rt-thread/bsp/nuvoton/libraries/m480/rtt_port/drv_uart.c

880 lines
21 KiB
C

/**************************************************************************//**
*
* @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-2-7 Wayne First version
*
******************************************************************************/
#include <rtconfig.h>
#if defined(BSP_USING_UART)
#include <rtdevice.h>
#include <rthw.h>
#include "NuMicro.h"
#include <drv_uart.h>
#if defined(RT_SERIAL_USING_DMA)
#include <drv_pdma.h>
#endif
/* Private define ---------------------------------------------------------------*/
enum
{
UART_START = -1,
#if defined(BSP_USING_UART0)
UART0_IDX,
#endif
#if defined(BSP_USING_UART1)
UART1_IDX,
#endif
#if defined(BSP_USING_UART2)
UART2_IDX,
#endif
#if defined(BSP_USING_UART3)
UART3_IDX,
#endif
#if defined(BSP_USING_UART4)
UART4_IDX,
#endif
#if defined(BSP_USING_UART5)
UART5_IDX,
#endif
#if defined(BSP_USING_UART6)
UART6_IDX,
#endif
#if defined(BSP_USING_UART7)
UART7_IDX,
#endif
UART_CNT
};
/* Private typedef --------------------------------------------------------------*/
struct nu_uart
{
rt_serial_t dev;
char *name;
UART_T *uart_base;
uint32_t uart_rst;
IRQn_Type uart_irq_n;
#if defined(RT_SERIAL_USING_DMA)
uint32_t dma_flag;
int16_t pdma_perp_tx;
int8_t pdma_chanid_tx;
int16_t pdma_perp_rx;
int8_t pdma_chanid_rx;
int32_t rx_write_offset;
int32_t rxdma_trigger_len;
#endif
};
typedef struct nu_uart *nu_uart_t;
/* Private functions ------------------------------------------------------------*/
static rt_err_t nu_uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg);
static rt_err_t nu_uart_control(struct rt_serial_device *serial, int cmd, void *arg);
static int nu_uart_send(struct rt_serial_device *serial, char c);
static int nu_uart_receive(struct rt_serial_device *serial);
static void nu_uart_isr(nu_uart_t serial);
#if defined(RT_SERIAL_USING_DMA)
static rt_ssize_t nu_uart_dma_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction);
static void nu_pdma_uart_rx_cb(void *pvOwner, uint32_t u32Events);
static void nu_pdma_uart_tx_cb(void *pvOwner, uint32_t u32Events);
#endif
/* Public functions ------------------------------------------------------------*/
/* Private variables ------------------------------------------------------------*/
static const struct rt_uart_ops nu_uart_ops =
{
.configure = nu_uart_configure,
.control = nu_uart_control,
.putc = nu_uart_send,
.getc = nu_uart_receive,
#if defined(RT_SERIAL_USING_DMA)
.dma_transmit = nu_uart_dma_transmit
#else
.dma_transmit = RT_NULL
#endif
};
static const struct serial_configure nu_uart_default_config =
RT_SERIAL_CONFIG_DEFAULT;
static struct nu_uart nu_uart_arr [] =
{
#if defined(BSP_USING_UART0)
{
.name = "uart0",
.uart_base = UART0,
.uart_rst = UART0_RST,
.uart_irq_n = UART0_IRQn,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART0_TX_DMA)
.pdma_perp_tx = PDMA_UART0_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART0_RX_DMA)
.pdma_perp_rx = PDMA_UART0_RX,
.rx_write_offset = 0,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART1)
{
.name = "uart1",
.uart_base = UART1,
.uart_rst = UART1_RST,
.uart_irq_n = UART1_IRQn,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART1_TX_DMA)
.pdma_perp_tx = PDMA_UART1_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART1_RX_DMA)
.pdma_perp_rx = PDMA_UART1_RX,
.rx_write_offset = 0,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART2)
{
.name = "uart2",
.uart_base = UART2,
.uart_rst = UART2_RST,
