xinyigao 53be4393aa
add rt1170/rt1020 bsp (#5927)
* add rt1170 bsp
* add rt1020 bsp
2022-05-19 14:06:35 +08:00

731 lines
27 KiB
C

/*
* Copyright 2017-2021 NXP
* All rights reserved.
*
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _FSL_CSI_H_
#define _FSL_CSI_H_
#include "fsl_common.h"
/*!
* @addtogroup csi_driver
* @{
*/
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @name Driver version */
/*@{*/
#define FSL_CSI_DRIVER_VERSION (MAKE_VERSION(2, 1, 5))
/*@}*/
#define CSI_REG_CR1(base) (base)->CR1
#define CSI_REG_CR2(base) (base)->CR2
#define CSI_REG_CR3(base) (base)->CR3
#define CSI_REG_CR18(base) (base)->CR18
#define CSI_REG_SR(base) (base)->SR
#define CSI_REG_DMASA_FB1(base) (base)->DMASA_FB1
#define CSI_REG_DMASA_FB2(base) (base)->DMASA_FB2
#define CSI_REG_IMAG_PARA(base) (base)->IMAG_PARA
#define CSI_REG_FBUF_PARA(base) (base)->FBUF_PARA
/*! @brief Size of the frame buffer queue used in CSI transactional function. */
#ifndef CSI_DRIVER_QUEUE_SIZE
#define CSI_DRIVER_QUEUE_SIZE 4U
#endif
/*! @brief Enable fragment capture function or not. */
#ifndef CSI_DRIVER_FRAG_MODE
#define CSI_DRIVER_FRAG_MODE 0U
#endif
/*
* There is one empty room in queue, used to distinguish whether the queue
* is full or empty. When header equals tail, the queue is empty; when header
* equals tail + 1, the queue is full.
*/
#define CSI_DRIVER_ACTUAL_QUEUE_SIZE (CSI_DRIVER_QUEUE_SIZE + 1U)
/*
* The queue max size is 254, so that the queue element index could use `uint8_t`.
*/
#if (CSI_DRIVER_ACTUAL_QUEUE_SIZE > 254)
#error Required queue size is too large
#endif
/*
* The interrupt enable bits are in registers CSICR1[16:31], CSICR3[0:7],
* and CSICR18[2:9]. So merge them into an uint32_t value, place CSICR18 control
* bits to [8:15].
*/
#define CSI_CR1_INT_EN_MASK 0xFFFF0000U
#define CSI_CR3_INT_EN_MASK 0x000000FFU
#define CSI_CR18_INT_EN_MASK 0x0000FF00U
#if ((~CSI_CR1_INT_EN_MASK) & \
(CSI_CR1_EOF_INT_EN_MASK | CSI_CR1_COF_INT_EN_MASK | CSI_CR1_SF_OR_INTEN_MASK | CSI_CR1_RF_OR_INTEN_MASK | \
CSI_CR1_SFF_DMA_DONE_INTEN_MASK | CSI_CR1_STATFF_INTEN_MASK | CSI_CR1_FB2_DMA_DONE_INTEN_MASK | \
CSI_CR1_FB1_DMA_DONE_INTEN_MASK | CSI_CR1_RXFF_INTEN_MASK | CSI_CR1_SOF_INTEN_MASK))
#error CSI_CR1_INT_EN_MASK could not cover all interrupt bits in CSICR1.
#endif
#if ((~CSI_CR3_INT_EN_MASK) & (CSI_CR3_ECC_INT_EN_MASK | CSI_CR3_HRESP_ERR_EN_MASK))
#error CSI_CR3_INT_EN_MASK could not cover all interrupt bits in CSICR3.
#endif
#if ((~CSI_CR18_INT_EN_MASK) & \
((CSI_CR18_FIELD0_DONE_IE_MASK | CSI_CR18_DMA_FIELD1_DONE_IE_MASK | CSI_CR18_BASEADDR_CHANGE_ERROR_IE_MASK) \
<< 6U))
#error CSI_CR18_INT_EN_MASK could not cover all interrupt bits in CSICR18.
