rt-thread/bsp/x1000/drivers/drv_spi.c

538 lines
13 KiB
C

/*
* File : board_spi_master.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2008 - 2012, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2015-11-19 Urey the first version
*/
/*********************************************************************************************************
** Include Files
*********************************************************************************************************/
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#include "board.h"
#include "drv_clock.h"
#include "drv_gpio.h"
#include "drv_spi.h"
#define SSI_BASE SSI0_BASE
#define DEBUG 0
#if DEBUG
#define PRINT(...) rt_kprintf(__VA_ARGS__)
#else
#define PRINT(...)
#endif
#define JZ_SPI_RX_BUF(type) \
uint32_t jz_spi_rx_buf_##type(struct jz_spi *hw) \
{ \
uint32_t data = spi_readl(hw, SSI_DR); \
type * rx = (type *)hw->rx_buf; \
*rx++ = (type)(data); \
hw->rx_buf = (uint8_t *)rx; \
return (uint32_t)data; \
}
#define JZ_SPI_TX_BUF(type) \
uint32_t jz_spi_tx_buf_##type(struct jz_spi *hw) \
{ \
uint32_t data; \
const type * tx = (type *)hw->tx_buf; \
data = *tx++; \
hw->tx_buf = (uint8_t *)tx; \
spi_send_data(hw, data); \
return (uint32_t)data; \
}
JZ_SPI_RX_BUF(u8)
JZ_SPI_TX_BUF(u8)
JZ_SPI_RX_BUF(u16)
JZ_SPI_TX_BUF(u16)
JZ_SPI_RX_BUF(u32)
JZ_SPI_TX_BUF(u32)
static rt_err_t jz_spi_configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration);
static rt_uint32_t jz_spi_xfer(struct rt_spi_device* device, struct rt_spi_message* message);
static const struct rt_spi_ops jz_spi_ops =
{
jz_spi_configure,
jz_spi_xfer
};
static struct jz_spi jz_spi0 =
{
.base = SSI0_BASE,
};
static void jz_spi_set_cs(struct jz_spi_cs *cs,int value)
{
// gpio_set_value(cs->port,cs->pin,!!value);
if(value != 0)
gpio_set_func(cs->port,cs->pin,GPIO_OUTPUT1);
else
gpio_set_func(cs->port,cs->pin,GPIO_OUTPUT0);
}
/*************************************************************
* jz_spi_set_clk: set the SPI_CLK.
* The min clock is 23438Hz, and the max clock is defined
* by max_clk or max_speed_hz(it is 54MHz for JZ4780, and
* the test max clock is 30MHz).
************************************************************* */
static int _spi_set_clk(struct jz_spi *spi_bus, uint32_t hz)
{
uint16_t cgv;
uint32_t cpm_rate;
cpm_rate = clk_get_rate(spi_bus->clk);
if (hz >= 10000000)
clk_set_rate(spi_bus->clk,2 * hz);
else
clk_set_rate(spi_bus->clk, 24000000);
cpm_rate = clk_get_rate(spi_bus->clk);
cgv = cpm_rate / (2 * hz);
if (cgv > 0)
cgv -= 1;
spi_writel(spi_bus, SSI_GR, cgv);
return 0;
}
static uint32_t _spi_get_clk(struct jz_spi *spi_bus)
{
uint16_t cgv;
cgv = spi_readl(spi_bus, SSI_GR);
return clk_get_rate(spi_bus->clk) / (2 * (cgv + 1));
}
static uint32_t _spi_do_write_fifo(struct jz_spi* spi_bus,uint32_t sendEntries)
{
uint32_t cnt = 0;
if((spi_bus->tx_buf != RT_NULL) && (spi_bus->tx_func != RT_NULL))
{
while (cnt++ < sendEntries)
{
spi_bus->tx_func(spi_bus);
spi_bus->sendCount += spi_bus->xfer_unit_size;
}
}
else
{
while (cnt++ < sendEntries)
{
spi_send_data(spi_bus,0xFF);
spi_bus->sendCount += spi_bus->xfer_unit_size;
}
