530 lines
17 KiB
C

/*
* Copyright 2019-2022 NXP
* All rights reserved.
*
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_lcdifv2.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.lcdifv2"
#endif
#define LCDIFV2_LUT_MEM(base) \
((volatile uint32_t *)(((uint32_t)(base)) + (uint32_t)FSL_FEATURE_LCDIFV2_CLUT_RAM_OFFSET))
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get instance number for LCDIF module.
*
* @param base LCDIF peripheral base address
*/
static uint32_t LCDIFV2_GetInstance(LCDIFV2_Type *base);
/*!
* @brief Reset register value to default status.
*
* @param base LCDIF peripheral base address
*/
static void LCDIFV2_ResetRegister(LCDIFV2_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to LCDIF bases for each instance. */
static LCDIFV2_Type *const s_lcdifv2Bases[] = LCDIFV2_BASE_PTRS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to LCDIF clock for each instance. */
static const clock_ip_name_t s_lcdifv2Clocks[] = LCDIFV2_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*! @brief Porter Duff layer factors for different configuration. */
static const lcdifv2_pd_factor_mode_t s_lcdifv2PdLayerFactors[][2] = {
/* kLCDIFV2_PD_Src */
{
/* s1_s0_factor_mode. */
kLCDIFV2_PD_FactorZero,
/* s0_s1_factor_mode. */
kLCDIFV2_PD_FactorOne,
},
/* kLCDIFV2_PD_Atop */
{kLCDIFV2_PD_FactorInversedAlpha, kLCDIFV2_PD_FactorStraightAlpha},
/* kLCDIFV2_PD_Over */
{kLCDIFV2_PD_FactorInversedAlpha, kLCDIFV2_PD_FactorOne},
/* kLCDIFV2_PD_In */
{kLCDIFV2_PD_FactorZero, kLCDIFV2_PD_FactorStraightAlpha},
/* kLCDIFV2_PD_Out */
{kLCDIFV2_PD_FactorZero, kLCDIFV2_PD_FactorInversedAlpha},
/* kLCDIFV2_PD_Dst */
{kLCDIFV2_PD_FactorOne, kLCDIFV2_PD_FactorZero},
/* kLCDIFV2_PD_DstAtop */
{kLCDIFV2_PD_FactorStraightAlpha, kLCDIFV2_PD_FactorInversedAlpha},
/* kLCDIFV2_PD_DstOver */
{kLCDIFV2_PD_FactorOne, kLCDIFV2_PD_FactorInversedAlpha},
/* kLCDIFV2_PD_DstIn */
{kLCDIFV2_PD_FactorStraightAlpha, kLCDIFV2_PD_FactorZero},
/* kLCDIFV2_PD_DstOut */
{kLCDIFV2_PD_FactorInversedAlpha, kLCDIFV2_PD_FactorZero},
/* kLCDIFV2_PD_Xor */
{kLCDIFV2_PD_FactorInversedAlpha, kLCDIFV2_PD_FactorInversedAlpha},
/* kLCDIFV2_PD_Clear */
{
kLCDIFV2_PD_FactorZero,
kLCDIFV2_PD_FactorZero,
},
};
/*******************************************************************************
* Codes
******************************************************************************/
static uint32_t LCDIFV2_GetInstance(LCDIFV2_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_lcdifv2Bases); instance++)
{
if (s_lcdifv2Bases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_lcdifv2Bases));
return instance;
}
static void LCDIFV2_ResetRegister(LCDIFV2_Type *base)
{
uint32_t i;
base->DISP_PARA = 0U;
base->CTRL = 0x80000000U;
base->DISP_SIZE = 0U;
base->HSYN_PARA = 0x00C01803U;
base->VSYN_PARA = 0x00C01803U;
base->INT[0].INT_ENABLE = 0U;
base->INT[1].INT_ENABLE = 0U;
base->PDI_PARA = 0x00001000U;
for (i = 0; i < (uint32_t)LCDIFV2_LAYER_COUNT; i++)
{
base->LAYER[i].CTRLDESCL5 = 0U;
base->LAYER[i].CTRLDESCL1 = 0U;
base->LAYER[i].CTRLDESCL2 = 0U;
base->LAYER[i].CTRLDESCL3 = 0U;
base->LAYER[i].CTRLDESCL4 = 0U;
base->LAYER[i].CTRLDESCL6 = 0U;
}
for (i = 0; i < (uint32_t)LCDIFV2_LAYER_CSC_COUNT; i++)
{
base->LAYER[i].CSC_COEF0 = 0x04000000U;
base->LAYER[i].CSC_COEF1 = 0x01230208U;
base->LAYER[i].CSC_COEF2 = 0x076B079CU;
}
/* Clear interrupt status. */
base->INT[0].INT_STATUS = 0xFFFFFFFFU;
base->INT[1].INT_STATUS = 0xFFFFFFFFU;
}
/*!