.uart_irq_n = UART2_IRQn,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART2_TX_DMA)
.pdma_perp_tx = PDMA_UART2_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART2_RX_DMA)
.pdma_perp_rx = PDMA_UART2_RX,
.rx_write_offset = 0,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART3)
{
.name = "uart3",
.uart_base = UART3,
.uart_rst = UART3_RST,
.uart_irq_n = UART3_IRQn,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART3_TX_DMA)
.pdma_perp_tx = PDMA_UART3_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART3_RX_DMA)
.pdma_perp_rx = PDMA_UART3_RX,
.rx_write_offset = 0,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART4)
{
.name = "uart4",
.uart_base = UART4,
.uart_rst = UART4_RST,
.uart_irq_n = UART4_IRQn,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART4_TX_DMA)
.pdma_perp_tx = PDMA_UART4_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART4_RX_DMA)
.pdma_perp_rx = PDMA_UART4_RX,
.rx_write_offset = 0,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART5)
{
.name = "uart5",
.uart_base = UART5,
.uart_rst = UART5_RST,
.uart_irq_n = UART5_IRQn,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART5_TX_DMA)
.pdma_perp_tx = PDMA_UART5_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART5_RX_DMA)
.pdma_perp_rx = PDMA_UART5_RX,
.rx_write_offset = 0,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART6)
{
.name = "uart6",
.uart_base = UART6,
.uart_rst = UART6_RST,
.uart_irq_n = UART6_IRQn,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART6_TX_DMA)
.pdma_perp_tx = PDMA_UART6_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART6_RX_DMA)
.pdma_perp_rx = PDMA_UART6_RX,
.rx_write_offset = 0,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART7)
{
.name = "uart7",
.uart_base = UART7,
.uart_rst = UART7_RST,
.uart_irq_n = UART7_IRQn,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART7_TX_DMA)
.pdma_perp_tx = PDMA_UART7_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART7_RX_DMA)
.pdma_perp_rx = PDMA_UART7_RX,
.rx_write_offset = 0,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
}; /* uart nu_uart */
/* Interrupt Handle Function ----------------------------------------------------*/
#if defined(BSP_USING_UART0)
/* UART0 interrupt entry */
void UART0_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
nu_uart_isr(&nu_uart_arr[UART0_IDX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_UART1)
/* UART1 interrupt entry */
void UART1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
nu_uart_isr(&nu_uart_arr[UART1_IDX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_UART2)
/* UART2 interrupt entry */
void UART2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
nu_uart_isr(&nu_uart_arr[UART2_IDX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_UART3)
/* UART3 interrupt service routine */
void UART3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
nu_uart_isr(&nu_uart_arr[UART3_IDX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_UART4)
/* UART4 interrupt entry */
void UART4_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
nu_uart_isr(&nu_uart_arr[UART4_IDX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_UART5)
/* UART5 interrupt entry */
void UART5_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
nu_uart_isr(&nu_uart_arr[UART5_IDX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_UART6)
/* UART6 interrupt entry */
void UART6_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
nu_uart_isr(&nu_uart_arr[UART6_IDX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_UART7)
