Fan YANG e03342ff6b [bsp][hpmicro] add HPM5300EVK,HPM5301EVKLITE and HPM6800EVK support & update hpm_sdk
- added new boards: hpm5300evk, hpm5301evklite and hpm6800evk
- upgaded hpm_sdk
- driver updates and bugfixes
- add hpmicro BSPs to CI

Signed-off-by: Fan YANG <fan.yang@hpmicro.com>
2024-06-03 18:05:20 +08:00

959 lines
30 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2022-2024 HPMicro
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Change Logs:
* Date Author Notes
* 2022-02-23 HPMicro First version
* 2022-07-19 HPMicro Fixed the multi-block read/write issue
* 2023-07-27 HPMicro Fixed clock setting issue
* 2023-08-02 HPMicro Added speed mode setting
* 2024-01-03 HPMicro Added multiple instance support
* 2024-05-23 HPMicro Fixed unaligned transfer issue in the SDIO case
* 2024-05-25 HPMicro Added HS200 & HS400 support, optimize the cache-management policy for read
* 2024-05-26 HPMicro Added UHS-I support, added DDR50 and High Speed DDR mode support
*/
#include <rtthread.h>
#ifdef BSP_USING_SDXC
#include <rthw.h>
#include <rtdevice.h>
#include <rtdbg.h>
#include "board.h"
#include "hpm_sdxc_drv.h"
#include "hpm_l1c_drv.h"
#define CACHE_LINESIZE HPM_L1C_CACHELINE_SIZE
#define SDXC_ADMA_TABLE_WORDS (2U)
#define SDXC_AMDA2_ADDR_ALIGN (4U)
#define SDXC_DATA_TIMEOUT (0xFU)
#define SDXC_CACHELINE_ALIGN_DOWN(x) HPM_L1C_CACHELINE_ALIGN_DOWN(x)
#define SDXC_CACHELINE_ALIGN_UP(x) HPM_L1C_CACHELINE_ALIGN_UP(x)
#define SDXC_IS_CACHELINE_ALIGNED(n) ((uint32_t)(n) % (uint32_t)(CACHE_LINESIZE) == 0U)
/**
* Note: Allocate cache-line aligned buffer in the SD/eMMC read/write case may require larger heap size
* if the read/write length is a big number (for example: 64KB), the RT-Thread RTOS may
* be unable to allocate enough size of buffer if the heap size is small.
*
* Keep this option disabled by default, please enable it if the default setting cannot meet
* real requirement of application.
*/
#define HPM_SDXC_ALLOC_CACHELINE_ALIGNED_BUF 0
struct hpm_mmcsd
{
struct rt_mmcsd_host *host;
struct rt_mmcsd_req *req;
struct rt_mmcsd_cmd *cmd;
struct rt_timer *timer;
char name[RT_NAME_MAX];
rt_uint32_t *buf;
SDXC_Type *sdxc_base;
int32_t irq_num;
uint32_t *sdxc_adma2_table;
bool support_8bit;
bool support_4bit;
bool support_1v8;
bool support_3v3;
uint8_t power_mode;
uint8_t bus_width;
uint8_t timing;
uint8_t bus_mode;
uint32_t freq;
uint16_t vdd;
const char *vsel_pin_name;
const char *pwr_pin_name;
};
/**
* @brief SDIO CMD53 argument
*/
typedef union
{
uint32_t value;
struct
{
uint32_t count :9;
uint32_t reg_addr :17;
uint32_t op_code :1;
uint32_t block_mode :1;
uint32_t func_num :3;
uint32_t rw_flag :1;
};
} sdio_cmd53_arg_t;
static void hpm_sdmmc_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req);
static void hpm_sdmmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg);
static void hpm_sdmmc_enable_sdio_irq(struct rt_mmcsd_host *host, rt_int32_t en);
static void hpm_sdmmc_host_recovery(SDXC_Type *base);
static hpm_stat_t hpm_sdmmc_transfer(SDXC_Type *base, sdxc_adma_config_t *dma_config, sdxc_xfer_t *xfer);
static rt_int32_t hpm_sdmmc_execute_tuning(struct rt_mmcsd_host *host, rt_int32_t opcode);