* brief Initializes the LCDIF v2.
*
* This function ungates the LCDIF v2 clock and release the peripheral reset.
*
* param base LCDIF v2 peripheral base address.
*/
void LCDIFV2_Init(LCDIFV2_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
uint32_t instance = LCDIFV2_GetInstance(base);
/* Enable the clock. */
CLOCK_EnableClock(s_lcdifv2Clocks[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
LCDIFV2_ResetRegister(base);
/* Out of reset. */
base->CTRL = 0U;
}
/*!
* brief Deinitializes the LCDIF peripheral.
*
* param base LCDIF peripheral base address.
*/
void LCDIFV2_Deinit(LCDIFV2_Type *base)
{
LCDIFV2_ResetRegister(base);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
uint32_t instance = LCDIFV2_GetInstance(base);
/* Disable the clock. */
CLOCK_DisableClock(s_lcdifv2Clocks[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
/*!
* brief Reset the LCDIF v2.
*
* param base LCDIF peripheral base address.
*/
void LCDIFV2_Reset(LCDIFV2_Type *base)
{
LCDIFV2_ResetRegister(base);
/* Release and ready to work. */
base->CTRL = 0U;
}
/*!
* brief Gets the LCDIF display default configuration structure.
*
* param config Pointer to the LCDIF configuration structure.
*/
void LCDIFV2_DisplayGetDefaultConfig(lcdifv2_display_config_t *config)
{
assert(NULL != config);
config->panelWidth = 0U;
config->panelHeight = 0U;
config->hsw = 3U;
config->hfp = 3U;
config->hbp = 3U;
config->vsw = 3U;
config->vfp = 3U;
config->vbp = 3U;
config->polarityFlags = (uint32_t)kLCDIFV2_VsyncActiveHigh | (uint32_t)kLCDIFV2_HsyncActiveHigh |
(uint32_t)kLCDIFV2_DataEnableActiveHigh | (uint32_t)kLCDIFV2_DriveDataOnRisingClkEdge |
(uint32_t)kLCDIFV2_DataActiveHigh;
config->lineOrder = kLCDIFV2_LineOrderRGB;
}
/*!
* brief Set the LCDIF v2 display configurations.
*
* param base LCDIF peripheral base address.
* param config Pointer to the LCDIF configuration structure.
*/
void LCDIFV2_SetDisplayConfig(LCDIFV2_Type *base, const lcdifv2_display_config_t *config)
{
assert(NULL != config);
/* Configure the parameters. */
base->DISP_SIZE = ((uint32_t)config->panelWidth << LCDIFV2_DISP_SIZE_DELTA_X_SHIFT) |
((uint32_t)config->panelHeight << LCDIFV2_DISP_SIZE_DELTA_Y_SHIFT);
base->HSYN_PARA = ((uint32_t)config->hsw << LCDIFV2_HSYN_PARA_PW_H_SHIFT) |
((uint32_t)config->hbp << LCDIFV2_HSYN_PARA_BP_H_SHIFT) |
((uint32_t)config->hfp << LCDIFV2_HSYN_PARA_FP_H_SHIFT);
base->VSYN_PARA = ((uint32_t)config->vsw << LCDIFV2_VSYN_PARA_PW_V_SHIFT) |
((uint32_t)config->vbp << LCDIFV2_VSYN_PARA_BP_V_SHIFT) |
((uint32_t)config->vfp << LCDIFV2_VSYN_PARA_FP_V_SHIFT);
base->DISP_PARA = LCDIFV2_DISP_PARA_LINE_PATTERN(config->lineOrder);
base->CTRL = (uint32_t)(config->polarityFlags);
}
/*!
