478 lines
15 KiB
C

/*
* The Clear BSD License
* Copyright 2017 NXP
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_qtmr.h"
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.qtmr"
#endif
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Gets the instance from the base address to be used to gate or ungate the module clock
*
* @param base Quad Timer peripheral base address
*
* @return The Quad Timer instance
*/
static uint32_t QTMR_GetInstance(TMR_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to Quad Timer bases for each instance. */
static TMR_Type *const s_qtmrBases[] = TMR_BASE_PTRS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to Quad Timer clocks for each instance. */
static const clock_ip_name_t s_qtmrClocks[] = TMR_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t QTMR_GetInstance(TMR_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_qtmrBases); instance++)
{
if (s_qtmrBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_qtmrBases));
return instance;
}
void QTMR_Init(TMR_Type *base, qtmr_channel_selection_t channel, const qtmr_config_t *config)
{
assert(config);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Enable the module clock */
CLOCK_EnableClock(s_qtmrClocks[QTMR_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Setup the counter sources */
base->CHANNEL[channel].CTRL = (TMR_CTRL_PCS(config->primarySource) | TMR_CTRL_SCS(config->secondarySource));
/* Setup the master mode operation */
base->CHANNEL[channel].SCTRL = (TMR_SCTRL_EEOF(config->enableExternalForce) | TMR_SCTRL_MSTR(config->enableMasterMode));
/* Setup debug mode */
base->CHANNEL[channel].CSCTRL = TMR_CSCTRL_DBG_EN(config->debugMode);
base->CHANNEL[channel].FILT &= ~( TMR_FILT_FILT_CNT_MASK | TMR_FILT_FILT_PER_MASK);
/* Setup input filter */
base->CHANNEL[channel].FILT = (TMR_FILT_FILT_CNT(config->faultFilterCount) | TMR_FILT_FILT_PER(config->faultFilterPeriod));
}
void QTMR_Deinit(TMR_Type *base, qtmr_channel_selection_t channel)
{
/* Stop the counter */
base->CHANNEL[channel].CTRL &= ~TMR_CTRL_CM_MASK;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Disable the module clock */
CLOCK_DisableClock(s_qtmrClocks[QTMR_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
void QTMR_GetDefaultConfig(qtmr_config_t *config)
{
assert(config);
/* Halt counter during debug mode */
config->debugMode = kQTMR_RunNormalInDebug;
/* Another counter cannot force state of OFLAG signal */
config->enableExternalForce = false;
/* Compare function's output from this counter is not broadcast to other counters */
config->enableMasterMode = false;
/* Fault filter count is set to 0 */
config->faultFilterCount = 0;
/* Fault filter period is set to 0 which disables the fault filter */
config->faultFilterPeriod = 0;
/* Primary count source is IP bus clock divide by 2 */
config->primarySource = kQTMR_ClockDivide_2;
/* Secondary count source is counter 0 input pin */
config->secondarySource = kQTMR_Counter0InputPin;
}
status_t QTMR_SetupPwm(
TMR_Type *base, qtmr_channel_selection_t channel, uint32_t pwmFreqHz, uint8_t dutyCyclePercent, bool outputPolarity, uint32_t srcClock_Hz)
{
uint32_t periodCount, highCount, lowCount, reg;
if (dutyCyclePercent > 100)
{
/* Invalid dutycycle */
return kStatus_Fail;
}
/* Set OFLAG pin for output mode and force out a low on the pin */
base->CHANNEL[channel].SCTRL |= (TMR_SCTRL_FORCE_MASK | TMR_SCTRL_OEN_MASK);
/* Counter values to generate a PWM signal */
periodCount = (srcClock_Hz / pwmFreqHz);
highCount = (periodCount * dutyCyclePercent) / 100;
lowCount = periodCount - highCount;
/* Setup the compare registers for PWM output */
base->CHANNEL[channel].COMP1 = lowCount;
base->CHANNEL[channel].COMP2 = highCount;
/* Setup the pre-load registers for PWM output */
base->CHANNEL[channel].CMPLD1 = lowCount;
base->CHANNEL[channel].CMPLD2 = highCount;
reg = base->CHANNEL[channel].CSCTRL;
/* Setup the compare load control for COMP1 and COMP2.
