait until we can transmit. */
|
|
do
|
|
{
|
|
/* Check for errors */
|
|
flags = LPI2C_SlaveGetStatusFlags(base);
|
|
result = LPI2C_SlaveCheckAndClearError(base, flags);
|
|
if (kStatus_Success != result)
|
|
{
|
|
if (NULL != actualTxSize)
|
|
{
|
|
*actualTxSize = txSize - remaining;
|
|
}
|
|
break;
|
|
}
|
|
#if I2C_RETRY_TIMES != 0U
|
|
waitTimes--;
|
|
} while ((0U == (flags & ((uint32_t)kLPI2C_SlaveTxReadyFlag | (uint32_t)kLPI2C_SlaveStopDetectFlag |
|
|
(uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag))) &&
|
|
(0U != waitTimes));
|
|
if (0U == waitTimes)
|
|
{
|
|
result = kStatus_LPI2C_Timeout;
|
|
}
|
|
#else
|
|
} while (0U == (flags & ((uint32_t)kLPI2C_SlaveTxReadyFlag | (uint32_t)kLPI2C_SlaveStopDetectFlag |
|
|
(uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag)));
|
|
#endif
|
|
|
|
if (kStatus_Success != result)
|
|
{
|
|
break;
|
|
}
|
|
|
|
/* Send a byte. */
|
|
if (0U != (flags & (uint32_t)kLPI2C_SlaveTxReadyFlag))
|
|
{
|
|
base->STDR = *buf++;
|
|
--remaining;
|
|
}
|
|
|
|
/* Exit loop if we see a stop or restart in transfer*/
|
|
if ((0U != (flags & ((uint32_t)kLPI2C_SlaveStopDetectFlag | (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag))) &&
|
|
(remaining != 0U))
|
|
{
|
|
LPI2C_SlaveClearStatusFlags(
|
|
base, (uint32_t)kLPI2C_SlaveStopDetectFlag | (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (NULL != actualTxSize)
|
|
{
|
|
*actualTxSize = txSize - remaining;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* brief Performs a polling receive transfer on the I2C bus.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
* param rxBuff The pointer to the data to be transferred.
|
|
* param rxSize The length in bytes of the data to be transferred.
|
|
* param[out] actualRxSize
|
|
* return Error or success status returned by API.
|
|
*/
|
|
status_t LPI2C_SlaveReceive(LPI2C_Type *base, void *rxBuff, size_t rxSize, size_t *actualRxSize)
|
|
{
|
|
status_t result = kStatus_Success;
|
|
uint8_t *buf = (uint8_t *)rxBuff;
|
|
size_t remaining = rxSize;
|
|
|
|
assert(NULL != rxBuff);
|
|
|
|
#if I2C_RETRY_TIMES != 0U
|
|
uint32_t waitTimes = I2C_RETRY_TIMES;
|
|
#endif
|
|
|
|
/* Clear stop flag. */
|
|
LPI2C_SlaveClearStatusFlags(base,
|
|
(uint32_t)kLPI2C_SlaveStopDetectFlag | (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag);
|
|
|
|
while (0U != remaining)
|
|
{
|
|
uint32_t flags;
|
|
|
|
/* Wait until we can receive. */
|
|
do
|
|
{
|
|
/* Check for errors */
|
|
flags = LPI2C_SlaveGetStatusFlags(base);
|
|
result = LPI2C_SlaveCheckAndClearError(base, flags);
|
|
if (kStatus_Success != result)
|
|
{
|
|
if (NULL != actualRxSize)
|
|
{
|
|
*actualRxSize = rxSize - remaining;
|
|
}
|
|
break;
|
|
}
|
|
#if I2C_RETRY_TIMES != 0U
|
|
waitTimes--;
|
|
} while ((0U == (flags & ((uint32_t)kLPI2C_SlaveRxReadyFlag | (uint32_t)kLPI2C_SlaveStopDetectFlag |
|
|
(uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag))) &&
|
|
(0U != waitTimes));
|
|
if (0U == waitTimes)
|
|
{
|
|
result = kStatus_LPI2C_Timeout;
|
|
}
|
|
#else
|
|
} while (0U == (flags & ((uint32_t)kLPI2C_SlaveRxReadyFlag | (uint32_t)kLPI2C_SlaveStopDetectFlag |
|
|
(uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag)));
|
|
#endif
|
|
|
|
if ((status_t)kStatus_Success != result)
|
|
{
|
|
break;
|
|
}
|
|
|
|
/* Receive a byte. */
|
|
if (0U != (flags & (uint32_t)kLPI2C_SlaveRxReadyFlag))
|
|
{
|
|
*buf++ = (uint8_t)(base->SRDR & LPI2C_SRDR_DATA_MASK);
|
|
--remaining;
|
|
}
|
|
|
|
/* Exit loop if we see a stop or restart */
|
|
if ((0U != (flags & ((uint32_t)kLPI2C_SlaveStopDetectFlag | (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag))) &&
|
|
(remaining != 0U))
|
|
{
|
|
LPI2C_SlaveClearStatusFlags(
|
|
base, (uint32_t)kLPI2C_SlaveStopDetectFlag | (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (NULL != actualRxSize)
|
|
{
|
|
*actualRxSize = rxSize - remaining;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* brief Creates a new handle for the LPI2C slave non-blocking APIs.
