rt-thread/bsp/stm32/libraries/HAL_Drivers/drv_spi.c

965 lines
30 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-5 SummerGift first version
* 2018-12-11 greedyhao Porting for stm32f7xx
* 2019-01-03 zylx modify DMA initialization and spixfer function
* 2020-01-15 whj4674672 Porting for stm32h7xx
* 2020-06-18 thread-liu Porting for stm32mp1xx
* 2020-10-14 Dozingfiretruck Porting for stm32wbxx
*/
#include <rtthread.h>
#include <rtdevice.h>
#include "board.h"
#ifdef RT_USING_SPI
#if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6)
#include "drv_spi.h"
#include "drv_config.h"
#include <string.h>
//#define DRV_DEBUG
#define LOG_TAG "drv.spi"
#include <drv_log.h>
enum
{
#ifdef BSP_USING_SPI1
SPI1_INDEX,
#endif
#ifdef BSP_USING_SPI2
SPI2_INDEX,
#endif
#ifdef BSP_USING_SPI3
SPI3_INDEX,
#endif
#ifdef BSP_USING_SPI4
SPI4_INDEX,
#endif
#ifdef BSP_USING_SPI5
SPI5_INDEX,
#endif
#ifdef BSP_USING_SPI6
SPI6_INDEX,
#endif
};
static struct stm32_spi_config spi_config[] =
{
#ifdef BSP_USING_SPI1
SPI1_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI2
SPI2_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI3
SPI3_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI4
SPI4_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI5
SPI5_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI6
SPI6_BUS_CONFIG,
#endif
};
static struct stm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
static rt_err_t stm32_spi_init(struct stm32_spi *spi_drv, struct rt_spi_configuration *cfg)
{
RT_ASSERT(spi_drv != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
if (cfg->mode & RT_SPI_SLAVE)
{
spi_handle->Init.Mode = SPI_MODE_SLAVE;
}
else
{
spi_handle->Init.Mode = SPI_MODE_MASTER;
}
if (cfg->mode & RT_SPI_3WIRE)
{
spi_handle->Init.Direction = SPI_DIRECTION_1LINE;
}
else
{
spi_handle->Init.Direction = SPI_DIRECTION_2LINES;
}
if (cfg->data_width == 8)
{
spi_handle->Init.DataSize = SPI_DATASIZE_8BIT;
spi_handle->TxXferSize = 8;
spi_handle->RxXferSize = 8;
}
else if (cfg->data_width == 16)
{
spi_handle->Init.DataSize = SPI_DATASIZE_16BIT;
}
else
{
return RT_EIO;
}
if (cfg->mode & RT_SPI_CPHA)
{
spi_handle->Init.CLKPhase = SPI_PHASE_2EDGE;
}
else
{
spi_handle->Init.CLKPhase = SPI_PHASE_1EDGE;
}
if (cfg->mode & RT_SPI_CPOL)
{
spi_handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
}
else
{
spi_handle->Init.CLKPolarity = SPI_POLARITY_LOW;
}
if (cfg->mode & RT_SPI_NO_CS)
{
spi_handle->Init.NSS = SPI_NSS_HARD_OUTPUT;
}
else
{
spi_handle->Init.NSS = SPI_NSS_SOFT;
}
uint32_t SPI_APB_CLOCK;
/* special series */
#if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
SPI_APB_CLOCK = HAL_RCC_GetPCLK1Freq();
/* normal series */
#else
/* SPI2 and SPI3 on APB1 */
if(spi_drv->config->Instance == SPI2 || spi_drv->config->Instance == SPI3)
{
SPI_APB_CLOCK = HAL_RCC_GetPCLK1Freq();
}
/* SPI1, SPI4 and SPI5 on APB2 */
else if(spi_drv->config->Instance == SPI1 || spi_drv->config->Instance == SPI4 || spi_drv->config->Instance == SPI5)
{
SPI_APB_CLOCK = HAL_RCC_GetPCLK2Freq();
}
/* SPI6 get the input clk from APB4(such as on STM32H7). However, there is no HAL_RCC_GetPCLK4Freq api provided.
APB4 has same prescale factor as APB1 from HPRE Clock by default in CubeMx, so we assign APB1 to it.
if you change the default prescale factor of APB4, please modify SPI_APB_CLOCK accordingly.