}
// PRINT("sendCount = %d\n",spi_bus->sendCount);
return 0;
}
static uint32_t _spi_do_read_fifo(struct jz_spi* spi_bus)
{
uint32_t cnt = 0;
uint32_t dummy;
if((spi_bus->rx_buf != RT_NULL) && (spi_bus->rx_func != RT_NULL))
{
while(!spi_is_rxfifo_empty(spi_bus))
{
spi_bus->rx_func(spi_bus);
spi_bus->recvCount += spi_bus->xfer_unit_size;
cnt ++;
}
}
else
{
while(!spi_is_rxfifo_empty(spi_bus))
{
dummy = spi_readl(spi_bus, SSI_DR);
cnt ++;
}
}
PRINT("recvCnt = %d\n",cnt);
return cnt;
}
static uint32_t _spi_do_xfer(struct jz_spi* spi_bus)
{
uint32_t leaveEntries;
uint32_t sendEntries;
uint32_t trigger;
uint8_t intFlag = 0, lastFlag = 0;
leaveEntries = (spi_bus->totalCount - spi_bus->sendCount) / spi_bus->xfer_unit_size;
if(spi_bus->is_first == 1)
{
/* CPU Mode should reset SSI triggers at first */
spi_bus->tx_trigger = SSI_TX_FIFO_THRESHOLD * 8;
spi_bus->rx_trigger = (SSI_RX_FIFO_THRESHOLD - SSI_SAFE_THRESHOLD) * 8;
spi_set_tx_trigger(spi_bus, spi_bus->tx_trigger);
spi_set_rx_trigger(spi_bus, spi_bus->rx_trigger);
if(leaveEntries <= JZ_SSI_MAX_FIFO_ENTRIES)
{
sendEntries = leaveEntries;
}
else
{
sendEntries = JZ_SSI_MAX_FIFO_ENTRIES;
intFlag = 1;
}
spi_start_transmit(spi_bus);
spi_bus->is_first = 0;
}
else
{
trigger = JZ_SSI_MAX_FIFO_ENTRIES - spi_bus->tx_trigger;
if (leaveEntries <= trigger)
{
sendEntries = leaveEntries;
lastFlag = 1;
}
else
{
sendEntries = CPU_ONCE_BLOCK_ENTRIES;
intFlag = 1;
}
}
_spi_do_write_fifo(spi_bus,sendEntries);
spi_enable_tx_error_intr(spi_bus);
spi_enable_rx_error_intr(spi_bus);
if(intFlag)
{
spi_enable_txfifo_half_empty_intr(spi_bus);
spi_enable_rxfifo_half_full_intr(spi_bus);
}
else
{
spi_disable_txfifo_half_empty_intr(spi_bus);
spi_disable_rxfifo_half_full_intr(spi_bus);
}
if(lastFlag)
spi_enable_rxfifo_half_full_intr(spi_bus);
return 0;
}
static void _spi_irq_handler(int vector, void *param)
{
struct jz_spi* spi_bus = (struct jz_spi *) param;
uint32_t leftCount = spi_bus->totalCount - spi_bus->sendCount;
uint32_t status;
uint8_t flag = 0;
PRINT("INT\n");
if ( spi_get_underrun(spi_bus) && spi_get_tx_error_intr(spi_bus))
{
PRINT("UNDR\n");
spi_disable_tx_error_intr(spi_bus);
if(leftCount == 0)
{
_spi_do_read_fifo(spi_bus);
spi_disable_tx_intr(spi_bus);
spi_disable_rx_intr(spi_bus);
rt_completion_done(&spi_bus->completion);
}
else
{
spi_clear_errors(spi_bus);
spi_enable_tx_error_intr(spi_bus);
}
flag++;
}
if ( spi_get_overrun(spi_bus) && spi_get_rx_error_intr(spi_bus) )
{
PRINT("OVER\n");
_spi_do_read_fifo(spi_bus);
flag++;
}
if ( spi_get_rxfifo_half_full(spi_bus) && spi_get_rxfifo_half_full_intr(spi_bus))
{
PRINT("RFHF\n");
_spi_do_read_fifo(spi_bus);
flag++;
}
if ( spi_get_txfifo_half_empty(spi_bus) && spi_get_txfifo_half_empty_intr(spi_bus))
{
PRINT("THFE\n");
_spi_do_xfer(spi_bus);
flag++;
}
// if (!flag)
// {
// rt_completion_done(&spi_bus->completion);
// }
spi_clear_errors(spi_bus);
}
static rt_uint32_t jz_spi_xfer(struct rt_spi_device* device, struct rt_spi_message* message)
{
rt_base_t level;
int i;
struct jz_spi* spi_bus = (struct jz_spi *)device->bus;
struct jz_spi_cs* _spi_cs = (struct jz_spi_cs*)device->parent.user_data;