/* UART7 interrupt entry */
void UART7_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
nu_uart_isr(&nu_uart_arr[UART7_IDX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
/**
* All UART interrupt service routine
*/
static void nu_uart_isr(nu_uart_t serial)
{
/* Get base address of uart register */
UART_T *uart_base = serial->uart_base;
/* Get interrupt event */
uint32_t u32IntSts = uart_base->INTSTS;
uint32_t u32FIFOSts = uart_base->FIFOSTS;
#if defined(RT_SERIAL_USING_DMA)
if (u32IntSts & UART_INTSTS_HWRLSIF_Msk)
{
/* Drain RX FIFO to remove remain FEF frames in FIFO. */
uart_base->FIFO |= UART_FIFO_RXRST_Msk;
uart_base->FIFOSTS |= (UART_FIFOSTS_BIF_Msk | UART_FIFOSTS_FEF_Msk | UART_FIFOSTS_PEF_Msk);
return;
}
#endif
/* Handle RX event */
if (u32IntSts & (UART_INTSTS_RDAINT_Msk | UART_INTSTS_RXTOINT_Msk))
{
rt_hw_serial_isr(&serial->dev, RT_SERIAL_EVENT_RX_IND);
}
uart_base->INTSTS = u32IntSts;
uart_base->FIFOSTS = u32FIFOSts;
}
/**
* Configure uart port
*/
static rt_err_t nu_uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
rt_err_t ret = RT_EOK;
uint32_t uart_word_len = 0;
uint32_t uart_stop_bit = 0;
uint32_t uart_parity = 0;
RT_ASSERT(serial);
RT_ASSERT(cfg);
/* Check baudrate */
RT_ASSERT(cfg->baud_rate != 0);
/* Get base address of uart register */
UART_T *uart_base = ((nu_uart_t)serial)->uart_base;
/* Check word len */
switch (cfg->data_bits)
{
case DATA_BITS_5:
uart_word_len = UART_WORD_LEN_5;
break;
case DATA_BITS_6:
uart_word_len = UART_WORD_LEN_6;
break;
case DATA_BITS_7:
uart_word_len = UART_WORD_LEN_7;
break;
case DATA_BITS_8:
uart_word_len = UART_WORD_LEN_8;
break;
default:
rt_kprintf("Unsupported data length\n");
ret = -RT_EINVAL;
goto exit_nu_uart_configure;
}
/* Check stop bit */
switch (cfg->stop_bits)
{
case STOP_BITS_1:
uart_stop_bit = UART_STOP_BIT_1;
break;
case STOP_BITS_2:
uart_stop_bit = UART_STOP_BIT_2;
break;
default:
rt_kprintf("Unsupported stop bit\n");
ret = -RT_EINVAL;
goto exit_nu_uart_configure;
}
/* Check parity */
switch (cfg->parity)
{
case PARITY_NONE:
uart_parity = UART_PARITY_NONE;
break;
case PARITY_ODD:
uart_parity = UART_PARITY_ODD;
break;
case PARITY_EVEN:
uart_parity = UART_PARITY_EVEN;
break;
default:
rt_kprintf("Unsupported parity\n");
ret = -RT_EINVAL;
goto exit_nu_uart_configure;
}
/* Reset this module */
SYS_ResetModule(((nu_uart_t)serial)->uart_rst);
/* Open Uart and set UART Baudrate */
UART_Open(uart_base, cfg->baud_rate);
/* Set line configuration. */
UART_SetLineConfig(uart_base, 0, uart_word_len, uart_parity, uart_stop_bit);
/* Enable NVIC interrupt. */
NVIC_EnableIRQ(((nu_uart_t)serial)->uart_irq_n);
exit_nu_uart_configure:
if (ret != RT_EOK)
UART_Close(uart_base);
return -(ret);
}
#if defined(RT_SERIAL_USING_DMA)
static rt_err_t nu_pdma_uart_rx_config(struct rt_serial_device *serial, uint8_t *pu8Buf, int32_t i32TriggerLen)
{
rt_err_t result = RT_EOK;
/* Get base address of uart register */
UART_T *uart_base = ((nu_uart_t)serial)->uart_base;
result = nu_pdma_callback_register(((nu_uart_t)serial)->pdma_chanid_rx,
nu_pdma_uart_rx_cb,
(void *)serial,
NU_PDMA_EVENT_TRANSFER_DONE | NU_PDMA_EVENT_TIMEOUT);
if (result != RT_EOK)
{
goto exit_nu_pdma_uart_rx_config;
}
result = nu_pdma_transfer(((nu_uart_t)serial)->pdma_chanid_rx,
8,
(uint32_t)uart_base,
(uint32_t)pu8Buf,
i32TriggerLen,
1000); //Idle-timeout, 1ms
if (result != RT_EOK)
{
goto exit_nu_pdma_uart_rx_config;
}
/* Enable Receive Line interrupt & Start DMA RX transfer. */
UART_ENABLE_INT(uart_base, UART_INTEN_RLSIEN_Msk);