static rt_int32_t hpm_sdmmc_switch_uhs_voltage(struct rt_mmcsd_host *host);
static void hpm_sdmmc_power_on_via_pin(struct hpm_mmcsd *mmcsd);
static void hpm_sdmmc_power_off_via_pin(struct hpm_mmcsd *mmcsd);
static void hpm_sdmmc_switch_to_3v3_via_pin(struct hpm_mmcsd *mmcsd);
static void hpm_sdmmc_switch_to_1v8_via_pin(struct hpm_mmcsd *mmcsd);
static void hpm_sdmmc_pin_init(const char *pin_name, bool is_output);
static void hpm_sdmmc_pin_write(const char *pin_name, rt_uint8_t value);
static void hpm_sdmmc_pin_init(const char *pin_name, bool is_output)
{
rt_base_t pin = rt_pin_get(pin_name);
if (pin < 0) {
return;
}
rt_uint8_t mode = (is_output) ? PIN_MODE_OUTPUT : PIN_MODE_INPUT_PULLUP;
if (is_output)
{
rt_pin_mode(pin, mode);
}
}
static void hpm_sdmmc_pin_write(const char *pin_name, rt_uint8_t value)
{
rt_base_t pin = rt_pin_get(pin_name);
if (pin < 0)
{
return;
}
rt_pin_write(pin, value);
}
static void hpm_sdmmc_power_on_via_pin(struct hpm_mmcsd *mmcsd)
{
hpm_sdmmc_pin_write(mmcsd->pwr_pin_name, 1);
}
static void hpm_sdmmc_power_off_via_pin(struct hpm_mmcsd *mmcsd)
{
hpm_sdmmc_pin_write(mmcsd->pwr_pin_name, 0);
}
static void hpm_sdmmc_switch_to_3v3_via_pin(struct hpm_mmcsd *mmcsd)
{
hpm_sdmmc_pin_write(mmcsd->vsel_pin_name, 0);
}
static void hpm_sdmmc_switch_to_1v8_via_pin(struct hpm_mmcsd *mmcsd)
{
hpm_sdmmc_pin_write(mmcsd->vsel_pin_name, 1);
}
static rt_int32_t hpm_sdmmc_switch_uhs_voltage(struct rt_mmcsd_host *host)
{
struct hpm_mmcsd *mmcsd = (struct hpm_mmcsd *) host->private_data;
SDXC_Type *base = mmcsd->sdxc_base;
/* 1. Stop providing clock to the card */
sdxc_enable_inverse_clock(mmcsd->sdxc_base, false);
sdxc_enable_sd_clock(mmcsd->sdxc_base, false);
/* 2. Wait until DAT[3:0] are 4'b0000 */
uint32_t data3_0_level;
uint32_t delay_cnt = 1000000UL;
do
{
data3_0_level = sdxc_get_data3_0_level(mmcsd->sdxc_base);
--delay_cnt;
} while ((data3_0_level != 0U) && (delay_cnt > 0U));
if (delay_cnt < 1)
{
return -RT_ETIMEOUT;
}
/* 3. Switch to 1.8V */
hpm_sdmmc_switch_to_1v8_via_pin(mmcsd);
sdxc_select_voltage(mmcsd->sdxc_base, sdxc_bus_voltage_sd_1v8);
/* 4. spec:host delay 5ms, host: give more delay time here */
rt_thread_mdelay(10);
/* 5. Provide SD clock the card again */
sdxc_enable_inverse_clock(mmcsd->sdxc_base, true);
sdxc_enable_sd_clock(mmcsd->sdxc_base, true);
/* 6. spec: wait 1ms, host: give more delay time here */
rt_thread_mdelay(5);
/* 7. Check DAT[3:0], make sure the value is 4'b0000 */
delay_cnt = 1000000UL;
data3_0_level;
do
{
data3_0_level = sdxc_get_data3_0_level(mmcsd->sdxc_base);
--delay_cnt;
} while ((data3_0_level == 0U) && (delay_cnt > 0U));
if (delay_cnt < 1)
{
return -RT_ETIMEOUT;
}
return RT_EOK;
}
static const struct rt_mmcsd_host_ops hpm_mmcsd_host_ops =
{
.request = hpm_sdmmc_request,
.set_iocfg = hpm_sdmmc_set_iocfg,
.get_card_status = NULL,
.enable_sdio_irq = NULL,
.execute_tuning = hpm_sdmmc_execute_tuning,
.switch_uhs_voltage = hpm_sdmmc_switch_uhs_voltage,
};
#if defined(BSP_USING_SDXC0)
/* Place the ADMA2 table to non-cacheable region */
ATTR_PLACE_AT_NONCACHEABLE static uint32_t s_sdxc0_adma2_table[SDXC_ADMA_TABLE_WORDS];
/* SDXC0 */
static struct hpm_mmcsd s_hpm_sdxc0 =
{
.name = "sd0",
.sdxc_base = HPM_SDXC0,