*/
else
{
SPI_APB_CLOCK = HAL_RCC_GetPCLK1Freq();
}
#endif
if (cfg->max_hz >= SPI_APB_CLOCK / 2)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 4)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 8)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 16)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 32)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 64)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 128)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
}
else
{
/* min prescaler 256 */
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
}
LOG_D("sys freq: %d, pclk2 freq: %d, SPI limiting freq: %d, BaudRatePrescaler: %d",
#if defined(SOC_SERIES_STM32MP1)
HAL_RCC_GetSystemCoreClockFreq(),
#else
HAL_RCC_GetSysClockFreq(),
#endif
SPI_APB_CLOCK,
cfg->max_hz,
spi_handle->Init.BaudRatePrescaler);
if (cfg->mode & RT_SPI_MSB)
{
spi_handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
}
else
{
spi_handle->Init.FirstBit = SPI_FIRSTBIT_LSB;
}
spi_handle->Init.TIMode = SPI_TIMODE_DISABLE;
spi_handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
spi_handle->State = HAL_SPI_STATE_RESET;
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32WB)
spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
#elif defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
spi_handle->Init.Mode = SPI_MODE_MASTER;
spi_handle->Init.NSS = SPI_NSS_SOFT;
spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
spi_handle->Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
spi_handle->Init.CRCPolynomial = 7;
spi_handle->Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
spi_handle->Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
spi_handle->Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
spi_handle->Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
spi_handle->Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
spi_handle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
spi_handle->Init.IOSwap = SPI_IO_SWAP_DISABLE;
spi_handle->Init.FifoThreshold = SPI_FIFO_THRESHOLD_08DATA;
#endif
if (HAL_SPI_Init(spi_handle) != HAL_OK)
{
return RT_EIO;
}
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) \
|| defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32WB)
SET_BIT(spi_handle->Instance->CR2, SPI_RXFIFO_THRESHOLD_HF);
#endif
/* DMA configuration */
if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
HAL_DMA_Init(&spi_drv->dma.handle_rx);
__HAL_LINKDMA(&spi_drv->handle, hdmarx, spi_drv->dma.handle_rx);
/* NVIC configuration for DMA transfer complete interrupt */
HAL_NVIC_SetPriority(spi_drv->config->dma_rx->dma_irq, 0, 0);
HAL_NVIC_EnableIRQ(spi_drv->config->dma_rx->dma_irq);
}
if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
HAL_DMA_Init(&spi_drv->dma.handle_tx);
__HAL_LINKDMA(&spi_drv->handle, hdmatx, spi_drv->dma.handle_tx);
/* NVIC configuration for DMA transfer complete interrupt */
HAL_NVIC_SetPriority(spi_drv->config->dma_tx->dma_irq, 0, 1);
HAL_NVIC_EnableIRQ(spi_drv->config->dma_tx->dma_irq);
}
if(spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG || spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
HAL_NVIC_SetPriority(spi_drv->config->irq_type, 2, 0);
HAL_NVIC_EnableIRQ(spi_drv->config->irq_type);
}
LOG_D("%s init done", spi_drv->config->bus_name);
return RT_EOK;
}
static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
HAL_StatusTypeDef state;
rt_size_t message_length, already_send_length;
rt_uint16_t send_length;
rt_uint8_t *recv_buf;
const rt_uint8_t *send_buf;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
RT_ASSERT(message != RT_NULL);
struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
struct stm32_hw_spi_cs *cs = device->parent.user_data;
if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS))
{
if (device->config.mode & RT_SPI_CS_HIGH)
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET);
else
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_RESET);
}
LOG_D("%s transfer prepare and start", spi_drv->config->bus_name);
LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
spi_drv->config->bus_name,
(uint32_t)message->send_buf,
(uint32_t)message->recv_buf, message->length);
message_length = message->length;
recv_buf = message->recv_buf;
send_buf = message->send_buf;
while (message_length)
{
/* the HAL library use uint16 to save the data length */
if (message_length > 65535)
{
send_length = 65535;
message_length = message_length - 65535;
}
else
{
send_length = message_length;
message_length = 0;
}
/* calculate the start address */
already_send_length = message->length - send_length - message_length;
send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
/* start once data exchange in DMA mode */
if (message->send_buf && message->recv_buf)
{
if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG))
{
state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length);
}
else
{
state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length, 1000);
}
}
else if (message->send_buf)
{
if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)send_buf, send_length);