#endif
/*! @brief Error codes for the CSI driver. */
enum
{
kStatus_CSI_NoEmptyBuffer = MAKE_STATUS(kStatusGroup_CSI, 0), /*!< No empty frame buffer in queue to load to CSI. */
kStatus_CSI_NoFullBuffer = MAKE_STATUS(kStatusGroup_CSI, 1), /*!< No full frame buffer in queue to read out. */
kStatus_CSI_QueueFull = MAKE_STATUS(kStatusGroup_CSI, 2), /*!< Queue is full, no room to save new empty buffer. */
kStatus_CSI_FrameDone = MAKE_STATUS(kStatusGroup_CSI, 3), /*!< New frame received and saved to queue. */
};
/*!
* @brief CSI work mode.
*
* The CCIR656 interlace mode is not supported currently.
*/
typedef enum _csi_work_mode
{
kCSI_GatedClockMode = CSI_CR1_GCLK_MODE(1U), /*!< HSYNC, VSYNC, and PIXCLK signals are used. */
kCSI_NonGatedClockMode = 0U, /*!< VSYNC, and PIXCLK signals are used. */
kCSI_CCIR656ProgressiveMode = CSI_CR1_CCIR_EN(1U), /*!< CCIR656 progressive mode. */
} csi_work_mode_t;
/*!
* @brief CSI data bus witdh.
*/
typedef enum _csi_data_bus
{
kCSI_DataBus8Bit, /*!< 8-bit data bus. */
kCSI_DataBus16Bit, /*!< 16-bit data bus. */
kCSI_DataBus24Bit, /*!< 24-bit data bus. */
} csi_data_bus_t;
/*! @brief CSI signal polarity. */
enum _csi_polarity_flags
{
kCSI_HsyncActiveLow = 0U, /*!< HSYNC is active low. */
kCSI_HsyncActiveHigh = CSI_CR1_HSYNC_POL_MASK, /*!< HSYNC is active high. */
kCSI_DataLatchOnRisingEdge = CSI_CR1_REDGE_MASK, /*!< Pixel data latched at rising edge of pixel clock. */
kCSI_DataLatchOnFallingEdge = 0U, /*!< Pixel data latched at falling edge of pixel clock. */
kCSI_VsyncActiveHigh = 0U, /*!< VSYNC is active high. */
kCSI_VsyncActiveLow = CSI_CR1_SOF_POL_MASK, /*!< VSYNC is active low. */
};
/*! @brief Configuration to initialize the CSI module. */
typedef struct _csi_config
{
uint16_t width; /*!< Pixels of the input frame. */
uint16_t height; /*!< Lines of the input frame. */
uint32_t polarityFlags; /*!< Timing signal polarity flags, OR'ed value of @ref _csi_polarity_flags. */
uint8_t bytesPerPixel; /*!< Bytes per pixel, valid values are:
- 2: Used for RGB565, YUV422, and so on.
- 4: Used for XRGB8888, XYUV444, and so on.