.sdxc_adma2_table = s_sdxc0_adma2_table,
.irq_num = IRQn_SDXC0,
#if defined(BSP_SDXC0_BUS_WIDTH_8BIT)
.support_8bit = true,
.support_4bit = true,
#elif defined(BSP_SDXC0_BUS_WIDTH_4BIT)
.support_4bit = true,
#elif defined(BSP_SDXC0_BUS_WIDTH_1BIT)
#else
.support_4bit = true,
#endif
#if defined(BSP_SDXC0_VOLTAGE_3V3)
.support_3v3 = true,
#endif
#if defined(BSP_SDXC0_VOLTAGE_1V8)
.support_1v8 = true,
#endif
#if defined(BSP_SDXC0_VOLTAGE_DUAL)
.support_3v3 = true,
.support_1v8 = true,
#endif
#if defined(BSP_SDXC0_VSEL_PIN)
.vsel_pin_name = BSP_SDXC0_VSEL_PIN,
#endif
#if defined(BSP_SDXC0_PWR_PIN)
.pwr_pin_name = BSP_SDXC0_PWR_PIN,
#endif
};
#endif
#if defined(BSP_USING_SDXC1)
/* Place the ADMA2 table to non-cacheable region */
ATTR_PLACE_AT_NONCACHEABLE static uint32_t s_sdxc1_adma2_table[SDXC_ADMA_TABLE_WORDS];
static struct hpm_mmcsd s_hpm_sdxc1 =
{
.name = "sd1",
.sdxc_base = HPM_SDXC1,
.sdxc_adma2_table = s_sdxc1_adma2_table,
.irq_num = IRQn_SDXC1,
#if defined(BSP_SDXC1_BUS_WIDTH_8BIT)
.support_8bit = true,
.support_4bit = true,
#elif defined(BSP_SDXC1_BUS_WIDTH_4BIT)
.support_4bit = true,
#elif defined(BSP_SDXC1_BUS_WIDTH_1BIT)
#else
.support_4bit = true,
#endif
#if defined(BSP_SDXC1_VOLTAGE_3V3)
.support_3v3 = true,
#endif
#if defined(BSP_SDXC1_VOLTAGE_1V8)
.support_1v8 = true,
#endif
#if defined(BSP_SDXC1_VOLTAGE_DUAL)
.support_3v3 = true,
.support_1v8 = true,
#endif
#if defined(BSP_SDXC1_VSEL_PIN)
.vsel_pin_name = BSP_SDXC1_VSEL_PIN,
#endif
#if defined(BSP_SDXC1_PWR_PIN)
.pwr_pin_name = BSP_SDXC1_PWR_PIN,
#endif
};
#endif
static struct hpm_mmcsd *hpm_sdxcs[] =
{
#if defined(BSP_USING_SDXC0)
&s_hpm_sdxc0,
#endif
#if defined(BSP_USING_SDXC1)
&s_hpm_sdxc1,
#endif
};
static rt_int32_t hpm_sdmmc_execute_tuning(struct rt_mmcsd_host *host, rt_int32_t opcode)
{
RT_ASSERT(host != RT_NULL); RT_ASSERT(host->private_data != RT_NULL);
struct hpm_mmcsd *mmcsd = (struct hpm_mmcsd *) host->private_data;
SDXC_Type *base = mmcsd->sdxc_base;
/* Prepare the Auto tuning environment */
sdxc_stop_clock_during_phase_code_change(base, true);
sdxc_set_post_change_delay(base, 3U);
sdxc_select_cardclk_delay_source(base, false);
sdxc_enable_power(base, true);
hpm_stat_t err = sdxc_perform_auto_tuning(base, opcode);
return (err != status_success) ? -RT_EPERM : RT_EOK;
}
static hpm_stat_t hpm_sdmmc_transfer(SDXC_Type *base, sdxc_adma_config_t *dma_config, sdxc_xfer_t *xfer)
{
hpm_stat_t status;
sdxc_command_t *cmd = xfer->command;
sdxc_data_t *data = xfer->data;
status = sdxc_transfer_nonblocking(base, dma_config, xfer);
if (status != status_success)
{
return -RT_ERROR;
}
/* Wait until idle */
volatile uint32_t interrupt_status = sdxc_get_interrupt_status(base);
while (!IS_HPM_BITMASK_SET(interrupt_status, SDXC_INT_STAT_CMD_COMPLETE_MASK))
{
interrupt_status = sdxc_get_interrupt_status(base);
status = sdxc_parse_interrupt_status(base);
HPM_BREAK_IF(status != status_success);
}
sdxc_clear_interrupt_status(base, SDXC_INT_STAT_CMD_COMPLETE_MASK);
if (status == status_success)
{
status = sdxc_receive_cmd_response(base, cmd);
}
if ((status == status_success) && (data != RT_NULL))
{
interrupt_status = sdxc_get_interrupt_status(base);