* Load COMP1 when CSCTRL[TCF2] is asserted, load COMP2 when CSCTRL[TCF1] is asserted
*/
reg &= ~(TMR_CSCTRL_CL1_MASK | TMR_CSCTRL_CL2_MASK);
reg |= (TMR_CSCTRL_CL1(kQTMR_LoadOnComp2) | TMR_CSCTRL_CL2(kQTMR_LoadOnComp1));
base->CHANNEL[channel].CSCTRL = reg;
if (outputPolarity)
{
/* Invert the polarity */
base->CHANNEL[channel].SCTRL |= TMR_SCTRL_OPS_MASK;
}
else
{
/* True polarity, no inversion */
base->CHANNEL[channel].SCTRL &= ~TMR_SCTRL_OPS_MASK;
}
reg = base->CHANNEL[channel].CTRL;
reg &= ~(TMR_CTRL_OUTMODE_MASK);
/* Count until compare value is reached and re-initialize the counter, toggle OFLAG output
* using alternating compare register
*/
reg |= (TMR_CTRL_LENGTH_MASK | TMR_CTRL_OUTMODE(kQTMR_ToggleOnAltCompareReg));
base->CHANNEL[channel].CTRL = reg;
return kStatus_Success;
}
void QTMR_SetupInputCapture(TMR_Type *base,
qtmr_channel_selection_t channel,
qtmr_input_source_t capturePin,
bool inputPolarity,
bool reloadOnCapture,
qtmr_input_capture_edge_t captureMode)
{
uint16_t reg;
/* Clear the prior value for the input source for capture */
reg = base->CHANNEL[channel].CTRL & (~TMR_CTRL_SCS_MASK);
/* Set the new input source */
reg |= TMR_CTRL_SCS(capturePin);
base->CHANNEL[channel].CTRL = reg;
/* Clear the prior values for input polarity, capture mode. Set the external pin as input */
reg = base->CHANNEL[channel].SCTRL & (~(TMR_SCTRL_IPS_MASK | TMR_SCTRL_CAPTURE_MODE_MASK | TMR_SCTRL_OEN_MASK));
/* Set the new values */
reg |= (TMR_SCTRL_IPS(inputPolarity) | TMR_SCTRL_CAPTURE_MODE(captureMode));
base->CHANNEL[channel].SCTRL = reg;
/* Setup if counter should reload when a capture occurs */
if (reloadOnCapture)
{
base->CHANNEL[channel].CSCTRL |= TMR_CSCTRL_ROC_MASK;
}
else
{
base->CHANNEL[channel].CSCTRL &= ~TMR_CSCTRL_ROC_MASK;
}
}
void QTMR_EnableInterrupts(TMR_Type *base, qtmr_channel_selection_t channel, uint32_t mask)
{
uint16_t reg;
reg = base->CHANNEL[channel].SCTRL;
/* Compare interrupt */
if (mask & kQTMR_CompareInterruptEnable)
{
reg |= TMR_SCTRL_TCFIE_MASK;
}
/* Overflow interrupt */
if (mask & kQTMR_OverflowInterruptEnable)
{
reg |= TMR_SCTRL_TOFIE_MASK;
}
/* Input edge interrupt */
if (mask & kQTMR_EdgeInterruptEnable)
{
/* Restriction: Do not set both SCTRL[IEFIE] and DMA[IEFDE] */
base->CHANNEL[channel].DMA &= ~TMR_DMA_IEFDE_MASK;
reg |= TMR_SCTRL_IEFIE_MASK;
}
base->CHANNEL[channel].SCTRL = reg;
reg = base->CHANNEL[channel].CSCTRL;
/* Compare 1 interrupt */
if (mask & kQTMR_Compare1InterruptEnable)
{
reg |= TMR_CSCTRL_TCF1EN_MASK;
}
/* Compare 2 interrupt */
if (mask & kQTMR_Compare2InterruptEnable)
{
reg |= TMR_CSCTRL_TCF2EN_MASK;
}
base->CHANNEL[channel].CSCTRL = reg;
}
void QTMR_DisableInterrupts(TMR_Type *base, qtmr_channel_selection_t channel, uint32_t mask)
{
uint16_t reg;
reg = base->CHANNEL[channel].SCTRL;
/* Compare interrupt */
if (mask & kQTMR_CompareInterruptEnable)
{
reg &= ~TMR_SCTRL_TCFIE_MASK;
}
/* Overflow interrupt */
if (mask & kQTMR_OverflowInterruptEnable)
{
reg &= ~TMR_SCTRL_TOFIE_MASK;
}
/* Input edge interrupt */
if (mask & kQTMR_EdgeInterruptEnable)
{
reg &= ~TMR_SCTRL_IEFIE_MASK;
}
base->CHANNEL[channel].SCTRL = reg;
reg = base->CHANNEL[channel].CSCTRL;
/* Compare 1 interrupt */
if (mask & kQTMR_Compare1InterruptEnable)
{
reg &= ~TMR_CSCTRL_TCF1EN_MASK;
}
/* Compare 2 interrupt */
if (mask & kQTMR_Compare2InterruptEnable)
{
reg &= ~TMR_CSCTRL_TCF2EN_MASK;
}
base->CHANNEL[channel].CSCTRL = reg;
}
uint32_t QTMR_GetEnabledInterrupts(TMR_Type *base, qtmr_channel_selection_t channel)
{
uint32_t enabledInterrupts = 0;
uint16_t reg;
reg = base->CHANNEL[channel].SCTRL;