UART_PDMA_ENABLE(uart_base, UART_INTEN_RXPDMAEN_Msk);
exit_nu_pdma_uart_rx_config:
return result;
}
static void nu_pdma_uart_rx_cb(void *pvOwner, uint32_t u32Events)
{
rt_size_t recv_len = 0;
rt_size_t transferred_rxbyte = 0;
struct rt_serial_device *serial = (struct rt_serial_device *)pvOwner;
nu_uart_t puart = (nu_uart_t)serial;
RT_ASSERT(serial);
/* Get base address of uart register */
UART_T *uart_base = puart->uart_base;
transferred_rxbyte = nu_pdma_transferred_byte_get(puart->pdma_chanid_rx, puart->rxdma_trigger_len);
if (u32Events & (NU_PDMA_EVENT_TRANSFER_DONE | NU_PDMA_EVENT_TIMEOUT))
{
if (u32Events & NU_PDMA_EVENT_TRANSFER_DONE)
{
if (serial->config.bufsz != 0)
{
struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
nu_pdma_uart_rx_config(serial, &rx_fifo->buffer[0], puart->rxdma_trigger_len); // Config & trigger next
}
else
{
UART_DISABLE_INT(uart_base, UART_INTEN_RLSIEN_Msk);
UART_PDMA_DISABLE(uart_base, UART_INTEN_RXPDMAEN_Msk);
}
transferred_rxbyte = puart->rxdma_trigger_len;
}
else if ((u32Events & NU_PDMA_EVENT_TIMEOUT) && !UART_GET_RX_EMPTY(uart_base))
{
return;
}
recv_len = transferred_rxbyte - puart->rx_write_offset;
if (recv_len > 0)
{
puart->rx_write_offset = transferred_rxbyte % puart->rxdma_trigger_len;
}
}
if ((serial->config.bufsz == 0) && (u32Events & NU_PDMA_EVENT_TRANSFER_DONE))
{
recv_len = puart->rxdma_trigger_len;
}
if (recv_len > 0)
{
rt_hw_serial_isr(&puart->dev, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
}
}
static rt_err_t nu_pdma_uart_tx_config(struct rt_serial_device *serial)
{
rt_err_t result = RT_EOK;
RT_ASSERT(serial != RT_NULL);
result = nu_pdma_callback_register(((nu_uart_t)serial)->pdma_chanid_tx,
nu_pdma_uart_tx_cb,
(void *)serial,
NU_PDMA_EVENT_TRANSFER_DONE);
return result;
}
static void nu_pdma_uart_tx_cb(void *pvOwner, uint32_t u32Events)
{
nu_uart_t puart = (nu_uart_t)pvOwner;
RT_ASSERT(puart);
UART_PDMA_DISABLE(puart->uart_base, UART_INTEN_TXPDMAEN_Msk);// Stop DMA TX transfer
if (u32Events & NU_PDMA_EVENT_TRANSFER_DONE)
{
rt_hw_serial_isr(&puart->dev, RT_SERIAL_EVENT_TX_DMADONE);
}
}
/**
* Uart DMA transfer
*/
static rt_ssize_t nu_uart_dma_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction)
{
rt_err_t result = RT_EOK;
nu_uart_t psNuUart = (nu_uart_t)serial;
RT_ASSERT(serial);
RT_ASSERT(buf);
/* Get base address of uart register */
UART_T *uart_base = psNuUart->uart_base;
if (direction == RT_SERIAL_DMA_TX)
{
result = nu_pdma_transfer(psNuUart->pdma_chanid_tx,
8,
(uint32_t)buf,
(uint32_t)uart_base,
size,
0); // wait-forever
// Start DMA TX transfer
UART_PDMA_ENABLE(uart_base, UART_INTEN_TXPDMAEN_Msk);
}
else if (direction == RT_SERIAL_DMA_RX)
{
UART_DISABLE_INT(uart_base, UART_INTEN_RLSIEN_Msk);
UART_PDMA_DISABLE(uart_base, UART_INTEN_RXPDMAEN_Msk);
// If config.bufsz = 0, serial will trigger once.
psNuUart->rxdma_trigger_len = size;
psNuUart->rx_write_offset = 0;
result = nu_pdma_uart_rx_config(serial, buf, size);
}
else
{
result = -RT_ERROR;
}
return result;
}
static int nu_hw_uart_dma_allocate(nu_uart_t pusrt)
{
RT_ASSERT(pusrt);
/* Allocate UART_TX nu_dma channel */
if (pusrt->pdma_perp_tx != NU_PDMA_UNUSED)
{
pusrt->pdma_chanid_tx = nu_pdma_channel_allocate(pusrt->pdma_perp_tx);
if (pusrt->pdma_chanid_tx >= 0)
{
pusrt->dma_flag |= RT_DEVICE_FLAG_DMA_TX;
}
}
/* Allocate UART_RX nu_dma channel */
if (pusrt->pdma_perp_rx != NU_PDMA_UNUSED)
{
pusrt->pdma_chanid_rx = nu_pdma_channel_allocate(pusrt->pdma_perp_rx);
if (pusrt->pdma_chanid_rx >= 0)
{
pusrt->dma_flag |= RT_DEVICE_FLAG_DMA_RX;