while (!IS_HPM_BITMASK_SET(interrupt_status, SDXC_INT_STAT_XFER_COMPLETE_MASK | SDXC_STS_ERROR))
{
interrupt_status = sdxc_get_interrupt_status(base);
status = sdxc_parse_interrupt_status(base);
HPM_BREAK_IF(status != status_success);
}
}
return status;
}
/**
* !@brief SDMMC request implementation based on HPMicro SDXC Host
*/
static void hpm_sdmmc_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
RT_ASSERT(host != RT_NULL);
RT_ASSERT(host->private_data != RT_NULL);
RT_ASSERT(req != RT_NULL);
RT_ASSERT(req->cmd != RT_NULL);
sdxc_adma_config_t adma_config = { 0 };
sdxc_xfer_t xfer = { 0 };
sdxc_command_t sdxc_cmd = { 0 };
sdxc_data_t sdxc_data = { 0 };
uint32_t *raw_alloc_buf = RT_NULL;
uint32_t *aligned_buf = RT_NULL;
hpm_stat_t err = status_invalid_argument;
struct hpm_mmcsd *mmcsd = (struct hpm_mmcsd *) host->private_data;
struct rt_mmcsd_cmd *cmd = req->cmd;
struct rt_mmcsd_data *data = cmd->data;
/* configure command */
sdxc_cmd.cmd_index = cmd->cmd_code;
sdxc_cmd.cmd_argument = cmd->arg;
sdxc_cmd.cmd_type = (cmd->cmd_code == STOP_TRANSMISSION) ? sdxc_cmd_type_abort_cmd : sdxc_cmd_type_normal_cmd;
switch (cmd->flags & RESP_MASK)
{
case RESP_NONE:
sdxc_cmd.resp_type = sdxc_dev_resp_none;
break;
case RESP_R1:
sdxc_cmd.resp_type = sdxc_dev_resp_r1;
break;
case RESP_R1B:
sdxc_cmd.resp_type = sdxc_dev_resp_r1b;
break;
case RESP_R2:
sdxc_cmd.resp_type = sdxc_dev_resp_r2;
break;
case RESP_R3:
sdxc_cmd.resp_type = sdxc_dev_resp_r3;
break;
case RESP_R4:
sdxc_cmd.resp_type = sdxc_dev_resp_r4;
break;
case RESP_R6:
sdxc_cmd.resp_type = sdxc_dev_resp_r6;
break;
case RESP_R7:
sdxc_cmd.resp_type = sdxc_dev_resp_r7;
break;
case RESP_R5:
sdxc_cmd.resp_type = sdxc_dev_resp_r5;
break;
default:
RT_ASSERT(NULL);
break;
}
sdxc_cmd.cmd_flags = 0UL;
xfer.command = &sdxc_cmd;
xfer.data = NULL;
if (data != NULL)
{
sdxc_data.enable_auto_cmd12 = false;
sdxc_data.enable_auto_cmd23 = false;
sdxc_data.enable_ignore_error = false;
sdxc_data.data_type = sdxc_xfer_data_normal;
sdxc_data.block_size = data->blksize;
sdxc_data.block_cnt = data->blks;
/* configure adma2 */
adma_config.dma_type = sdxc_dmasel_adma2;
adma_config.adma_table = (uint32_t*) core_local_mem_to_sys_address(BOARD_RUNNING_CORE,
(uint32_t) mmcsd->sdxc_adma2_table);
adma_config.adma_table_words = SDXC_ADMA_TABLE_WORDS;
size_t xfer_buf_addr = (uint32_t)data->buf;
uint32_t xfer_len = data->blks * data->blksize;
if ((req->data->flags & DATA_DIR_WRITE) != 0U)
{
uint32_t write_size = xfer_len;
size_t aligned_start;
uint32_t aligned_size;
#if defined(HPM_SDXC_ALLOC_CACHELINE_ALIGNED_BUF) && (HPM_SDXC_ALLOC_CACHELINE_ALIGNED_BUF == 1)
if (!SDXC_IS_CACHELINE_ALIGNED(xfer_buf_addr) || !SDXC_IS_CACHELINE_ALIGNED(write_size))
#else
if ((xfer_buf_addr % 4 != 0) && (write_size % 4 != 0))
#endif
{
write_size = SDXC_CACHELINE_ALIGN_UP(xfer_len);
raw_alloc_buf = (uint32_t *) rt_malloc(write_size + CACHE_LINESIZE - RT_ALIGN_SIZE);
RT_ASSERT(raw_alloc_buf != RT_NULL);
aligned_buf = (uint32_t *) SDXC_CACHELINE_ALIGN_UP(raw_alloc_buf);
RT_ASSERT(aligned_buf != RT_NULL);
memcpy(aligned_buf, data->buf, xfer_len);
memset(aligned_buf + write_size, 0, write_size - xfer_len);
sdxc_data.tx_data = (uint32_t const *) core_local_mem_to_sys_address(BOARD_RUNNING_CORE, (uint32_t) aligned_buf);