}
else
{
state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, send_length, 1000);
}
if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
{
/* release the CS by disable SPI when using 3 wires SPI */
__HAL_SPI_DISABLE(spi_handle);
}
}
else
{
memset((uint8_t *)recv_buf, 0xff, send_length);
if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)recv_buf, send_length);
}
else
{
/* clear the old error flag */
__HAL_SPI_CLEAR_OVRFLAG(spi_handle);
state = HAL_SPI_Receive(spi_handle, (uint8_t *)recv_buf, send_length, 1000);
}
}
if (state != HAL_OK)
{
LOG_I("spi transfer error : %d", state);
message->length = 0;
spi_handle->State = HAL_SPI_STATE_READY;
}
else
{
LOG_D("%s transfer done", spi_drv->config->bus_name);
}
/* For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
}
if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS))
{
if (device->config.mode & RT_SPI_CS_HIGH)
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_RESET);
else
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET);
}
return message->length;
}
static rt_err_t spi_configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
spi_drv->cfg = configuration;
return stm32_spi_init(spi_drv, configuration);
}
static const struct rt_spi_ops stm_spi_ops =
{
.configure = spi_configure,
.xfer = spixfer,
};
static int rt_hw_spi_bus_init(void)
{
rt_err_t result;
for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
{
spi_bus_obj[i].config = &spi_config[i];
spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
if (spi_bus_obj[i].spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
/* Configure the DMA handler for Transmission process */
spi_bus_obj[i].dma.handle_rx.Instance = spi_config[i].dma_rx->Instance;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
spi_bus_obj[i].dma.handle_rx.Init.Channel = spi_config[i].dma_rx->channel;
#elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
spi_bus_obj[i].dma.handle_rx.Init.Request = spi_config[i].dma_rx->request;
#endif
spi_bus_obj[i].dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
spi_bus_obj[i].dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
spi_bus_obj[i].dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
spi_bus_obj[i].dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_rx.Init.Mode = DMA_NORMAL;
spi_bus_obj[i].dma.handle_rx.Init.Priority = DMA_PRIORITY_HIGH;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7)
spi_bus_obj[i].dma.handle_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
spi_bus_obj[i].dma.handle_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
spi_bus_obj[i].dma.handle_rx.Init.MemBurst = DMA_MBURST_INC4;
spi_bus_obj[i].dma.handle_rx.Init.PeriphBurst = DMA_PBURST_INC4;
#endif
{
rt_uint32_t tmpreg = 0x00U;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
SET_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
/* Delay after an RCC peripheral clock enabling */
tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
#elif defined(SOC_SERIES_STM32MP1)
__HAL_RCC_DMAMUX_CLK_ENABLE();
SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
#endif
UNUSED(tmpreg); /* To avoid compiler warnings */
}
}
if (spi_bus_obj[i].spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
/* Configure the DMA handler for Transmission process */
spi_bus_obj[i].dma.handle_tx.Instance = spi_config[i].dma_tx->Instance;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
spi_bus_obj[i].dma.handle_tx.Init.Channel = spi_config[i].dma_tx->channel;
#elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
spi_bus_obj[i].dma.handle_tx.Init.Request = spi_config[i].dma_tx->request;
#endif
spi_bus_obj[i].dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
spi_bus_obj[i].dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
spi_bus_obj[i].dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
spi_bus_obj[i].dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_tx.Init.Mode = DMA_NORMAL;
spi_bus_obj[i].dma.handle_tx.Init.Priority = DMA_PRIORITY_LOW;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7)
spi_bus_obj[i].dma.handle_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
spi_bus_obj[i].dma.handle_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
spi_bus_obj[i].dma.handle_tx.Init.MemBurst = DMA_MBURST_INC4;
spi_bus_obj[i].dma.handle_tx.Init.PeriphBurst = DMA_PBURST_INC4;
#endif
{
rt_uint32_t tmpreg = 0x00U;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
SET_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
/* Delay after an RCC peripheral clock enabling */
tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
#elif defined(SOC_SERIES_STM32MP1)
__HAL_RCC_DMAMUX_CLK_ENABLE();
SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
#endif
UNUSED(tmpreg); /* To avoid compiler warnings */
}
}
result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &stm_spi_ops);
RT_ASSERT(result == RT_EOK);
LOG_D("%s bus init done", spi_config[i].bus_name);
}
return result;
}
/**
* Attach the spi device to SPI bus, this function must be used after initialization.
