rt-thread/bsp/bluetrum/libraries/hal_drivers/drv_hwtimer.c

303 lines
6.6 KiB
C

/*
* Copyright (c) 2020-2021, Bluetrum Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-01-22 greedyhao first version
*/
#include "board.h"
#ifdef BSP_USING_TIM
#include "tim_config.h"
//#define DRV_DEBUG
#define LOG_TAG "drv.hwtimer"
#include <drv_log.h>
#ifdef RT_USING_HWTIMER
enum
{
#ifdef BSP_USING_TIM1
TIM1_INDEX,
#endif
#ifdef BSP_USING_TIM2
TIM2_INDEX,
#endif
#ifdef BSP_USING_TIM3
TIM3_INDEX,
#endif
#ifdef BSP_USING_TIM4
TIM4_INDEX,
#endif
#ifdef BSP_USING_TIM5
TIM5_INDEX,
#endif
};
struct ab32_hwtimer
{
rt_hwtimer_t time_device;
hal_sfr_t tim_handle;
char *name;
irq_type tim_irqn;
};
static struct ab32_hwtimer ab32_hwtimer_obj[] =
{
#ifdef BSP_USING_TIM1
TIM1_CONFIG,
#endif
#ifdef BSP_USING_TIM2
TIM2_CONFIG,
#endif
#ifdef BSP_USING_TIM3
TIM3_CONFIG,
#endif
#ifdef BSP_USING_TIM4
TIM4_CONFIG,
#endif
#ifdef BSP_USING_TIM5
TIM5_CONFIG,
#endif
};
rt_section(".irq.timer")
static void _rt_device_hwtimer_isr(rt_hwtimer_t *timer)
{
RT_ASSERT(timer != RT_NULL);
timer->overflow ++;
if (timer->cycles != 0)
{
timer->cycles --;
}
if (timer->cycles == 0)
{
timer->cycles = timer->reload;
if (timer->mode == HWTIMER_MODE_ONESHOT)
{
if (timer->ops->stop != RT_NULL)
{
timer->ops->stop(timer);
}
}
if (timer->parent.rx_indicate != RT_NULL)
{
timer->parent.rx_indicate(&timer->parent, sizeof(struct rt_hwtimerval));
}
}
}
static void timer_init(struct rt_hwtimer_device *timer, rt_uint32_t state)
{
rt_uint32_t prescaler_value = 0;
hal_sfr_t tim = RT_NULL;
struct ab32_hwtimer *tim_device = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tim = (hal_sfr_t)timer->parent.user_data;
if (state)
{
tim_device = (struct ab32_hwtimer *)timer;
if (timer->info->cntmode != HWTIMER_CNTMODE_UP)
{
LOG_E("Only support HWTIMER_CNTMODE_UP!");
}
/* set tim int */
tim[TMRxCON] = BIT(7);
LOG_D("%s init success", tim_device->name);
} else {
/* stop timer */
tim[TMRxCON] = 0;
}
}
static rt_err_t timer_start(rt_hwtimer_t *timer, rt_uint32_t t, rt_hwtimer_mode_t opmode)
{
rt_err_t result = RT_EOK;
hal_sfr_t tim = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tim = (hal_sfr_t)timer->parent.user_data;
/* set tim cnt */
tim[TMRxCNT] = 0;
tim[TMRxPR] = t * (get_sysclk_nhz() / timer->freq) - 1;
if (opmode != HWTIMER_MODE_PERIOD)
{
LOG_E("Opmode only support HWTIMER_MODE_PERIOD!");
return -RT_EINVAL;
}
/* start timer */
tim[TMRxCON] |= BIT(0);
return result;
}
static void timer_stop(rt_hwtimer_t *timer)
{
hal_sfr_t tim = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tim = (hal_sfr_t)timer->parent.user_data;
/* stop timer */
tim[TMRxCON] &= ~BIT(0);
/* set tim cnt */
tim[TMRxCNT] = 0;
}
static rt_err_t timer_ctrl(rt_hwtimer_t *timer, rt_uint32_t cmd, void *arg)
{
hal_sfr_t tim = RT_NULL;
rt_err_t result = RT_EOK;
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(arg != RT_NULL);
tim = (hal_sfr_t)timer->parent.user_data;
switch (cmd)
{
case HWTIMER_CTRL_FREQ_SET:
{
}
break;
default:
{
result = -RT_ENOSYS;
}
break;
}
return result;
}
static rt_uint32_t timer_counter_get(rt_hwtimer_t *timer)
{
hal_sfr_t tim = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tim = (hal_sfr_t)timer->parent.user_data;
return tim[TMRxCNT] / (get_sysclk_nhz() / timer->freq);
}
static const struct rt_hwtimer_info _info = TIM_DEV_INFO_CONFIG;
static const struct rt_hwtimer_ops _ops =
{
.init = timer_init,
.start = timer_start,
.stop = timer_stop,
.count_get = timer_counter_get,
.control = timer_ctrl,
};
#if defined(BSP_USING_TIM2) || defined(BSP_USING_TIM4) || defined(BSP_USING_TIM5)
rt_section(".irq.timer")
void timer2_4_5_isr(int vector, void *param)
{
rt_interrupt_enter();
#ifdef BSP_USING_TIM2
if (ab32_hwtimer_obj[TIM2_INDEX].tim_handle[TMRxCON] != 0) {
ab32_hwtimer_obj[TIM2_INDEX].tim_handle[TMRxCPND] = BIT(9);
_rt_device_hwtimer_isr(&ab32_hwtimer_obj[TIM2_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM4
if (ab32_hwtimer_obj[TIM4_INDEX].tim_handle[TMRxCON] != 0) {
ab32_hwtimer_obj[TIM4_INDEX].tim_handle[TMRxCPND] = BIT(9);
_rt_device_hwtimer_isr(&ab32_hwtimer_obj[TIM4_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM5
if (ab32_hwtimer_obj[TIM5_INDEX].tim_handle[TMRxCON] != 0) {
ab32_hwtimer_obj[TIM5_INDEX].tim_handle[TMRxCPND] = BIT(9);
_rt_device_hwtimer_isr(&ab32_hwtimer_obj[TIM5_INDEX].time_device);
}
#endif
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM3
rt_section(".irq.timer")
void timer3_isr(int vector, void *param)
{
rt_interrupt_enter();
ab32_hwtimer_obj[TIM3_INDEX].tim_handle[TMRxCPND] = BIT(9);
_rt_device_hwtimer_isr(&ab32_hwtimer_obj[TIM3_INDEX].time_device);
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM1
rt_section(".irq.timer")
void timer1_isr(int vector, void *param)
{
rt_interrupt_enter();
ab32_hwtimer_obj[TIM1_INDEX].tim_handle[TMRxCPND] = BIT(9);
_rt_device_hwtimer_isr(&ab32_hwtimer_obj[TIM1_INDEX].time_device);
rt_interrupt_leave();
}
#endif
static int ab32_hwtimer_init(void)
{
int i = 0;
int result = RT_EOK;
for (i = 0; i < sizeof(ab32_hwtimer_obj) / sizeof(ab32_hwtimer_obj[0]); i++)
{
ab32_hwtimer_obj[i].time_device.info = &_info;
ab32_hwtimer_obj[i].time_device.ops = &_ops;
if (rt_device_hwtimer_register(&ab32_hwtimer_obj[i].time_device, ab32_hwtimer_obj[i].name, (void *)ab32_hwtimer_obj[i].tim_handle) == RT_EOK)
{
LOG_D("%s register success", ab32_hwtimer_obj[i].name);
}
else
{
LOG_E("%s register failed", ab32_hwtimer_obj[i].name);
result = -RT_ERROR;
}
}
#ifdef BSP_USING_TIM1
rt_hw_interrupt_install(IRQ_TMR1_VECTOR, timer1_isr, RT_NULL, "t1_isr");
#endif
#if defined(BSP_USING_TIM2) || defined(BSP_USING_TIM4) || defined(BSP_USING_TIM5)
rt_hw_interrupt_install(IRQ_TMR2_4_5_VECTOR, timer2_4_5_isr, RT_NULL, "t245_isr");
#endif
#ifdef BSP_USING_TIM3
rt_hw_interrupt_install(IRQ_IRRX_VECTOR, timer3_isr, RT_NULL, "t3_isr");
#endif
return result;
}
INIT_BOARD_EXPORT(ab32_hwtimer_init);
#endif /* RT_USING_HWTIMER */
#endif /* BSP_USING_TIM */