aligned_start = (uint32_t)sdxc_data.tx_data;
aligned_size = write_size;
}
else
{
sdxc_data.tx_data = (uint32_t const *) core_local_mem_to_sys_address(BOARD_RUNNING_CORE, xfer_buf_addr);
aligned_start = SDXC_CACHELINE_ALIGN_DOWN(sdxc_data.tx_data);
size_t aligned_end = SDXC_CACHELINE_ALIGN_UP((uint32_t)sdxc_data.tx_data + write_size);
aligned_size = aligned_end - aligned_start;
}
rt_base_t level = rt_hw_interrupt_disable();
l1c_dc_flush(aligned_start, aligned_size);
rt_hw_interrupt_enable(level);
sdxc_data.rx_data = NULL;
}
else
{
uint32_t read_size = xfer_len;
#if defined(HPM_SDXC_ALLOC_CACHELINE_ALIGNED_BUF) && (HPM_SDXC_ALLOC_CACHELINE_ALIGNED_BUF == 1)
if (!SDXC_IS_CACHELINE_ALIGNED(xfer_buf_addr) || !SDXC_IS_CACHELINE_ALIGNED(read_size))
#else
if ((xfer_buf_addr % 4 != 0) || (read_size % 4 != 0))
#endif
{
uint32_t aligned_read_size = SDXC_CACHELINE_ALIGN_UP(read_size);
raw_alloc_buf = (uint32_t *) rt_malloc(aligned_read_size + CACHE_LINESIZE - RT_ALIGN_SIZE);
RT_ASSERT(raw_alloc_buf != RT_NULL);
aligned_buf = (uint32_t *) SDXC_CACHELINE_ALIGN_UP(raw_alloc_buf);
sdxc_data.rx_data = (uint32_t*) core_local_mem_to_sys_address(BOARD_RUNNING_CORE, (uint32_t) aligned_buf);
}
else
{
sdxc_data.rx_data = (uint32_t*) core_local_mem_to_sys_address(BOARD_RUNNING_CORE, xfer_buf_addr);
size_t aligned_start = SDXC_CACHELINE_ALIGN_DOWN(sdxc_data.rx_data);
size_t aligned_end = SDXC_CACHELINE_ALIGN_UP((uint32_t)sdxc_data.rx_data + read_size);
uint32_t aligned_size = aligned_end - aligned_start;
rt_base_t level = rt_hw_interrupt_disable();
l1c_dc_flush(aligned_start, aligned_size);
rt_hw_interrupt_enable(level);
}
sdxc_data.tx_data = RT_NULL;
}
xfer.data = &sdxc_data;
/* Align the write/read size since the ADMA2 engine in the SDXC cannot transfer unaligned size of data */
if ((cmd->cmd_code == SD_IO_RW_EXTENDED) && (xfer_len % 4 != 0))
{
sdio_cmd53_arg_t cmd53_arg;
cmd53_arg.value = sdxc_cmd.cmd_argument;
cmd53_arg.count = HPM_ALIGN_UP(xfer_len, 4);
sdxc_cmd.cmd_argument = cmd53_arg.value;
sdxc_data.block_size = HPM_ALIGN_UP(xfer_len, 4);
}
}
if ((req->data->blks > 1) && ((cmd->cmd_code == READ_MULTIPLE_BLOCK) || ((cmd->cmd_code == WRITE_MULTIPLE_BLOCK))))
{
xfer.data->enable_auto_cmd12 = true;
}
err = hpm_sdmmc_transfer(mmcsd->sdxc_base, &adma_config, &xfer);
LOG_I("cmd=%d, arg=%x\n", cmd->cmd_code, cmd->arg);
if (err != status_success)
{
hpm_sdmmc_host_recovery(mmcsd->sdxc_base);
if (err != status_sdxc_cmd_timeout_error) /* Ignore command timeout error by default */
{
LOG_E(" ***hpm_sdmmc_transfer error: %d, cmd:%d, arg:0x%x*** -->\n", err, cmd->cmd_code, cmd->arg);
}
cmd->err = -RT_ERROR;
}
else
{
LOG_I(" ***hpm_sdmmc_transfer passed: %d*** -->\n", err);
if (sdxc_cmd.resp_type == sdxc_dev_resp_r2)
{
LOG_I("resp:0x%08x 0x%08x 0x%08x 0x%08x\n", sdxc_cmd.response[0],
sdxc_cmd.response[1], sdxc_cmd.response[2], sdxc_cmd.response[3]);
}
else
{
LOG_I("resp:0x%08x\n", sdxc_cmd.response[0]);
}
}
if ((sdxc_data.rx_data != NULL) && (cmd->err == RT_EOK))
{
uint32_t read_size = data->blks * data->blksize;
if (aligned_buf != RT_NULL)
{
uint32_t aligned_read_size = SDXC_CACHELINE_ALIGN_UP(read_size);