*/
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_TypeDef *cs_gpiox, uint16_t cs_gpio_pin)
{
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
rt_err_t result;
struct rt_spi_device *spi_device;
struct stm32_hw_spi_cs *cs_pin;
/* initialize the cs pin && select the slave*/
GPIO_InitTypeDef GPIO_Initure;
GPIO_Initure.Pin = cs_gpio_pin;
GPIO_Initure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_Initure.Pull = GPIO_PULLUP;
GPIO_Initure.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(cs_gpiox, &GPIO_Initure);
HAL_GPIO_WritePin(cs_gpiox, cs_gpio_pin, GPIO_PIN_SET);
/* attach the device to spi bus*/
spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
cs_pin = (struct stm32_hw_spi_cs *)rt_malloc(sizeof(struct stm32_hw_spi_cs));
RT_ASSERT(cs_pin != RT_NULL);
cs_pin->GPIOx = cs_gpiox;
cs_pin->GPIO_Pin = cs_gpio_pin;
result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
if (result != RT_EOK)
{
LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
}
RT_ASSERT(result == RT_EOK);
LOG_D("%s attach to %s done", device_name, bus_name);
return result;
}
#if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA)
void SPI1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI1_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI1_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI1_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI1) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
void SPI2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI2_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI2_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI2_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI2) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_SPI3_TX_USING_DMA) || defined(BSP_SPI3_RX_USING_DMA)
void SPI3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI3_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI3_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI3_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI3) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_SPI4_TX_USING_DMA) || defined(BSP_SPI4_RX_USING_DMA)
void SPI4_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI4_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI4_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI4) && defined(BSP_SPI4_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI4_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI4) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_SPI5_TX_USING_DMA) || defined(BSP_SPI5_RX_USING_DMA)
void SPI5_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI5_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI5_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI5) && defined(BSP_SPI5_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI5_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI5) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI6_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI6) && defined(BSP_SPI6_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI6_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI6) && defined(BSP_SPI_USING_DMA) */
static void stm32_get_dma_info(void)
{
#ifdef BSP_SPI1_RX_USING_DMA
spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
#endif
#ifdef BSP_SPI1_TX_USING_DMA
spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
#endif
#ifdef BSP_SPI2_RX_USING_DMA
spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
#endif
#ifdef BSP_SPI2_TX_USING_DMA
spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
#endif
#ifdef BSP_SPI3_RX_USING_DMA
spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
#endif
#ifdef BSP_SPI3_TX_USING_DMA
spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
#endif
#ifdef BSP_SPI4_RX_USING_DMA
spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
#endif
#ifdef BSP_SPI4_TX_USING_DMA
spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
#endif
#ifdef BSP_SPI5_RX_USING_DMA
spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi5_dma_rx = SPI5_RX_DMA_CONFIG;
spi_config[SPI5_INDEX].dma_rx = &spi5_dma_rx;
#endif
#ifdef BSP_SPI5_TX_USING_DMA
spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi5_dma_tx = SPI5_TX_DMA_CONFIG;
spi_config[SPI5_INDEX].dma_tx = &spi5_dma_tx;
#endif
#ifdef BSP_SPI6_RX_USING_DMA
spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi6_dma_rx = SPI6_RX_DMA_CONFIG;
spi_config[SPI6_INDEX].dma_rx = &spi6_dma_rx;
#endif
#ifdef BSP_SPI6_TX_USING_DMA
spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi6_dma_tx = SPI6_TX_DMA_CONFIG;
spi_config[SPI6_INDEX].dma_tx = &spi6_dma_tx;
#endif
}
#if defined(SOC_SERIES_STM32F0)
void SPI1_DMA_RX_TX_IRQHandler(void)
{
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
SPI1_DMA_TX_IRQHandler();
#endif
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
SPI1_DMA_RX_IRQHandler();
#endif
}
void SPI2_DMA_RX_TX_IRQHandler(void)
{
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
SPI2_DMA_TX_IRQHandler();
#endif
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
SPI2_DMA_RX_IRQHandler();
#endif
}
#endif /* SOC_SERIES_STM32F0 */
int rt_hw_spi_init(void)
{
stm32_get_dma_info();
return rt_hw_spi_bus_init();
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
#endif /* BSP_USING_SPI1 || BSP_USING_SPI2 || BSP_USING_SPI3 || BSP_USING_SPI4 || BSP_USING_SPI5 */
#endif /* RT_USING_SPI */