|
|
*
|
|
* The creation of a handle is for use with the non-blocking APIs. Once a handle
|
|
* is created, there is not a corresponding destroy handle. If the user wants to
|
|
* terminate a transfer, the LPI2C_SlaveTransferAbort() API shall be called.
|
|
*
|
|
* note The function also enables the NVIC IRQ for the input LPI2C. Need to notice
|
|
* that on some SoCs the LPI2C IRQ is connected to INTMUX, in this case user needs to
|
|
* enable the associated INTMUX IRQ in application.
|
|
|
|
* param base The LPI2C peripheral base address.
|
|
* param[out] handle Pointer to the LPI2C slave driver handle.
|
|
* param callback User provided pointer to the asynchronous callback function.
|
|
* param userData User provided pointer to the application callback data.
|
|
*/
|
|
void LPI2C_SlaveTransferCreateHandle(LPI2C_Type *base,
|
|
lpi2c_slave_handle_t *handle,
|
|
lpi2c_slave_transfer_callback_t callback,
|
|
void *userData)
|
|
{
|
|
uint32_t instance;
|
|
|
|
assert(NULL != handle);
|
|
|
|
/* Clear out the handle. */
|
|
(void)memset(handle, 0, sizeof(*handle));
|
|
|
|
/* Look up instance number */
|
|
instance = LPI2C_GetInstance(base);
|
|
|
|
/* Save base and instance. */
|
|
handle->callback = callback;
|
|
handle->userData = userData;
|
|
|
|
/* Save this handle for IRQ use. */
|
|
s_lpi2cSlaveHandle[instance] = handle;
|
|
|
|
/* Set irq handler. */
|
|
s_lpi2cSlaveIsr = LPI2C_SlaveTransferHandleIRQ;
|
|
|
|
/* Clear internal IRQ enables and enable NVIC IRQ. */
|
|
LPI2C_SlaveDisableInterrupts(base, (uint32_t)kLPI2C_SlaveIrqFlags);
|
|
(void)EnableIRQ(kLpi2cIrqs[instance]);
|
|
|
|
/* Nack by default. */
|
|
base->STAR = LPI2C_STAR_TXNACK_MASK;
|
|
}
|
|
|
|
/*!
|
|
* brief Starts accepting slave transfers.
|
|
*
|
|
* Call this API after calling I2C_SlaveInit() and LPI2C_SlaveTransferCreateHandle() to start processing
|
|
* transactions driven by an I2C master. The slave monitors the I2C bus and pass events to the
|
|
* callback that was passed into the call to LPI2C_SlaveTransferCreateHandle(). The callback is always invoked
|
|
* from the interrupt context.
|
|
*
|
|
* The set of events received by the callback is customizable. To do so, set the a eventMask parameter to
|
|
* the OR'd combination of #lpi2c_slave_transfer_event_t enumerators for the events you wish to receive.