rt_base_t level = rt_hw_interrupt_disable();
l1c_dc_invalidate((uint32_t) aligned_buf, aligned_read_size);
rt_hw_interrupt_enable(level);
memcpy(data->buf, aligned_buf, read_size);
}
else
{
size_t aligned_start = SDXC_CACHELINE_ALIGN_DOWN(sdxc_data.rx_data);
size_t aligned_end = SDXC_CACHELINE_ALIGN_UP((uint32_t)sdxc_data.rx_data + read_size);
uint32_t aligned_size = aligned_end - aligned_start;
rt_base_t level = rt_hw_interrupt_disable();
l1c_dc_invalidate(aligned_start, aligned_size);
rt_hw_interrupt_enable(level);
}
}
if (raw_alloc_buf != RT_NULL)
{
rt_free(raw_alloc_buf);
raw_alloc_buf = RT_NULL;
aligned_buf = RT_NULL;
}
if ((cmd->flags & RESP_MASK) == RESP_R2)
{
cmd->resp[3] = sdxc_cmd.response[0];
cmd->resp[2] = sdxc_cmd.response[1];
cmd->resp[1] = sdxc_cmd.response[2];
cmd->resp[0] = sdxc_cmd.response[3];
}
else
{
cmd->resp[0] = sdxc_cmd.response[0];
}
mmcsd_req_complete(host);
}
static void hpm_sdmmc_set_cardclk_delay_chain(struct hpm_mmcsd *mmcsd)
{
SDXC_Type *base = mmcsd->sdxc_base;
bool need_inverse = sdxc_is_inverse_clock_enabled(base);
sdxc_enable_inverse_clock(base, false);
sdxc_enable_sd_clock(base, false);
uint32_t num_delaycells = sdxc_get_default_cardclk_delay_chain(base, mmcsd->freq);
sdxc_set_cardclk_delay_chain(base, num_delaycells);
sdxc_enable_inverse_clock(base, need_inverse);
sdxc_enable_sd_clock(base, true);
}
ATTR_WEAK void init_sdxc_ds_pin(SDXC_Type *base)
{
LOG_W("Ignore this warning if the DS pin is not supported\n");
}
/**
* !@brief Set IO Configuration for HPMicro IO and SDXC Host
*/
static void hpm_sdmmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
RT_ASSERT(host != RT_NULL);
RT_ASSERT(host->private_data != RT_NULL);
RT_ASSERT(io_cfg != RT_NULL);
struct hpm_mmcsd *mmcsd = (struct hpm_mmcsd *) host->private_data;
/* Power control */
uint32_t vdd = io_cfg->vdd;
if (io_cfg->power_mode != mmcsd->power_mode)
{
switch(io_cfg->power_mode)
{
case MMCSD_POWER_OFF:
hpm_sdmmc_power_off_via_pin(mmcsd);
break;
case MMCSD_POWER_ON:
hpm_sdmmc_power_on_via_pin(mmcsd);
break;
case MMCSD_POWER_UP:
hpm_sdmmc_power_off_via_pin(mmcsd);
rt_thread_mdelay(10);
hpm_sdmmc_power_on_via_pin(mmcsd);
/* After power up, wait 1ms, then wait 74 card clock */
rt_thread_mdelay(1);
sdxc_wait_card_active(mmcsd->sdxc_base);
break;
default:
/* Do nothing */
break;
}
mmcsd->power_mode = io_cfg->power_mode;
}
/* Voltage switch */
if (mmcsd->vdd != vdd)
{
if (vdd == 7)
{
/* Switch to 1.8V */
hpm_sdmmc_switch_to_1v8_via_pin(mmcsd);
}
else
{
/* Switch to 3V */
hpm_sdmmc_switch_to_3v3_via_pin(mmcsd);
}
mmcsd->vdd = vdd;
}
/* Set bus width */
if (mmcsd->bus_width != io_cfg->bus_width)
{
switch (io_cfg->bus_width)
{
case MMCSD_BUS_WIDTH_4:
sdxc_set_data_bus_width(mmcsd->sdxc_base, sdxc_bus_width_4bit);
break;
case MMCSD_BUS_WIDTH_8:
sdxc_set_data_bus_width(mmcsd->sdxc_base, sdxc_bus_width_8bit);
break;
default:
sdxc_set_data_bus_width(mmcsd->sdxc_base, sdxc_bus_width_1bit);
break;
}
mmcsd->bus_width = io_cfg->bus_width;
}
/* Set timing mode */
bool need_config_ds = false;
if (mmcsd->timing != io_cfg->timing)
{
switch (io_cfg->timing)
{
case MMCSD_TIMING_LEGACY:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_sd_speed_normal);