* brief Set the color space conversion mode.
*
* Supports YUV2RGB and YCbCr2RGB.
*
* param base LCDIFv2 peripheral base address.
* param layerIndex Index of the layer.
* param mode The conversion mode.
*/
void LCDIFV2_SetCscMode(LCDIFV2_Type *base, uint8_t layerIndex, lcdifv2_csc_mode_t mode)
{
assert(layerIndex < (uint32_t)LCDIFV2_LAYER_CSC_COUNT);
/*
* The equations used for Colorspace conversion are:
*
* R = C0*(Y+Y_OFFSET) + C1(V+UV_OFFSET)
* G = C0*(Y+Y_OFFSET) + C3(U+UV_OFFSET) + C2(V+UV_OFFSET)
* B = C0*(Y+Y_OFFSET) + C4(U+UV_OFFSET)
*/
if (kLCDIFV2_CscYUV2RGB == mode)
{
base->LAYER[layerIndex].CSC_COEF0 = LCDIFV2_CSC_COEF0_ENABLE_MASK | LCDIFV2_CSC_COEF0_C0(0x100U) /* 1.00. */
| LCDIFV2_CSC_COEF0_Y_OFFSET(0x0U) /* 0. */
| LCDIFV2_CSC_COEF0_UV_OFFSET(0x0U); /* 0. */
base->LAYER[layerIndex].CSC_COEF1 = LCDIFV2_CSC_COEF1_C1(0x0123U) /* 1.140. */
| LCDIFV2_CSC_COEF1_C4(0x0208U); /* 2.032. */
base->LAYER[layerIndex].CSC_COEF2 = LCDIFV2_CSC_COEF2_C2(0x076BU) /* -0.851. */
| LCDIFV2_CSC_COEF2_C3(0x079BU); /* -0.394. */
}
else if (kLCDIFV2_CscYCbCr2RGB == mode)
{
base->LAYER[layerIndex].CSC_COEF0 = LCDIFV2_CSC_COEF0_ENABLE_MASK | LCDIFV2_CSC_COEF0_YCBCR_MODE_MASK |
LCDIFV2_CSC_COEF0_C0(0x12AU) /* 1.164. */
| LCDIFV2_CSC_COEF0_Y_OFFSET(0x1F0U) /* -16. */
| LCDIFV2_CSC_COEF0_UV_OFFSET(0x180U); /* -128. */
base->LAYER[layerIndex].CSC_COEF1 = LCDIFV2_CSC_COEF1_C1(0x0198U) /* 1.596. */
| LCDIFV2_CSC_COEF1_C4(0x0204U); /* 2.017. */
base->LAYER[layerIndex].CSC_COEF2 = LCDIFV2_CSC_COEF2_C2(0x0730U) /* -0.813. */
| LCDIFV2_CSC_COEF2_C3(0x079CU); /* -0.392. */
}
else
{
base->LAYER[layerIndex].CSC_COEF0 = 0U;
base->LAYER[layerIndex].CSC_COEF1 = 0U;
base->LAYER[layerIndex].CSC_COEF2 = 0U;
}
}
/*!
* brief Set the layer source buffer configuration.
*
* param base LCDIFv2 peripheral base address.
* param layerIndex Layer layerIndex.
* param config Pointer to the configuration.
*/
void LCDIFV2_SetLayerBufferConfig(LCDIFV2_Type *base, uint8_t layerIndex, const lcdifv2_buffer_config_t *config)
{
assert(NULL != config);
uint32_t reg;
base->LAYER[layerIndex].CTRLDESCL3 = config->strideBytes;
reg = base->LAYER[layerIndex].CTRLDESCL5;
reg = (reg & ~(LCDIFV2_CTRLDESCL5_BPP_MASK | LCDIFV2_CTRLDESCL5_YUV_FORMAT_MASK)) | (uint32_t)config->pixelFormat;
if (0U == (reg & LCDIFV2_CTRLDESCL5_AB_MODE_MASK))
{
reg |= LCDIFV2_CTRLDESCL5_SAFETY_EN_MASK;
}
base->LAYER[layerIndex].CTRLDESCL5 = reg;
}
/*!