|
|
* The #kLPI2C_SlaveTransmitEvent and #kLPI2C_SlaveReceiveEvent events are always enabled and do not need
|
|
* to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and
|
|
* receive events that are always enabled. In addition, the #kLPI2C_SlaveAllEvents constant is provided as
|
|
* a convenient way to enable all events.
|
|
*
|
|
* param base The LPI2C peripheral base address.
|
|
* param handle Pointer to #lpi2c_slave_handle_t structure which stores the transfer state.
|
|
* param eventMask Bit mask formed by OR'ing together #lpi2c_slave_transfer_event_t enumerators to specify
|
|
* which events to send to the callback. Other accepted values are 0 to get a default set of
|
|
* only the transmit and receive events, and #kLPI2C_SlaveAllEvents to enable all events.
|
|
*
|
|
* retval #kStatus_Success Slave transfers were successfully started.
|
|
* retval #kStatus_LPI2C_Busy Slave transfers have already been started on this handle.
|
|
*/
|
|
status_t LPI2C_SlaveTransferNonBlocking(LPI2C_Type *base, lpi2c_slave_handle_t *handle, uint32_t eventMask)
|
|
{
|
|
status_t result = kStatus_Success;
|
|
|
|
assert(NULL != handle);
|
|
|
|
/* Return busy if another transaction is in progress. */
|
|
if (handle->isBusy)
|
|
{
|
|
result = kStatus_LPI2C_Busy;
|
|
}
|
|
else
|
|
{
|
|
/* Return an error if the bus is already in use not by us. */
|
|
uint32_t status = LPI2C_SlaveGetStatusFlags(base);
|
|
if ((0U != (status & (uint32_t)kLPI2C_SlaveBusBusyFlag)) && (0U == (status & (uint32_t)kLPI2C_SlaveBusyFlag)))
|
|
{
|
|
result = kStatus_LPI2C_Busy;
|
|
}
|
|
}
|
|
|
|
if ((status_t)kStatus_Success == result)
|
|
{
|
|
/* Disable LPI2C IRQ sources while we configure stuff. */
|
|
LPI2C_SlaveDisableInterrupts(base, (uint32_t)kLPI2C_SlaveIrqFlags);
|
|
|
|
/* Clear transfer in handle. */
|
|
(void)memset(&handle->transfer, 0, sizeof(handle->transfer));
|
|
|
|
/* Record that we're busy. */
|
|
handle->isBusy = true;
|
|
|
|
/* Set up event mask. tx and rx are always enabled. */
|
|
handle->eventMask = eventMask | (uint32_t)kLPI2C_SlaveTransmitEvent | (uint32_t)kLPI2C_SlaveReceiveEvent;
|
|
|
|
/* Ack by default. */
|
|
base->STAR = 0U;
|
|
|
|
/* Clear all flags. */
|
|
LPI2C_SlaveClearStatusFlags(base, (uint32_t)kLPI2C_SlaveClearFlags);
|
|
|
|
/* Enable LPI2C internal IRQ sources. NVIC IRQ was enabled in CreateHandle() */
|
|
LPI2C_SlaveEnableInterrupts(base, (uint32_t)kLPI2C_SlaveIrqFlags);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* brief Gets the slave transfer status during a non-blocking transfer.
|
|
* param base The LPI2C peripheral base address.
|
|
* param handle Pointer to i2c_slave_handle_t structure.
|
|
* param[out] count Pointer to a value to hold the number of bytes transferred. May be NULL if the count is not
|
|
* required.
|
|
* retval #kStatus_Success
|
|
* retval #kStatus_NoTransferInProgress
|
|
*/
|
|
status_t LPI2C_SlaveTransferGetCount(LPI2C_Type *base, lpi2c_slave_handle_t *handle, size_t *count)
|
|
{
|
|
status_t status = kStatus_Success;
|
|
|
|
assert(NULL != handle);
|
|
|
|
if (count == NULL)
|
|
{
|
|
status = kStatus_InvalidArgument;
|
|
}
|
|
|
|
/* Catch when there is not an active transfer. */
|
|
else if (!handle->isBusy)
|
|
{
|
|
*count = 0;
|
|
status = kStatus_NoTransferInProgress;
|
|
}
|
|
|
|
/* For an active transfer, just return the count from the handle. */
|
|
else
|
|
{
|
|
*count = handle->transferredCount;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*!