break;
case MMCSD_TIMING_SD_HS:
case MMCSD_TIMING_MMC_HS:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_sd_speed_high);
break;
case MMCSD_TIMING_UHS_SDR12:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_sd_speed_sdr12);
break;
case MMCSD_TIMING_UHS_SDR25:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_sd_speed_sdr25);
break;
case MMCSD_TIMING_UHS_SDR50:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_sd_speed_sdr50);
break;
case MMCSD_TIMING_UHS_SDR104:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_sd_speed_sdr104);
break;
case MMCSD_TIMING_UHS_DDR50:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_sd_speed_ddr50);
/* Must switch to 1.8V signaling for UHS_DDR50 */
sdxc_select_voltage(mmcsd->sdxc_base, sdxc_bus_voltage_sd_1v8);
break;
case MMCSD_TIMING_MMC_DDR52:
sdxc_enable_emmc_support(mmcsd->sdxc_base, true);
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_emmc_speed_high_speed_ddr);
break;
case MMCSD_TIMING_MMC_HS200:
sdxc_enable_emmc_support(mmcsd->sdxc_base, true);
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_emmc_speed_hs200);
break;
case MMCSD_TIMING_MMC_HS400:
case MMCSD_TIMING_MMC_HS400_ENH_DS:
sdxc_enable_emmc_support(mmcsd->sdxc_base, true);
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_emmc_speed_hs400);
if (io_cfg->timing == MMCSD_TIMING_MMC_HS400_ENH_DS)
{
sdxc_enable_enhanced_strobe(mmcsd->sdxc_base, true);
uint32_t num_delaycells = sdxc_get_default_strobe_delay(mmcsd->sdxc_base);
sdxc_set_data_strobe_delay(mmcsd->sdxc_base, num_delaycells);
}
need_config_ds = true;
break;
}
mmcsd->timing = io_cfg->timing;
}
/* Initialize SDXC Pins */
bool open_drain = io_cfg->bus_mode == MMCSD_BUSMODE_OPENDRAIN;
bool is_1v8 = (io_cfg->vdd == 7) || (mmcsd->host->valid_ocr == VDD_165_195);
uint32_t width = (io_cfg->bus_width == MMCSD_BUS_WIDTH_8) ? 8 : ((io_cfg->bus_width == MMCSD_BUS_WIDTH_4) ? 4 : 1);
init_sdxc_cmd_pin(mmcsd->sdxc_base, open_drain, is_1v8);
init_sdxc_clk_data_pins(mmcsd->sdxc_base, width, is_1v8);
rt_thread_mdelay(1);
if (need_config_ds)
{
init_sdxc_ds_pin(mmcsd->sdxc_base);
rt_thread_mdelay(1);
}
/* Initialize SDXC clock */
uint32_t sdxc_clock = io_cfg->clock;
if (sdxc_clock != 0U)
{
if (mmcsd->freq != sdxc_clock)
{
bool need_reverse = true;
bool need_card_delay_clk = false;
if ((mmcsd->timing == MMCSD_TIMING_UHS_DDR50) ||
(mmcsd->timing == MMCSD_TIMING_MMC_DDR52) ||
(mmcsd->timing == MMCSD_TIMING_MMC_HS400) ||
(mmcsd->timing == MMCSD_TIMING_MMC_HS400_ENH_DS))
{
need_reverse = false;
need_card_delay_clk = true;
}
/* Ensure request frequency from mmcsd stack level doesn't exceed maximum supported frequency by host */
uint32_t clock_freq = MIN(mmcsd->host->freq_max, sdxc_clock);
clock_freq = board_sd_configure_clock(mmcsd->sdxc_base, clock_freq, need_reverse);
LOG_I("mmcsd clock: %dHz\n", clock_freq);
mmcsd->freq = sdxc_clock;
if (need_card_delay_clk)
{
hpm_sdmmc_set_cardclk_delay_chain(mmcsd);
}
}
}
}
static void hpm_sdmmc_enable_sdio_irq(struct rt_mmcsd_host *host, rt_int32_t en)
{
RT_ASSERT(host != RT_NULL);
RT_ASSERT(host->private_data != RT_NULL);
struct hpm_mmcsd *mmcsd = (struct hpm_mmcsd *) host->private_data;
if (en != 0)
{
