418 lines
9.0 KiB
C

/*
* Copyright (c) 2006-2024 RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2015-08-31 heyuanjie87 first version
*/
#include <rtdevice.h>
#include <rthw.h>
#define DBG_TAG "hwtimer"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#ifdef RT_USING_DM
void (*rt_device_hwtimer_us_delay)(rt_uint32_t us) = RT_NULL;
void rt_hw_us_delay(rt_uint32_t us)
{
if (rt_device_hwtimer_us_delay)
{
rt_device_hwtimer_us_delay(us);
}
else
{
LOG_E("Implemented at least in the libcpu");
RT_ASSERT(0);
}
}
#endif /* RT_USING_DM */
rt_inline rt_uint32_t timeout_calc(rt_hwtimer_t *timer, rt_hwtimerval_t *tv)
{
float overflow;
float timeout;
rt_uint32_t counter;
int i, index = 0;
float tv_sec;
float devi_min = 1;
float devi;
/* changed to second */
overflow = timer->info->maxcnt/(float)timer->freq;
tv_sec = tv->sec + tv->usec/(float)1000000;
if (tv_sec < (1/(float)timer->freq))
{
/* little timeout */
i = 0;
timeout = 1/(float)timer->freq;
}
else
{
for (i = 1; i > 0; i ++)
{
timeout = tv_sec/i;
if (timeout <= overflow)
{
counter = (rt_uint32_t)(timeout * timer->freq);
devi = tv_sec - (counter / (float)timer->freq) * i;
/* Minimum calculation error */
if (devi > devi_min)
{
i = index;
timeout = tv_sec/i;
break;
}
else if (devi == 0)
{
break;
}
else if (devi < devi_min)
{
devi_min = devi;
index = i;
}
}
}
}
timer->cycles = i;
timer->reload = i;
timer->period_sec = timeout;
counter = (rt_uint32_t)(timeout * timer->freq);
return counter;
}
static rt_err_t rt_hwtimer_init(struct rt_device *dev)
{
rt_err_t result = RT_EOK;
rt_hwtimer_t *timer;
timer = (rt_hwtimer_t *)dev;
/* try to change to 1MHz */
if ((1000000 <= timer->info->maxfreq) && (1000000 >= timer->info->minfreq))
{
timer->freq = 1000000;
}
else
{
timer->freq = timer->info->minfreq;
}
timer->mode = HWTIMER_MODE_ONESHOT;
timer->cycles = 0;
timer->overflow = 0;
if (timer->ops->init)
{
timer->ops->init(timer, 1);
}
else
{
result = -RT_ENOSYS;
}
return result;
}
static rt_err_t rt_hwtimer_open(struct rt_device *dev, rt_uint16_t oflag)
{
rt_err_t result = RT_EOK;
rt_hwtimer_t *timer;
timer = (rt_hwtimer_t *)dev;
if (timer->ops->control != RT_NULL)
{
timer->ops->control(timer, HWTIMER_CTRL_FREQ_SET, &timer->freq);
}
else
{
result = -RT_ENOSYS;
}
return result;
}
static rt_err_t rt_hwtimer_close(struct rt_device *dev)
{
rt_err_t result = RT_EOK;
rt_hwtimer_t *timer;
timer = (rt_hwtimer_t*)dev;
if (timer->ops->init != RT_NULL)
{
timer->ops->init(timer, 0);
}
else
{
result = -RT_ENOSYS;
}
dev->flag &= ~RT_DEVICE_FLAG_ACTIVATED;
dev->rx_indicate = RT_NULL;
return result;
}
static rt_ssize_t rt_hwtimer_read(struct rt_device *dev, rt_off_t pos, void *buffer, rt_size_t size)
{
rt_hwtimer_t *timer;
rt_hwtimerval_t tv;
rt_uint32_t cnt;
rt_base_t level;
rt_int32_t overflow;
float t;
timer = (rt_hwtimer_t *)dev;
if (timer->ops->count_get == RT_NULL)
return 0;
level = rt_hw_interrupt_disable();
cnt = timer->ops->count_get(timer);
overflow = timer->overflow;
rt_hw_interrupt_enable(level);
if (timer->info->cntmode == HWTIMER_CNTMODE_DW)
{
cnt = (rt_uint32_t)(timer->freq * timer->period_sec) - cnt;
}
if (timer->mode == HWTIMER_MODE_ONESHOT)
{
overflow = 0;
}
t = overflow * timer->period_sec + cnt/(float)timer->freq;
tv.sec = (rt_int32_t)t;
tv.usec = (rt_int32_t)((t - tv.sec) * 1000000);
size = size > sizeof(tv)? sizeof(tv) : size;
rt_memcpy(buffer, &tv, size);
return size;
}
static rt_ssize_t rt_hwtimer_write(struct rt_device *dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
rt_base_t level;
rt_uint32_t t;