|
|
* brief Aborts the slave non-blocking transfers.
|
|
* note This API could be called at any time to stop slave for handling the bus events.
|
|
* param base The LPI2C peripheral base address.
|
|
* param handle Pointer to #lpi2c_slave_handle_t structure which stores the transfer state.
|
|
* retval #kStatus_Success
|
|
* retval #kStatus_LPI2C_Idle
|
|
*/
|
|
void LPI2C_SlaveTransferAbort(LPI2C_Type *base, lpi2c_slave_handle_t *handle)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
/* Return idle if no transaction is in progress. */
|
|
if (handle->isBusy)
|
|
{
|
|
/* Disable LPI2C IRQ sources. */
|
|
LPI2C_SlaveDisableInterrupts(base, (uint32_t)kLPI2C_SlaveIrqFlags);
|
|
|
|
/* Nack by default. */
|
|
base->STAR = LPI2C_STAR_TXNACK_MASK;
|
|
|
|
/* Reset transfer info. */
|
|
(void)memset(&handle->transfer, 0, sizeof(handle->transfer));
|
|
|
|
/* We're no longer busy. */
|
|
handle->isBusy = false;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* brief Reusable routine to handle slave interrupts.
|
|
* note This function does not need to be called unless you are reimplementing the
|
|
* non blocking API's interrupt handler routines to add special functionality.
|
|
* param base The LPI2C peripheral base address.
|
|
* param handle Pointer to #lpi2c_slave_handle_t structure which stores the transfer state.
|
|
*/
|
|
void LPI2C_SlaveTransferHandleIRQ(LPI2C_Type *base, lpi2c_slave_handle_t *handle)
|
|
{
|
|
uint32_t flags;
|
|
lpi2c_slave_transfer_t *xfer;
|
|
|
|
/* Check for a valid handle in case of a spurious interrupt. */
|
|
if (NULL != handle)
|
|
{
|
|
xfer = &handle->transfer;
|
|
|
|
/* Get status flags. */
|
|
flags = LPI2C_SlaveGetStatusFlags(base);
|
|
|
|
if (0U != (flags & ((uint32_t)kLPI2C_SlaveBitErrFlag | (uint32_t)kLPI2C_SlaveFifoErrFlag)))
|
|
{
|
|
xfer->event = kLPI2C_SlaveCompletionEvent;
|
|
xfer->completionStatus = LPI2C_SlaveCheckAndClearError(base, flags);
|
|
|
|
if ((0U != (handle->eventMask & (uint32_t)kLPI2C_SlaveCompletionEvent)) && (NULL != handle->callback))
|
|
{
|
|
handle->callback(base, xfer, handle->userData);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (0U !=
|
|
(flags & (((uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag) | ((uint32_t)kLPI2C_SlaveStopDetectFlag))))
|
|
{
|
|
xfer->event = (0U != (flags & (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag)) ?