*/
uint16_t linePitch_Bytes; /*!< Frame buffer line pitch, must be 8-byte aligned. */
csi_work_mode_t workMode; /*!< CSI work mode. */
csi_data_bus_t dataBus; /*!< Data bus width. */
bool useExtVsync; /*!< In CCIR656 progressive mode, set true to use external VSYNC signal, set false
to use internal VSYNC signal decoded from SOF. */
} csi_config_t;
/*! @brief The CSI FIFO, used for FIFO operation. */
typedef enum _csi_fifo
{
kCSI_RxFifo = (1U << 0U), /*!< RXFIFO. */
kCSI_StatFifo = (1U << 1U), /*!< STAT FIFO. */
kCSI_AllFifo = 0x01 | 0x02, /*!< Both RXFIFO and STAT FIFO. */
} csi_fifo_t;
/*! @brief CSI feature interrupt source. */
enum _csi_interrupt_enable
{
kCSI_EndOfFrameInterruptEnable = CSI_CR1_EOF_INT_EN_MASK, /*!< End of frame interrupt enable. */
kCSI_ChangeOfFieldInterruptEnable = CSI_CR1_COF_INT_EN_MASK, /*!< Change of field interrupt enable. */
kCSI_StatFifoOverrunInterruptEnable = CSI_CR1_SF_OR_INTEN_MASK, /*!< STAT FIFO overrun interrupt enable. */
kCSI_RxFifoOverrunInterruptEnable = CSI_CR1_RF_OR_INTEN_MASK, /*!< RXFIFO overrun interrupt enable. */
kCSI_StatFifoDmaDoneInterruptEnable = CSI_CR1_SFF_DMA_DONE_INTEN_MASK, /*!< STAT FIFO DMA done interrupt enable. */
kCSI_StatFifoFullInterruptEnable = CSI_CR1_STATFF_INTEN_MASK, /*!< STAT FIFO full interrupt enable. */
kCSI_RxBuffer1DmaDoneInterruptEnable = CSI_CR1_FB2_DMA_DONE_INTEN_MASK, /*!< RX frame buffer 1 DMA transfer done. */
kCSI_RxBuffer0DmaDoneInterruptEnable = CSI_CR1_FB1_DMA_DONE_INTEN_MASK, /*!< RX frame buffer 0 DMA transfer done. */
kCSI_RxFifoFullInterruptEnable = CSI_CR1_RXFF_INTEN_MASK, /*!< RXFIFO full interrupt enable. */
kCSI_StartOfFrameInterruptEnable = CSI_CR1_SOF_INTEN_MASK, /*!< Start of frame (SOF) interrupt enable. */
kCSI_EccErrorInterruptEnable = CSI_CR3_ECC_INT_EN_MASK, /*!< ECC error detection interrupt enable. */
kCSI_AhbResErrorInterruptEnable = CSI_CR3_HRESP_ERR_EN_MASK, /*!< AHB response Error interrupt enable. */
/*! The DMA output buffer base address changes before DMA completed. */
kCSI_BaseAddrChangeErrorInterruptEnable = CSI_CR18_BASEADDR_CHANGE_ERROR_IE_MASK << 6U,
kCSI_Field0DoneInterruptEnable = CSI_CR18_FIELD0_DONE_IE_MASK << 6U, /*!< Field 0 done interrupt enable. */
kCSI_Field1DoneInterruptEnable = CSI_CR18_DMA_FIELD1_DONE_IE_MASK << 6U, /*!< Field 1 done interrupt enable. */
};
/*!
* @brief CSI status flags.
*
* The following status register flags can be cleared:
* - kCSI_EccErrorFlag
* - kCSI_AhbResErrorFlag
* - kCSI_ChangeOfFieldFlag
* - kCSI_StartOfFrameFlag
* - kCSI_EndOfFrameFlag
* - kCSI_RxBuffer1DmaDoneFlag
* - kCSI_RxBuffer0DmaDoneFlag
* - kCSI_StatFifoDmaDoneFlag
* - kCSI_StatFifoOverrunFlag
* - kCSI_RxFifoOverrunFlag
* - kCSI_Field0DoneFlag
* - kCSI_Field1DoneFlag
* - kCSI_BaseAddrChangeErrorFlag
*/
enum _csi_flags
{
kCSI_RxFifoDataReadyFlag = CSI_SR_DRDY_MASK, /*!< RXFIFO data ready. */
kCSI_EccErrorFlag = CSI_SR_ECC_INT_MASK, /*!< ECC error detected. */
kCSI_AhbResErrorFlag = CSI_SR_HRESP_ERR_INT_MASK, /*!< Hresponse (AHB bus response) Error. */
kCSI_ChangeOfFieldFlag = CSI_SR_COF_INT_MASK, /*!< Change of field. */
kCSI_Field0PresentFlag = CSI_SR_F1_INT_MASK, /*!< Field 0 present in CCIR mode. */
kCSI_Field1PresentFlag = CSI_SR_F2_INT_MASK, /*!< Field 1 present in CCIR mode. */
kCSI_StartOfFrameFlag = CSI_SR_SOF_INT_MASK, /*!< Start of frame (SOF) detected. */