intc_m_enable_irq_with_priority(mmcsd->irq_num, 1);
}
else
{
intc_m_disable_irq(mmcsd->irq_num);
}
}
static void hpm_sdmmc_host_recovery(SDXC_Type *base)
{
uint32_t pstate = sdxc_get_present_status(base);
bool need_reset_cmd_line = false;
bool need_reset_data_line = false;
if ((pstate & SDXC_PSTATE_CMD_INHIBIT_MASK) != 0U)
{
/* Reset command line */
need_reset_cmd_line = true;
}
if ((pstate & SDXC_PSTATE_DAT_INHIBIT_MASK) != 0U)
{
/* Reset data line */
need_reset_data_line = true;
}
uint32_t int_stat = sdxc_get_interrupt_status(base);
if ((int_stat & 0xF0000UL) != 0U)
{
need_reset_cmd_line = true;
}
if ((int_stat & 0x700000) != 0U)
{
need_reset_data_line = true;
}
if (need_reset_cmd_line)
{
sdxc_reset(base, sdxc_reset_cmd_line, 0xFFFFUL);
}
if (need_reset_data_line)
{
sdxc_reset(base, sdxc_reset_data_line, 0xFFFFUL);
}
if (need_reset_cmd_line || need_reset_data_line)
{
sdxc_clear_interrupt_status(base, ~0UL);
}
rt_thread_mdelay(10);
}
int rt_hw_sdio_init(void)
{
rt_err_t err = RT_EOK;
struct rt_mmcsd_host *host = NULL;
struct hpm_mmcsd *mmcsd = NULL;
for (uint32_t i = 0; i < ARRAY_SIZE(hpm_sdxcs); i++) {
host = mmcsd_alloc_host();
if (host == NULL)
{
err = -RT_ERROR;
break;
}
mmcsd = hpm_sdxcs[i];
host->ops = &hpm_mmcsd_host_ops;
host->freq_min = 375000;
host->freq_max = 50000000;
host->valid_ocr = 0;
/* Determine supported Voltage range */
if (mmcsd->support_3v3)
{
host->valid_ocr |= VDD_30_31 | VDD_31_32 | VDD_32_33 | VDD_33_34;
}
if (mmcsd->support_1v8)
{
host->valid_ocr |= VDD_165_195;
}
/* Determine Host supported features */
host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ;
if (mmcsd->support_4bit)
{
host->flags |= MMCSD_BUSWIDTH_4;
}
if (mmcsd->support_8bit) {
host->flags |= MMCSD_BUSWIDTH_8;
}
if (mmcsd->support_1v8)
{
host->freq_max = 166000000;
host->flags |= MMCSD_SUP_HS200_1V8;
host->flags |= MMCSD_SUP_SDR50 | MMCSD_SUP_SDR104;
if (sdxc_is_ddr50_supported(mmcsd->sdxc_base))
{
host->flags |= MMCSD_SUP_DDR50;
}
if (mmcsd->support_8bit)
{
host->flags |= MMCSD_SUP_HS400_1V8 | MMCSD_SUP_ENH_DS;
}
}
/* For eMMC device, add High Speed DDR mode support as long as it is supported by the host controller */
if (sdxc_is_ddr50_supported(mmcsd->sdxc_base))
{
host->flags |= MMCSD_SUP_HIGHSPEED_DDR;
}
rt_strncpy(host->name, mmcsd->name, RT_NAME_MAX);
host->max_seg_size = 0x80000;
host->max_dma_segs = 1;
host->max_blk_size = 512;
host->max_blk_count = 1024;
mmcsd->host = host;
/* Perform necessary initialization */
board_sd_configure_clock(mmcsd->sdxc_base, 375000, true);
sdxc_config_t sdxc_config = { 0 };
sdxc_config.data_timeout = 1000;
sdxc_init(mmcsd->sdxc_base, &sdxc_config);
host->private_data = mmcsd;
/* Initialize PWR pin and VSEL pin */
if (mmcsd->pwr_pin_name != RT_NULL)
{
hpm_sdmmc_pin_init(mmcsd->pwr_pin_name, true);
rt_thread_mdelay(1);
if (host->valid_ocr == VDD_165_195)
{
hpm_sdmmc_switch_to_1v8_via_pin(mmcsd);
}
else
{
hpm_sdmmc_switch_to_3v3_via_pin(mmcsd);
}
}
if (mmcsd->vsel_pin_name != RT_NULL)
{
hpm_sdmmc_pin_init(mmcsd->vsel_pin_name, true);
rt_thread_mdelay(1);
}
mmcsd_change(host);
};
if (err != RT_EOK)
{
if (host != NULL)
{
mmcsd_free_host(host);
host = NULL;
}
}
return err;
}
INIT_DEVICE_EXPORT(rt_hw_sdio_init);
#endif