rt_hwtimer_mode_t opm = HWTIMER_MODE_PERIOD;
rt_hwtimer_t *timer;
timer = (rt_hwtimer_t *)dev;
if ((timer->ops->start == RT_NULL) || (timer->ops->stop == RT_NULL))
return 0;
if (size != sizeof(rt_hwtimerval_t))
return 0;
timer->ops->stop(timer);
level = rt_hw_interrupt_disable();
timer->overflow = 0;
rt_hw_interrupt_enable(level);
t = timeout_calc(timer, (rt_hwtimerval_t*)buffer);
if ((timer->cycles <= 1) && (timer->mode == HWTIMER_MODE_ONESHOT))
{
opm = HWTIMER_MODE_ONESHOT;
}
if (timer->ops->start(timer, t, opm) != RT_EOK)
size = 0;
return size;
}
static rt_err_t rt_hwtimer_control(struct rt_device *dev, int cmd, void *args)
{
rt_base_t level;
rt_err_t result = RT_EOK;
rt_hwtimer_t *timer;
timer = (rt_hwtimer_t *)dev;
switch (cmd)
{
case HWTIMER_CTRL_STOP:
{
if (timer->ops->stop != RT_NULL)
{
timer->ops->stop(timer);
}
else
{
result = -RT_ENOSYS;
}
}
break;
case HWTIMER_CTRL_FREQ_SET:
{
rt_int32_t *f;
if (args == RT_NULL)
{
result = -RT_EEMPTY;
break;
}
f = (rt_int32_t*)args;
if ((*f > timer->info->maxfreq) || (*f < timer->info->minfreq))
{
LOG_W("frequency setting out of range! It will maintain at %d Hz", timer->freq);
result = -RT_EINVAL;
break;
}
if (timer->ops->control != RT_NULL)
{
result = timer->ops->control(timer, cmd, args);
if (result == RT_EOK)
{
level = rt_hw_interrupt_disable();
timer->freq = *f;
rt_hw_interrupt_enable(level);
}
}
else
{
result = -RT_ENOSYS;
}
}
break;
case HWTIMER_CTRL_INFO_GET:
{
if (args == RT_NULL)
{
result = -RT_EEMPTY;
break;
}
*((struct rt_hwtimer_info*)args) = *timer->info;
}
break;
case HWTIMER_CTRL_MODE_SET:
{
rt_hwtimer_mode_t *m;
if (args == RT_NULL)
{
result = -RT_EEMPTY;
break;
}
m = (rt_hwtimer_mode_t*)args;
if ((*m != HWTIMER_MODE_ONESHOT) && (*m != HWTIMER_MODE_PERIOD))
{
result = -RT_ERROR;
break;
}
level = rt_hw_interrupt_disable();
timer->mode = *m;
rt_hw_interrupt_enable(level);
}
break;
default:
{
if (timer->ops->control != RT_NULL)
{
result = timer->ops->control(timer, cmd, args);
}
else
{
result = -RT_ENOSYS;
}
}
break;
}
return result;
}
void rt_device_hwtimer_isr(rt_hwtimer_t *timer)
{
rt_base_t level;
RT_ASSERT(timer != RT_NULL);
level = rt_hw_interrupt_disable();
timer->overflow ++;
if (timer->cycles != 0)
{
timer->cycles --;
}
if (timer->cycles == 0)
{
timer->cycles = timer->reload;
rt_hw_interrupt_enable(level);
if (timer->mode == HWTIMER_MODE_ONESHOT)
{
if (timer->ops->stop != RT_NULL)
{
timer->ops->stop(timer);
}
}
if (timer->parent.rx_indicate != RT_NULL)
{
timer->parent.rx_indicate(&timer->parent, sizeof(struct rt_hwtimerval));
}
}
else
{
rt_hw_interrupt_enable(level);
}
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops hwtimer_ops =
{
rt_hwtimer_init,
rt_hwtimer_open,
rt_hwtimer_close,
rt_hwtimer_read,
rt_hwtimer_write,
rt_hwtimer_control
};
#endif
rt_err_t rt_device_hwtimer_register(rt_hwtimer_t *timer, const char *name, void *user_data)
{
struct rt_device *device;
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(timer->ops != RT_NULL);
RT_ASSERT(timer->info != RT_NULL);
device = &(timer->parent);
device->type = RT_Device_Class_Timer;
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
#ifdef RT_USING_DEVICE_OPS
device->ops = &hwtimer_ops;
#else
device->init = rt_hwtimer_init;
device->open = rt_hwtimer_open;
device->close = rt_hwtimer_close;
device->read = rt_hwtimer_read;
device->write = rt_hwtimer_write;
device->control = rt_hwtimer_control;
#endif
device->user_data = user_data;
return rt_device_register(device, name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
}