|
|
kLPI2C_SlaveRepeatedStartEvent :
|
|
kLPI2C_SlaveCompletionEvent;
|
|
xfer->receivedAddress = 0U;
|
|
xfer->completionStatus = kStatus_Success;
|
|
xfer->transferredCount = handle->transferredCount;
|
|
|
|
if (xfer->event == kLPI2C_SlaveCompletionEvent)
|
|
{
|
|
handle->isBusy = false;
|
|
}
|
|
|
|
if (handle->wasTransmit)
|
|
{
|
|
/* Subtract one from the transmit count to offset the fact that LPI2C asserts the */
|
|
/* tx flag before it sees the nack from the master-receiver, thus causing one more */
|
|
/* count that the master actually receives. */
|
|
--xfer->transferredCount;
|
|
handle->wasTransmit = false;
|
|
}
|
|
|
|
/* Clear the flag. */
|
|
LPI2C_SlaveClearStatusFlags(base, flags & ((uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag |
|
|
(uint32_t)kLPI2C_SlaveStopDetectFlag));
|
|
|
|
/* Revert to sending an Ack by default, in case we sent a Nack for receive. */
|
|
base->STAR = 0U;
|
|
|
|
if ((0U != (handle->eventMask & (uint32_t)xfer->event)) && (NULL != handle->callback))
|
|
{
|
|
handle->callback(base, xfer, handle->userData);
|
|
}
|
|
|
|
if (0U != (flags & (uint32_t)kLPI2C_SlaveStopDetectFlag))
|
|
{
|
|
/* Clean up transfer info on completion, after the callback has been invoked. */
|
|
(void)memset(&handle->transfer, 0, sizeof(handle->transfer));
|
|
}
|
|
}
|
|
if (0U != (flags & (uint32_t)kLPI2C_SlaveAddressValidFlag))
|
|
{
|
|
xfer->event = kLPI2C_SlaveAddressMatchEvent;
|
|
xfer->receivedAddress = (uint8_t)(base->SASR & LPI2C_SASR_RADDR_MASK);
|
|
|
|
/* Update handle status to busy because slave is addressed. */
|
|
handle->isBusy = true;
|
|
if ((0U != (handle->eventMask & (uint32_t)kLPI2C_SlaveAddressMatchEvent)) && (NULL != handle->callback))
|
|
{
|
|
handle->callback(base, xfer, handle->userData);
|
|
}
|
|
}
|
|
if (0U != (flags & (uint32_t)kLPI2C_SlaveTransmitAckFlag))
|
|
{
|
|
xfer->event = kLPI2C_SlaveTransmitAckEvent;
|
|
|
|
if ((0U != (handle->eventMask & (uint32_t)kLPI2C_SlaveTransmitAckEvent)) && (NULL != handle->callback))
|
|
{
|
|
handle->callback(base, xfer, handle->userData);
|
|
}
|
|
}
|
|
|
|
/* Handle transmit and receive. */
|
|
if (0U != (flags & (uint32_t)kLPI2C_SlaveTxReadyFlag))
|
|
{
|
|
handle->wasTransmit = true;
|
|
|
|
/* If we're out of data, invoke callback to get more. */
|
|
if ((NULL == xfer->data) || (0U == xfer->dataSize))
|
|
{
|
|
xfer->event = kLPI2C_SlaveTransmitEvent;
|
|
if (NULL != handle->callback)
|
|
{
|
|
handle->callback(base, xfer, handle->userData);
|
|
}
|
|
|
|
/* Clear the transferred count now that we have a new buffer. */
|
|
handle->transferredCount = 0U;
|
|
}
|
|
|
|
/* Transmit a byte. */
|
|
if ((NULL != xfer->data) && (0U != xfer->dataSize))
|
|
{
|
|
base->STDR = *xfer->data++;
|
|
--xfer->dataSize;
|
|
++handle->transferredCount;
|
|
}
|
|
}
|
|
if (0U != (flags & (uint32_t)kLPI2C_SlaveRxReadyFlag))
|
|
{
|
|
/* If we're out of room in the buffer, invoke callback to get another. */
|
|
if ((NULL == xfer->data) || (0U == xfer->dataSize))
|
|
{
|
|
xfer->event = kLPI2C_SlaveReceiveEvent;
|
|
if (NULL != handle->callback)
|
|
{
|
|
handle->callback(base, xfer, handle->userData);
|
|
}
|
|
|
|
/* Clear the transferred count now that we have a new buffer. */
|
|
handle->transferredCount = 0U;
|
|
}
|
|
|
|
/* Receive a byte. */
|
|
if ((NULL != xfer->data) && (0U != xfer->dataSize))
|
|
{
|
|
*xfer->data++ = (uint8_t)base->SRDR;
|
|
--xfer->dataSize;
|
|
++handle->transferredCount;
|
|
}
|
|
else
|
|
{
|
|
/* We don't have any room to receive more data, so send a nack. */
|
|
base->STAR = LPI2C_STAR_TXNACK_MASK;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if !(defined(FSL_FEATURE_I2C_HAS_NO_IRQ) && FSL_FEATURE_I2C_HAS_NO_IRQ)
|
|
/*!
|
|
* @brief Shared IRQ handler that can call both master and slave ISRs.