}
}
return RT_EOK;
}
#endif
/**
* Uart interrupt control
*/
static rt_err_t nu_uart_control(struct rt_serial_device *serial, int cmd, void *arg)
{
nu_uart_t psNuUart = (nu_uart_t)serial;
rt_err_t result = RT_EOK;
rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
RT_ASSERT(serial);
/* Get base address of uart register */
UART_T *uart_base = psNuUart->uart_base;
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
if (ctrl_arg == RT_DEVICE_FLAG_INT_RX) /* Disable INT-RX */
{
UART_DISABLE_INT(uart_base, UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk | UART_INTEN_TOCNTEN_Msk);
}
else if (ctrl_arg == RT_DEVICE_FLAG_DMA_RX) /* Disable DMA-RX */
{
/* Disable Receive Line interrupt & Stop DMA RX transfer. */
#if defined(RT_SERIAL_USING_DMA)
if (psNuUart->dma_flag & RT_DEVICE_FLAG_DMA_RX)
{
nu_pdma_channel_terminate(psNuUart->pdma_chanid_rx);
}
UART_DISABLE_INT(uart_base, UART_INTEN_RLSIEN_Msk | UART_INTEN_RXPDMAEN_Msk);
#endif
}
break;
case RT_DEVICE_CTRL_SET_INT:
if (ctrl_arg == RT_DEVICE_FLAG_INT_RX) /* Enable INT-RX */
{
UART_ENABLE_INT(uart_base, UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk | UART_INTEN_TOCNTEN_Msk);
}
break;
#if defined(RT_SERIAL_USING_DMA)
case RT_DEVICE_CTRL_CONFIG:
if (ctrl_arg == RT_DEVICE_FLAG_DMA_RX) /* Configure and trigger DMA-RX */
{
struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
psNuUart->rxdma_trigger_len = serial->config.bufsz;
psNuUart->rx_write_offset = 0;
result = nu_pdma_uart_rx_config(serial, &rx_fifo->buffer[0], psNuUart->rxdma_trigger_len); // Config & trigger
}
else if (ctrl_arg == RT_DEVICE_FLAG_DMA_TX) /* Configure DMA-TX */
{
result = nu_pdma_uart_tx_config(serial);
}
break;
#endif
case RT_DEVICE_CTRL_CLOSE:
/* Disable NVIC interrupt. */
NVIC_DisableIRQ(psNuUart->uart_irq_n);
#if defined(RT_SERIAL_USING_DMA)
UART_DISABLE_INT(uart_base, UART_INTEN_RLSIEN_Msk | UART_INTEN_RXPDMAEN_Msk);
UART_DISABLE_INT(uart_base, UART_INTEN_TXPDMAEN_Msk);
if (psNuUart->dma_flag != 0)
{
nu_pdma_channel_terminate(psNuUart->pdma_chanid_tx);
nu_pdma_channel_terminate(psNuUart->pdma_chanid_rx);
}
#endif
/* Close UART port */
UART_Close(uart_base);
break;
default:
result = -RT_EINVAL;
break;
}
return result;
}
/**
* Uart put char
*/
static int nu_uart_send(struct rt_serial_device *serial, char c)
{
RT_ASSERT(serial);
/* Get base address of uart register */
UART_T *uart_base = ((nu_uart_t)serial)->uart_base;
/* Waiting if TX-FIFO is full. */
while (UART_IS_TX_FULL(uart_base));
/* Put char into TX-FIFO */
UART_WRITE(uart_base, c);
return 1;
}
/**
* Uart get char
*/
static int nu_uart_receive(struct rt_serial_device *serial)
{
RT_ASSERT(serial);
/* Get base address of uart register */
UART_T *uart_base = ((nu_uart_t)serial)->uart_base;
/* Return failure if RX-FIFO is empty. */
if (UART_GET_RX_EMPTY(uart_base))
{
return -1;
}
/* Get char from RX-FIFO */
return UART_READ(uart_base);
}
/**
* Hardware UART Initialization
*/
rt_err_t rt_hw_uart_init(void)
{
int i;
rt_uint32_t flag;
rt_err_t ret = RT_EOK;
for (i = (UART_START + 1); i < UART_CNT; i++)
{
flag = RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX;
nu_uart_arr[i].dev.ops = &nu_uart_ops;
nu_uart_arr[i].dev.config = nu_uart_default_config;
#if defined(RT_SERIAL_USING_DMA)
nu_uart_arr[i].dma_flag = 0;
nu_hw_uart_dma_allocate(&nu_uart_arr[i]);
flag |= nu_uart_arr[i].dma_flag;
#endif
ret = rt_hw_serial_register(&nu_uart_arr[i].dev, nu_uart_arr[i].name, flag, NULL);
RT_ASSERT(ret == RT_EOK);
}
return ret;
}
#endif //#if defined(BSP_USING_UART)