kCSI_EndOfFrameFlag = CSI_SR_EOF_INT_MASK, /*!< End of frame (EOF) detected. */
kCSI_RxFifoFullFlag = CSI_SR_RxFF_INT_MASK, /*!< RXFIFO full (Number of data reaches trigger level). */
kCSI_RxBuffer1DmaDoneFlag = CSI_SR_DMA_TSF_DONE_FB2_MASK, /*!< RX frame buffer 1 DMA transfer done. */
kCSI_RxBuffer0DmaDoneFlag = CSI_SR_DMA_TSF_DONE_FB1_MASK, /*!< RX frame buffer 0 DMA transfer done. */
kCSI_StatFifoFullFlag = CSI_SR_STATFF_INT_MASK, /*!< STAT FIFO full (Reach trigger level). */
kCSI_StatFifoDmaDoneFlag = CSI_SR_DMA_TSF_DONE_SFF_MASK, /*!< STAT FIFO DMA transfer done. */
kCSI_StatFifoOverrunFlag = CSI_SR_SF_OR_INT_MASK, /*!< STAT FIFO overrun. */
kCSI_RxFifoOverrunFlag = CSI_SR_RF_OR_INT_MASK, /*!< RXFIFO overrun. */
kCSI_Field0DoneFlag = CSI_SR_DMA_FIELD0_DONE_MASK, /*!< Field 0 transfer done. */
kCSI_Field1DoneFlag = CSI_SR_DMA_FIELD1_DONE_MASK, /*!< Field 1 transfer done. */
kCSI_BaseAddrChangeErrorFlag = CSI_SR_BASEADDR_CHHANGE_ERROR_MASK, /*!< The DMA output buffer base address
changes before DMA completed. */
};
/* Forward declaration of the handle typedef. */
typedef struct _csi_handle csi_handle_t;
/*!
* @brief CSI transfer callback function.
*
* When a new frame is received and saved to the frame buffer queue, the callback
* is called and the pass the status @ref kStatus_CSI_FrameDone to upper layer.
*/
typedef void (*csi_transfer_callback_t)(CSI_Type *base, csi_handle_t *handle, status_t status, void *userData);
/*!
* @brief CSI handle structure.
*
* Please see the user guide for the details of the CSI driver queue mechanism.
*/
struct _csi_handle
{
uint32_t frameBufferQueue[CSI_DRIVER_ACTUAL_QUEUE_SIZE]; /*!< Frame buffer queue. */
volatile uint8_t queueWriteIdx; /*!< Pointer to save incoming item. */
volatile uint8_t queueReadIdx; /*!< Pointer to read out the item. */
void *volatile emptyBuffer; /*!< Pointer to maintain the empty frame buffers. */
volatile uint8_t emptyBufferCnt; /*!< Empty frame buffers count. */
volatile uint8_t activeBufferNum; /*!< How many frame buffers are in progres currently. */
volatile bool transferStarted; /*!< User has called @ref CSI_TransferStart to start frame receiving. */
csi_transfer_callback_t callback; /*!< Callback function. */
void *userData; /*!< CSI callback function parameter.*/
};
#if CSI_DRIVER_FRAG_MODE
/*! @brief Input pixel format when CSI works in fragment mode. */
typedef enum _csi_frag_input_pixel_format
{
kCSI_FragInputRGB565 = 0, /*!< Input pixel format is RGB565. */
kCSI_FragInputYUYV, /*!< Input pixel format is YUV422 (Y-U-Y-V). */
kCSI_FragInputUYVY, /*!< Input pixel format is YUV422 (U-Y-V-Y). */
} csi_frag_input_pixel_format_t;
/*! @brief Configuration for CSI module to work in fragment mode. */
typedef struct _csi_frag_config
{
uint16_t width; /*!< Pixels of the input frame. */
uint16_t height; /*!< Lines of the input frame. */
uint32_t polarityFlags; /*!< Timing signal polarity flags, OR'ed value of @ref _csi_polarity_flags. */
csi_work_mode_t workMode; /*!< CSI work mode. */
csi_data_bus_t dataBus; /*!< Data bus width. */
bool useExtVsync; /*!< In CCIR656 progressive mode, set true to use external VSYNC signal, set false
to use internal VSYNC signal decoded from SOF. */
csi_frag_input_pixel_format_t inputFormat; /*!< Input pixel format. */
uint32_t dmaBufferAddr0; /*!< Buffer 0 used for CSI DMA, must be double word aligned. */