|
|
*
|
|
* The master and slave ISRs are called through function pointers in order to decouple
|
|
* this code from the ISR functions. Without this, the linker would always pull in both
|
|
* ISRs and every function they call, even if only the functional API was used.
|
|
*
|
|
* @param base The LPI2C peripheral base address.
|
|
* @param instance The LPI2C peripheral instance number.
|
|
*/
|
|
static void LPI2C_CommonIRQHandler(LPI2C_Type *base, uint32_t instance)
|
|
{
|
|
/* Check for master IRQ. */
|
|
if ((0U != (base->MCR & LPI2C_MCR_MEN_MASK)) && (NULL != s_lpi2cMasterIsr))
|
|
{
|
|
/* Master mode. */
|
|
s_lpi2cMasterIsr(base, s_lpi2cMasterHandle[instance]);
|
|
}
|
|
|
|
/* Check for slave IRQ. */
|
|
if ((0U != (base->SCR & LPI2C_SCR_SEN_MASK)) && (NULL != s_lpi2cSlaveIsr))
|
|
{
|
|
/* Slave mode. */
|
|
s_lpi2cSlaveIsr(base, s_lpi2cSlaveHandle[instance]);
|
|
}
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
|
|
#if defined(LPI2C0)
|
|
/* Implementation of LPI2C0 handler named in startup code. */
|
|
void LPI2C0_DriverIRQHandler(void);
|
|
void LPI2C0_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(LPI2C0, 0U);
|
|
}
|
|
#endif
|
|
|
|
#if defined(LPI2C1)
|
|
/* Implementation of LPI2C1 handler named in startup code. */
|
|
void LPI2C1_DriverIRQHandler(void);
|
|
void LPI2C1_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(LPI2C1, 1U);
|
|
}
|
|
#endif
|
|
|
|
#if defined(LPI2C2)
|
|
/* Implementation of LPI2C2 handler named in startup code. */
|
|
void LPI2C2_DriverIRQHandler(void);
|
|
void LPI2C2_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(LPI2C2, 2U);
|
|
}
|
|
#endif
|
|
|
|
#if defined(LPI2C3)
|
|
/* Implementation of LPI2C3 handler named in startup code. */
|
|
void LPI2C3_DriverIRQHandler(void);
|
|
void LPI2C3_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(LPI2C3, 3U);
|
|
}
|
|
#endif
|
|
|
|
#if defined(LPI2C4)
|
|
/* Implementation of LPI2C4 handler named in startup code. */
|
|
void LPI2C4_DriverIRQHandler(void);
|
|
void LPI2C4_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(LPI2C4, 4U);
|
|
}
|
|
#endif
|
|
|
|
#if defined(LPI2C5)
|
|
/* Implementation of LPI2C5 handler named in startup code. */
|
|
void LPI2C5_DriverIRQHandler(void);
|
|
void LPI2C5_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(LPI2C5, 5U);
|
|
}
|
|
#endif
|
|
|
|
#if defined(LPI2C6)
|
|
/* Implementation of LPI2C6 handler named in startup code. */
|
|
void LPI2C6_DriverIRQHandler(void);
|
|
void LPI2C6_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(LPI2C6, 6U);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CM4_0__LPI2C)
|
|
/* Implementation of CM4_0__LPI2C handler named in startup code. */
|
|
void M4_0_LPI2C_DriverIRQHandler(void);
|
|
void M4_0_LPI2C_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(CM4_0__LPI2C, LPI2C_GetInstance(CM4_0__LPI2C));
|
|
}
|
|
#endif
|
|
|
|
#if defined(CM4__LPI2C)
|
|
/* Implementation of CM4__LPI2C handler named in startup code. */
|
|
void M4_LPI2C_DriverIRQHandler(void);
|
|
void M4_LPI2C_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(CM4__LPI2C, LPI2C_GetInstance(CM4__LPI2C));
|
|
}
|
|
#endif
|
|
|
|
#if defined(CM4_1__LPI2C)