/* Compare interrupt */
if (reg & TMR_SCTRL_TCFIE_MASK)
{
enabledInterrupts |= kQTMR_CompareFlag;
}
/* Overflow interrupt */
if (reg & TMR_SCTRL_TOFIE_MASK)
{
enabledInterrupts |= kQTMR_OverflowInterruptEnable;
}
/* Input edge interrupt */
if (reg & TMR_SCTRL_IEFIE_MASK)
{
enabledInterrupts |= kQTMR_EdgeInterruptEnable;
}
reg = base->CHANNEL[channel].CSCTRL;
/* Compare 1 interrupt */
if (reg & TMR_CSCTRL_TCF1EN_MASK)
{
enabledInterrupts |= kQTMR_Compare1InterruptEnable;
}
/* Compare 2 interrupt */
if (reg & TMR_CSCTRL_TCF2EN_MASK)
{
enabledInterrupts |= kQTMR_Compare2InterruptEnable;
}
return enabledInterrupts;
}
uint32_t QTMR_GetStatus(TMR_Type *base, qtmr_channel_selection_t channel)
{
uint32_t statusFlags = 0;
uint16_t reg;
reg = base->CHANNEL[channel].SCTRL;
/* Timer compare flag */
if (reg & TMR_SCTRL_TCF_MASK)
{
statusFlags |= kQTMR_CompareFlag;
}
/* Timer overflow flag */
if (reg & TMR_SCTRL_TOF_MASK)
{
statusFlags |= kQTMR_OverflowFlag;
}
/* Input edge flag */
if (reg & TMR_SCTRL_IEF_MASK)
{
statusFlags |= kQTMR_EdgeFlag;
}
reg = base->CHANNEL[channel].CSCTRL;
/* Compare 1 flag */
if (reg & TMR_CSCTRL_TCF1_MASK)
{
statusFlags |= kQTMR_Compare1Flag;
}
/* Compare 2 flag */
if (reg & TMR_CSCTRL_TCF2_MASK)
{
statusFlags |= kQTMR_Compare2Flag;
}
return statusFlags;
}
void QTMR_ClearStatusFlags(TMR_Type *base, qtmr_channel_selection_t channel, uint32_t mask)
{
uint16_t reg;
reg = base->CHANNEL[channel].SCTRL;
/* Timer compare flag */
if (mask & kQTMR_CompareFlag)
{
reg &= ~TMR_SCTRL_TCF_MASK;
}
/* Timer overflow flag */
if (mask & kQTMR_OverflowFlag)
{
reg &= ~TMR_SCTRL_TOF_MASK;
}
/* Input edge flag */
if (mask & kQTMR_EdgeFlag)
{
reg &= ~TMR_SCTRL_IEF_MASK;
}
base->CHANNEL[channel].SCTRL = reg;
reg = base->CHANNEL[channel].CSCTRL;
/* Compare 1 flag */
if (mask & kQTMR_Compare1Flag)
{
reg &= ~TMR_CSCTRL_TCF1_MASK;
}
/* Compare 2 flag */
if (mask & kQTMR_Compare2Flag)
{
reg &= ~TMR_CSCTRL_TCF2_MASK;
}
base->CHANNEL[channel].CSCTRL = reg;
}
void QTMR_SetTimerPeriod(TMR_Type *base, qtmr_channel_selection_t channel, uint16_t ticks)
{
/* Set the length bit to reinitialize the counters on a match */
base->CHANNEL[channel].CTRL |= TMR_CTRL_LENGTH_MASK;
if (base->CHANNEL[channel].CTRL & TMR_CTRL_DIR_MASK)
{
/* Counting down */
base->CHANNEL[channel].COMP2 = ticks;
}
else
{
/* Counting up */
base->CHANNEL[channel].COMP1 = ticks;
}
}
void QTMR_EnableDma(TMR_Type *base, qtmr_channel_selection_t channel, uint32_t mask)
{
uint16_t reg;
reg = base->CHANNEL[channel].DMA;
/* Input Edge Flag DMA Enable */
if (mask & kQTMR_InputEdgeFlagDmaEnable)
{
/* Restriction: Do not set both DMA[IEFDE] and SCTRL[IEFIE] */
base->CHANNEL[channel].SCTRL &= ~TMR_SCTRL_IEFIE_MASK;
reg |= TMR_DMA_IEFDE_MASK;
}
/* Comparator Preload Register 1 DMA Enable */
if (mask & kQTMR_ComparatorPreload1DmaEnable)
{
reg |= TMR_DMA_CMPLD1DE_MASK;
}
/* Comparator Preload Register 2 DMA Enable */
if (mask & kQTMR_ComparatorPreload2DmaEnable)
{
reg |= TMR_DMA_CMPLD2DE_MASK;
}
base->CHANNEL[channel].DMA = reg;
}
void QTMR_DisableDma(TMR_Type *base, qtmr_channel_selection_t channel, uint32_t mask)
{
uint16_t reg;
reg = base->CHANNEL[channel].DMA;
/* Input Edge Flag DMA Enable */
if (mask & kQTMR_InputEdgeFlagDmaEnable)
{
reg &= ~TMR_DMA_IEFDE_MASK;
}
/* Comparator Preload Register 1 DMA Enable */
if (mask & kQTMR_ComparatorPreload1DmaEnable)
{
reg &= ~TMR_DMA_CMPLD1DE_MASK;
}
/* Comparator Preload Register 2 DMA Enable */
if (mask & kQTMR_ComparatorPreload2DmaEnable)
{
reg &= ~TMR_DMA_CMPLD2DE_MASK;
}
base->CHANNEL[channel].DMA = reg;
}