uint32_t dmaBufferAddr1; /*!< Buffer 1 used for CSI DMA, must be double word aligned. */
uint16_t dmaBufferLine; /*!< Lines of each DMA buffer. The size of DMA buffer 0 and
buffer 1 must be the same. Camera frame height must be
dividable by this value. */
bool isDmaBufferCachable; /*!< Is DMA buffer cachable or not. */
} csi_frag_config_t;
/* Forward declaration of the handle typedef. */
typedef struct _csi_frag_handle csi_frag_handle_t;
/*!
* @brief CSI fragment transfer callback function.
*
* When a new frame is received and saved to the frame buffer queue, the callback
* is called and the pass the status @ref kStatus_CSI_FrameDone to upper layer.
*/
typedef void (*csi_frag_transfer_callback_t)(CSI_Type *base,
csi_frag_handle_t *handle,
status_t status,
void *userData);
/*!
* @brief Function to copy data from CSI DMA buffer to user buffer.
*/
typedef void (*csi_frag_copy_func_t)(void *pDest, const void *pSrc, size_t cnt);
/*! @brief Handle for CSI module to work in fragment mode. */
struct _csi_frag_handle
{
uint16_t width; /*!< Pixels of the input frame. */
uint16_t height; /*!< Lines of the input frame. */
uint16_t maxLinePerFrag; /*!< Max line saved per fragment. */
uint16_t linePerFrag; /*!< Actual line saved per fragment. */
uint16_t dmaBytePerLine; /*!< How many bytes DMA transfered each line. */
uint16_t datBytePerLine; /*!< How many bytes copied to user buffer each line. */
uint16_t dmaCurLine; /*!< Current line index in whole frame. */
uint16_t windowULX; /*!< X of windows upper left corner. */
uint16_t windowULY; /*!< Y of windows upper left corner. */
uint16_t windowLRX; /*!< X of windows lower right corner. */
uint16_t windowLRY; /*!< Y of windows lower right corner. */
uint32_t outputBuffer; /*!< Address of buffer to save the captured image. */
uint32_t datCurWriteAddr; /*!< Current write address to the user buffer. */
csi_frag_input_pixel_format_t inputFormat; /*!< Input pixel format. */
csi_frag_transfer_callback_t callback; /*!< Callback function. */
void *userData; /*!< CSI callback function parameter.*/
csi_frag_copy_func_t copyFunc; /*!< Function to copy data from CSI DMA buffer to user buffer. */
bool isDmaBufferCachable; /*!< Is DMA buffer cachable or not. */
};
/*! @brief Handle for CSI module to work in fragment mode. */
typedef struct _csi_frag_window
{
uint16_t windowULX; /*!< X of windows upper left corner. */
uint16_t windowULY; /*!< Y of windows upper left corner. */
uint16_t windowLRX; /*!< X of windows lower right corner. */
uint16_t windowLRY; /*!< Y of windows lower right corner. */
} csi_frag_window_t;
/*! @brief Handle for CSI module to work in fragment mode. */
typedef struct _csi_frag_capture_config
{
bool outputGrayScale; /*!< Output gray scale image or not, could only enable when input format is YUV. */
uint32_t buffer; /*!< Buffer to save the captured image. */
csi_frag_window_t *window; /*!< Capture window. Capture full frame if set this to NULL. When output format is gray,
the window width must be multiple value of 8. */
} csi_frag_capture_config_t;
#endif /* CSI_DRIVER_FRAG_MODE */
/*******************************************************************************
* API
******************************************************************************/
#if defined(__cplusplus)
extern "C" {
#endif
/*!