|
|
/* Implementation of CM4_1__LPI2C handler named in startup code. */
|
|
void M4_1_LPI2C_DriverIRQHandler(void);
|
|
void M4_1_LPI2C_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(CM4_1__LPI2C, LPI2C_GetInstance(CM4_1__LPI2C));
|
|
}
|
|
#endif
|
|
|
|
#if defined(DMA__LPI2C0)
|
|
/* Implementation of DMA__LPI2C0 handler named in startup code. */
|
|
void DMA_I2C0_INT_DriverIRQHandler(void);
|
|
void DMA_I2C0_INT_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(DMA__LPI2C0, LPI2C_GetInstance(DMA__LPI2C0));
|
|
}
|
|
#endif
|
|
|
|
#if defined(DMA__LPI2C1)
|
|
/* Implementation of DMA__LPI2C1 handler named in startup code. */
|
|
void DMA_I2C1_INT_DriverIRQHandler(void);
|
|
void DMA_I2C1_INT_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(DMA__LPI2C1, LPI2C_GetInstance(DMA__LPI2C1));
|
|
}
|
|
#endif
|
|
|
|
#if defined(DMA__LPI2C2)
|
|
/* Implementation of DMA__LPI2C2 handler named in startup code. */
|
|
void DMA_I2C2_INT_DriverIRQHandler(void);
|
|
void DMA_I2C2_INT_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(DMA__LPI2C2, LPI2C_GetInstance(DMA__LPI2C2));
|
|
}
|
|
#endif
|
|
|
|
#if defined(DMA__LPI2C3)
|
|
/* Implementation of DMA__LPI2C3 handler named in startup code. */
|
|
void DMA_I2C3_INT_DriverIRQHandler(void);
|
|
void DMA_I2C3_INT_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(DMA__LPI2C3, LPI2C_GetInstance(DMA__LPI2C3));
|
|
}
|
|
#endif
|
|
|
|
#if defined(DMA__LPI2C4)
|
|
/* Implementation of DMA__LPI2C3 handler named in startup code. */
|
|
void DMA_I2C4_INT_DriverIRQHandler(void);
|
|
void DMA_I2C4_INT_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(DMA__LPI2C4, LPI2C_GetInstance(DMA__LPI2C4));
|
|
}
|
|
#endif
|
|
|
|
#if defined(ADMA__LPI2C0)
|
|
/* Implementation of DMA__LPI2C0 handler named in startup code. */
|
|
void ADMA_I2C0_INT_DriverIRQHandler(void);
|
|
void ADMA_I2C0_INT_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(ADMA__LPI2C0, LPI2C_GetInstance(ADMA__LPI2C0));
|
|
}
|
|
#endif
|
|
|
|
#if defined(ADMA__LPI2C1)
|
|
/* Implementation of DMA__LPI2C1 handler named in startup code. */
|
|
void ADMA_I2C1_INT_DriverIRQHandler(void);
|
|
void ADMA_I2C1_INT_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(ADMA__LPI2C1, LPI2C_GetInstance(ADMA__LPI2C1));
|
|
}
|
|
#endif
|
|
|
|
#if defined(ADMA__LPI2C2)
|
|
/* Implementation of DMA__LPI2C2 handler named in startup code. */
|
|
void ADMA_I2C2_INT_DriverIRQHandler(void);
|
|
void ADMA_I2C2_INT_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(ADMA__LPI2C2, LPI2C_GetInstance(ADMA__LPI2C2));
|
|
}
|
|
#endif
|
|
|
|
#if defined(ADMA__LPI2C3)
|
|
/* Implementation of DMA__LPI2C3 handler named in startup code. */
|
|
void ADMA_I2C3_INT_DriverIRQHandler(void);
|
|
void ADMA_I2C3_INT_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(ADMA__LPI2C3, LPI2C_GetInstance(ADMA__LPI2C3));
|
|
}
|
|
#endif
|
|
|
|
#if defined(ADMA__LPI2C4)
|
|
/* Implementation of DMA__LPI2C3 handler named in startup code. */
|
|
void ADMA_I2C4_INT_DriverIRQHandler(void);
|
|
void ADMA_I2C4_INT_DriverIRQHandler(void)
|
|
{
|
|
LPI2C_CommonIRQHandler(ADMA__LPI2C4, LPI2C_GetInstance(ADMA__LPI2C4));
|
|
}
|
|
#endif
|