* brief Set the LUT data.
*
* This function sets the specific layer LUT data, if useShadowLoad is true,
* call LCDIFV2_TriggerLayerShadowLoad after this function, the
* LUT will be loaded to the hardware during next vertical blanking period.
* If useShadowLoad is false, the LUT data is loaded to hardware directly.
*
* param base LCDIF v2 peripheral base address.
* param layerIndex Which layer to set.
* param lutData The LUT data to load.
* param count Count of lutData.
* retval kStatus_Success Set success.
* retval kStatus_Fail Previous LUT data is not loaded to hardware yet.
*/
status_t LCDIFV2_SetLut(
LCDIFV2_Type *base, uint8_t layerIndex, const uint32_t *lutData, uint16_t count, bool useShadowLoad)
{
assert(count <= LCDIFV2_LUT_ENTRY_NUM);
uint16_t i;
status_t status;
/* Previous setting is not updated. */
if ((base->CLUT_LOAD & LCDIFV2_CLUT_LOAD_CLUT_UPDATE_EN_MASK) != 0U)
{
status = kStatus_Fail;
}
else
{
if (useShadowLoad)
{
base->CLUT_LOAD = LCDIFV2_CLUT_LOAD_SEL_CLUT_NUM(layerIndex) | LCDIFV2_CLUT_LOAD_CLUT_UPDATE_EN_MASK;
}
else
{
base->CLUT_LOAD = LCDIFV2_CLUT_LOAD_SEL_CLUT_NUM(layerIndex);
}
for (i = 0; i < count; i++)
{
(LCDIFV2_LUT_MEM(base))[i + LCDIFV2_LUT_ENTRY_NUM * layerIndex] = lutData[i];
}
status = kStatus_Success;
}
return status;
}
/*!
* brief Set the layer alpha blend mode.
*
* param base LCDIFv2 peripheral base address.
* param layerIndex Index of the CSC unit.
* param config Pointer to the blend configuration.
*/
void LCDIFV2_SetLayerBlendConfig(LCDIFV2_Type *base, uint8_t layerIndex, const lcdifv2_blend_config_t *config)
{
assert(NULL != config);
uint32_t reg;
reg = base->LAYER[layerIndex].CTRLDESCL5;
reg &= ~(LCDIFV2_CTRLDESCL5_GLOBAL_ALPHA_MASK | LCDIFV2_CTRLDESCL5_AB_MODE_MASK |
LCDIFV2_CTRLDESCL5_PD_FACTOR_MODE_MASK | LCDIFV2_CTRLDESCL5_PD_ALPHA_MODE_MASK |
LCDIFV2_CTRLDESCL5_PD_COLOR_MODE_MASK | LCDIFV2_CTRLDESCL5_PD_GLOBAL_ALPHA_MODE_MASK |
LCDIFV2_CTRLDESCL5_SAFETY_EN_MASK);
reg |=
(LCDIFV2_CTRLDESCL5_GLOBAL_ALPHA(config->globalAlpha) | LCDIFV2_CTRLDESCL5_AB_MODE(config->alphaMode) |
LCDIFV2_CTRLDESCL5_PD_FACTOR_MODE(config->pdFactorMode) |
LCDIFV2_CTRLDESCL5_PD_ALPHA_MODE(config->pdAlphaMode) | LCDIFV2_CTRLDESCL5_PD_COLOR_MODE(config->pdColorMode) |
LCDIFV2_CTRLDESCL5_PD_GLOBAL_ALPHA_MODE(config->pdGlobalAlphaMode));
if (config->alphaMode == kLCDIFV2_AlphaDisable)
{
reg |= LCDIFV2_CTRLDESCL5_SAFETY_EN_MASK;
}
base->LAYER[layerIndex].CTRLDESCL5 = reg;
}
/*
* brief Get the blend configuration for Porter Duff blend.
*
* This is the basic Porter Duff blend configuration, user still could
* modify the configurations after this function.
*
* param mode Porter Duff blend mode.