* @name Initialization and deinitialization
* @{
*/
/*!
* @brief Initialize the CSI.
*
* This function enables the CSI peripheral clock, and resets the CSI registers.
*
* @param base CSI peripheral base address.
* @param config Pointer to the configuration structure.
*
* @retval kStatus_Success Initialize successfully.
* @retval kStatus_InvalidArgument Initialize failed because of invalid argument.
*/
status_t CSI_Init(CSI_Type *base, const csi_config_t *config);
/*!
* @brief De-initialize the CSI.
*
* This function disables the CSI peripheral clock.
*
* @param base CSI peripheral base address.
*/
void CSI_Deinit(CSI_Type *base);
/*!
* @brief Reset the CSI.
*
* This function resets the CSI peripheral registers to default status.
*
* @param base CSI peripheral base address.
*/
void CSI_Reset(CSI_Type *base);
/*!
* @brief Get the default configuration for to initialize the CSI.
*
* The default configuration value is:
*
* @code
config->width = 320U;
config->height = 240U;
config->polarityFlags = kCSI_HsyncActiveHigh | kCSI_DataLatchOnRisingEdge;
config->bytesPerPixel = 2U;
config->linePitch_Bytes = 320U * 2U;
config->workMode = kCSI_GatedClockMode;
config->dataBus = kCSI_DataBus8Bit;
config->useExtVsync = true;
@endcode
*
* @param config Pointer to the CSI configuration.
*/
void CSI_GetDefaultConfig(csi_config_t *config);
/* @} */
/*!
* @name Module operation
* @{
*/
/*!
* @brief Clear the CSI FIFO.
*
* This function clears the CSI FIFO.
*
* @param base CSI peripheral base address.
* @param fifo The FIFO to clear.
*/
void CSI_ClearFifo(CSI_Type *base, csi_fifo_t fifo);
/*!
* @brief Reflash the CSI FIFO DMA.
*
* This function reflashes the CSI FIFO DMA.
*
* For RXFIFO, there are two frame buffers. When the CSI module started, it saves
* the frames to frame buffer 0 then frame buffer 1, the two buffers will be
* written by turns. After reflash DMA using this function, the CSI is reset to
* save frame to buffer 0.
*
* @param base CSI peripheral base address.
* @param fifo The FIFO DMA to reflash.
*/
void CSI_ReflashFifoDma(CSI_Type *base, csi_fifo_t fifo);
/*!
* @brief Enable or disable the CSI FIFO DMA request.
*
* @param base CSI peripheral base address.
* @param fifo The FIFO DMA reques to enable or disable.
* @param enable True to enable, false to disable.
*/
void CSI_EnableFifoDmaRequest(CSI_Type *base, csi_fifo_t fifo, bool enable);
/*!
* @brief Start to receive data.
*
* @param base CSI peripheral base address.
*/
static inline void CSI_Start(CSI_Type *base)
{
CSI_EnableFifoDmaRequest(base, kCSI_RxFifo, true);
CSI_REG_CR18(base) |= CSI_CR18_CSI_ENABLE_MASK;
}
/*!
* @brief Stop to receiving data.
*
* @param base CSI peripheral base address.
*/
static inline void CSI_Stop(CSI_Type *base)
{
CSI_REG_CR18(base) &= ~CSI_CR18_CSI_ENABLE_MASK;
CSI_EnableFifoDmaRequest(base, kCSI_RxFifo, false);
}
/*!
* @brief Set the RX frame buffer address.
*
* @param base CSI peripheral base address.
* @param index Buffer index.
* @param addr Frame buffer address to set.
*/
void CSI_SetRxBufferAddr(CSI_Type *base, uint8_t index, uint32_t addr);
/* @} */
/*!
* @name Interrupts
* @{
*/
/*!
* @brief Enables CSI interrupt requests.
*
* @param base CSI peripheral base address.
* @param mask The interrupts to enable, pass in as OR'ed value of @ref _csi_interrupt_enable.
*/
void CSI_EnableInterrupts(CSI_Type *base, uint32_t mask);
/*!
* @brief Disable CSI interrupt requests.
*
* @param base CSI peripheral base address.
* @param mask The interrupts to disable, pass in as OR'ed value of @ref _csi_interrupt_enable.
*/
void CSI_DisableInterrupts(CSI_Type *base, uint32_t mask);
/* @} */
/*!
* @name Status
* @{
*/
/*!
* @brief Gets the CSI status flags.
*
* @param base CSI peripheral base address.
* @return status flag, it is OR'ed value of @ref _csi_flags.
*/
static inline uint32_t CSI_GetStatusFlags(CSI_Type *base)
{
return CSI_REG_SR(base);
}
/*!
* @brief Clears the CSI status flag.
*
* The flags to clear are passed in as OR'ed value of @ref _csi_flags. The following
* flags are cleared automatically by hardware:
*
* - @ref kCSI_RxFifoFullFlag,
* - @ref kCSI_StatFifoFullFlag,
* - @ref kCSI_Field0PresentFlag,
* - @ref kCSI_Field1PresentFlag,
* - @ref kCSI_RxFifoDataReadyFlag,
*
* @param base CSI peripheral base address.
* @param statusMask The status flags mask, OR'ed value of @ref _csi_flags.
*/
static inline void CSI_ClearStatusFlags(CSI_Type *base, uint32_t statusMask)
{
CSI_REG_SR(base) = statusMask;
}
/* @} */
#if !CSI_DRIVER_FRAG_MODE
/*!
* @name Transactional
* @{
*/
/*!
* @brief Initializes the CSI handle.
*
* This function initializes CSI handle, it should be called before any other
* CSI transactional functions.
*
* @param base CSI peripheral base address.
* @param handle Pointer to the handle structure.
* @param callback Callback function for CSI transfer.
* @param userData Callback function parameter.
*
* @retval kStatus_Success Handle created successfully.
*/
status_t CSI_TransferCreateHandle(CSI_Type *base,
csi_handle_t *handle,
csi_transfer_callback_t callback,
void *userData);
/*!
* @brief Start the transfer using transactional functions.
*
* When the empty frame buffers have been submit to CSI driver using function
* @ref CSI_TransferSubmitEmptyBuffer, user could call this function to start
* the transfer. The incoming frame will be saved to the empty frame buffer,
* and user could be optionally notified through callback function.
*
* @param base CSI peripheral base address.
* @param handle Pointer to the handle structure.
*
* @retval kStatus_Success Started successfully.
* @retval kStatus_CSI_NoEmptyBuffer Could not start because no empty frame buffer in queue.
*/
status_t CSI_TransferStart(CSI_Type *base, csi_handle_t *handle);
/*!
* @brief Stop the transfer using transactional functions.
*
* The driver does not clean the full frame buffers in queue. In other words, after
* calling this function, user still could get the full frame buffers in queue
* using function @ref CSI_TransferGetFullBuffer.
*
* @param base CSI peripheral base address.
* @param handle Pointer to the handle structure.
*
* @retval kStatus_Success Stoped successfully.
*/
status_t CSI_TransferStop(CSI_Type *base, csi_handle_t *handle);
/*!
* @brief Submit empty frame buffer to queue.
*
* This function could be called before @ref CSI_TransferStart or after @ref
* CSI_TransferStart. If there is no room in queue to store the empty frame
* buffer, this function returns error.