* param layer The configuration for source layer or destination layer.
* param config Pointer to the configuration.
* retval kStatus_Success Get the configuration successfully.
* retval kStatus_InvalidArgument The argument is invalid.
*/
status_t LCDIFV2_GetPorterDuffConfig(lcdifv2_pd_blend_mode_t mode,
lcdifv2_pd_layer_t layer,
lcdifv2_blend_config_t *config)
{
status_t status;
if ((NULL == config) || (mode >= kLCDIFV2_PD_Max) || (layer >= kLCDIFV2_PD_LayerMax))
{
status = kStatus_InvalidArgument;
}
else
{
config->pdAlphaMode = kLCDIFV2_PD_AlphaStraight;
config->pdColorMode = kLCDIFV2_PD_ColorWithAlpha;
config->pdGlobalAlphaMode = kLCDIFV2_PD_LocalAlpha;
config->pdFactorMode = s_lcdifv2PdLayerFactors[mode][(uint8_t)layer];
config->alphaMode = kLCDIFV2_AlphaPoterDuff;
status = kStatus_Success;
}
return status;
}
/*
* brief Get the global alpha values for multiple layer blend.
*
* When all layers use the global alpha, the relationship blended alpha
* and global alpha of each layer is:
*
* Layer 7: ba7 = ga7
* Layer 6: ba6 = ga6 * (1-ga7)
* Layer 5: ba5 = ga5 * (1-ga6) * (1-ga7)
* Layer 4: ba4 = ga4 * (1-ga5) * (1-ga6) * (1-ga7)
* Layer 3: ba3 = ga3 * (1-ga4) * (1-ga5) * (1-ga6) * (1-ga7)
* Layer 2: ba2 = ga2 * (1-ga3) * (1-ga4) * (1-ga5) * (1-ga6) * (1-ga7)
* Layer 1: ba1 = ga1 * (1-ga2) * (1-ga3) * (1-ga4) * (1-ga5) * (1-ga6) * (1-ga7)
* Layer 0: ba0 = 1 * (1-ga1) * (1-ga2) * (1-ga3) * (1-ga4) * (1-ga5) * (1-ga6) * (1-ga7)
*
* Here baN is the blended alpha of layer N, gaN is the global alpha configured to layer N.
*
* This function calculates the global alpha based on the blended alpha. The blendedAlpha and
* globalAlpha are all arrays of size layerCount. The first layer is a background layer,
* so blendedAlpha[0] is useless, globalAlpha[0] is always 255.
*
* param blendedAlpha The desired blended alpha value, alpha range 0~255.
* param globalAlpha Calculated global alpha set to each layer register.
* param layerCount Total layer count.
* retval kStatus_Success Get successfully.
* retval kStatus_InvalidArgument The argument is invalid.
*/
status_t LCDIFV2_GetMultiLayerGlobalAlpha(const uint8_t blendedAlpha[], uint8_t globalAlpha[], uint8_t layerCount)
{
status_t status = kStatus_Success;
int16_t curLayer = (int16_t)layerCount - 1;
int left = 255;
int tmpAlpha;
assert((layerCount > 1U) && (layerCount <= (uint8_t)LCDIFV2_LAYER_COUNT));
/*
* Assume the layer counter is 7, and alpha range is 0~1, define:
*
* left_7 = 1
* left_i = (1-ga_(i+1)) * ... * (1-ga7)
*
* Then:
* ba_i = ga_i * left_i
* left_i = left_(i+1) - ba_i
* ga_i = ba_i / left_i
*
* Now change alpha range to 0~255, then:
*
* ga_i = ba_i * 255 / left_i
* left_i = left_(i+1) - ba_i
*/
globalAlpha[0] = 255U;
while (curLayer > 0)
{
tmpAlpha = (int)blendedAlpha[curLayer] * 255 / left;
if (tmpAlpha > 255)
{
status = kStatus_InvalidArgument;
break;
}
globalAlpha[curLayer] = (uint8_t)tmpAlpha;
left -= (int)blendedAlpha[curLayer];
if (left <= 0)
{
status = kStatus_InvalidArgument;
break;
}
curLayer--;
}
return status;
}