*
* @param base CSI peripheral base address.
* @param handle Pointer to the handle structure.
* @param frameBuffer Empty frame buffer to submit.
*
* @retval kStatus_Success Started successfully.
* @retval kStatus_CSI_QueueFull Could not submit because there is no room in queue.
*/
status_t CSI_TransferSubmitEmptyBuffer(CSI_Type *base, csi_handle_t *handle, uint32_t frameBuffer);
/*!
* @brief Get one full frame buffer from queue.
*
* After the transfer started using function @ref CSI_TransferStart, the incoming
* frames will be saved to the empty frame buffers in queue. This function gets
* the full-filled frame buffer from the queue. If there is no full frame buffer
* in queue, this function returns error.
*
* @param base CSI peripheral base address.
* @param handle Pointer to the handle structure.
* @param frameBuffer Full frame buffer.
*
* @retval kStatus_Success Started successfully.
* @retval kStatus_CSI_NoFullBuffer There is no full frame buffer in queue.
*/
status_t CSI_TransferGetFullBuffer(CSI_Type *base, csi_handle_t *handle, uint32_t *frameBuffer);
/*!
* @brief CSI IRQ handle function.
*
* This function handles the CSI IRQ request to work with CSI driver transactional
* APIs.
*
* @param base CSI peripheral base address.
* @param handle CSI handle pointer.
*/
void CSI_TransferHandleIRQ(CSI_Type *base, csi_handle_t *handle);
/* @} */
#else
/*!
* @name Fragment mode
* @{
*/
/*!
* @brief Initialize the CSI to work in fragment mode.
*
* This function enables the CSI peripheral clock, and resets the CSI registers.
*
* @param base CSI peripheral base address.
*/
void CSI_FragModeInit(CSI_Type *base);
/*!
* @brief De-initialize the CSI.
*
* This function disables the CSI peripheral clock.
*
* @param base CSI peripheral base address.
*/
void CSI_FragModeDeinit(CSI_Type *base);
/*!
* @brief Create handle for CSI work in fragment mode.
*
* @param base CSI peripheral base address.
* @param handle Pointer to the transactional handle.
* @param config Pointer to the configuration structure.
* @param callback Callback function for CSI transfer.
* @param userData Callback function parameter.
*
* @retval kStatus_Success Initialize successfully.
* @retval kStatus_InvalidArgument Initialize failed because of invalid argument.
*/
status_t CSI_FragModeCreateHandle(CSI_Type *base,
csi_frag_handle_t *handle,
const csi_frag_config_t *config,
csi_frag_transfer_callback_t callback,
void *userData);
/*!
* @brief Start to capture a image.
*
* @param base CSI peripheral base address.
* @param handle Pointer to the transactional handle.
* @param config Pointer to the capture configuration.
*
* @retval kStatus_Success Initialize successfully.
* @retval kStatus_InvalidArgument Initialize failed because of invalid argument.
*/
status_t CSI_FragModeTransferCaptureImage(CSI_Type *base,
csi_frag_handle_t *handle,
const csi_frag_capture_config_t *config);
/*!
* @brief Abort image capture.
*
* Abort image capture initialized by @ref CSI_FragModeTransferCaptureImage.
*
* @param base CSI peripheral base address.
* @param handle Pointer to the transactional handle.
*/
void CSI_FragModeTransferAbortCaptureImage(CSI_Type *base, csi_frag_handle_t *handle);
/*!
* @brief CSI IRQ handle function.
*
* This function handles the CSI IRQ request to work with CSI driver fragment mode
* APIs.
*
* @param base CSI peripheral base address.
* @param handle CSI handle pointer.
*/
void CSI_FragModeTransferHandleIRQ(CSI_Type *base, csi_frag_handle_t *handle);
/* @} */
#endif /* CSI_DRIVER_FRAG_MODE */
#if defined(__cplusplus)
}
#endif
/*! @}*/
#endif /* _FSL_CSI_H_ */