/* take CS */
if (message->cs_take)
{
jz_spi_set_cs(_spi_cs,0);
}
spi_disable_tx_intr(spi_bus);
spi_disable_rx_intr(spi_bus);
spi_start_transmit(spi_bus);
spi_flush_fifo(spi_bus);
spi_enable_receive(spi_bus);
spi_clear_errors(spi_bus);
#ifdef SSI_DEGUG
dump_spi_reg(hw);
#endif
spi_bus->is_first = 1;
spi_bus->totalCount = message->length;
spi_bus->sendCount = 0;
spi_bus->recvCount = 0;
spi_bus->rx_buf = (rt_uint8_t *)message->recv_buf;
spi_bus->tx_buf = (rt_uint8_t *)message->send_buf;
_spi_do_xfer(spi_bus);
rt_completion_wait(&spi_bus->completion,RT_WAITING_FOREVER);
spi_finish_transmit(spi_bus);
spi_clear_errors(spi_bus);
/* release CS */
if (message->cs_release)
{
jz_spi_set_cs(_spi_cs,1);
spi_finish_transmit(spi_bus);
}
return message->length;
}
static rt_err_t jz_spi_configure(struct rt_spi_device* device,
struct rt_spi_configuration* configuration)
{
struct jz_spi * spi_bus = (struct jz_spi *)device->bus;
/* Disable SSIE */
spi_disable(spi_bus);
_spi_set_clk(spi_bus,configuration->max_hz);
configuration->max_hz = _spi_get_clk(spi_bus);
PRINT("spi clk = %d\n",configuration->max_hz);
if(configuration->data_width <= 8)
{
spi_set_frame_length(spi_bus, FIFO_W8);
spi_bus->xfer_unit_size = SPI_8BITS;
spi_bus->rx_func = jz_spi_rx_buf_u8;
spi_bus->tx_func = jz_spi_tx_buf_u8;
}
else if(configuration->data_width <= 16)
{
spi_set_frame_length(spi_bus, FIFO_W16);
spi_bus->xfer_unit_size = SPI_16BITS;
spi_bus->rx_func = jz_spi_rx_buf_u16;
spi_bus->tx_func = jz_spi_tx_buf_u16;
}
else if(configuration->data_width <= 32)
{
spi_set_frame_length(spi_bus, FIFO_W32);
spi_bus->xfer_unit_size = SPI_32BITS;
spi_bus->rx_func = jz_spi_rx_buf_u32;
spi_bus->tx_func = jz_spi_tx_buf_u32;
}
else
{
return RT_EIO;
}
// spi_set_frame_length(spi_bus,spi_bus->xfer_unit_size);
/* CPOL */
if (configuration->mode & RT_SPI_CPHA)
spi_set_clock_phase(spi_bus, 1);
else
spi_set_clock_phase(spi_bus, 0);
/* CPHA */
if (configuration->mode & RT_SPI_CPOL)
spi_set_clock_polarity(spi_bus, 1);
else
spi_set_clock_polarity(spi_bus, 0);
/* MSB or LSB */
if (configuration->mode & RT_SPI_MSB)
{
spi_set_tx_msb(spi_bus);
spi_set_rx_msb(spi_bus);
}
else
{
spi_set_tx_lsb(spi_bus);
spi_set_rx_lsb(spi_bus);
}
/* Enable SSIE */
spi_enable(spi_bus);
return RT_EOK;
};
int rt_hw_spi_master_init(void)
{
PRINT("init spi bus spi0\n");
#ifdef RT_USING_SPI0
# ifdef RT_SPI0_USE_PA
/* GPIO Initialize (SSI FUNC2) */
// gpio_set_func(GPIO_PORT_A,GPIO_Pin_25,GPIO_FUNC_2); //CE0
gpio_set_func(GPIO_PORT_A,GPIO_Pin_26,GPIO_FUNC_2); //CLK
// gpio_set_func(GPIO_PORT_A,GPIO_Pin_27,GPIO_FUNC_2); //CE0
gpio_set_func(GPIO_PORT_A,GPIO_Pin_28,GPIO_FUNC_2); //DR
gpio_set_func(GPIO_PORT_A,GPIO_Pin_29,GPIO_FUNC_2); //DT
/* Release HOLD WP */
gpio_set_func(GPIO_PORT_A, GPIO_Pin_30, GPIO_OUTPUT1); //CE1->WP
gpio_set_func(GPIO_PORT_A, GPIO_Pin_31, GPIO_OUTPUT1); //GPC->HOLD
# else
/* GPIO Initialize (SSI FUNC2) */
// gpio_set_func(GPIO_PORT_D,GPIO_Pin_1,GPIO_FUNC_0); //CE0
gpio_set_func(GPIO_PORT_D,GPIO_Pin_0,GPIO_FUNC_0); //CLK
gpio_set_func(GPIO_PORT_D,GPIO_Pin_3,GPIO_FUNC_0); //DR
gpio_set_func(GPIO_PORT_D,GPIO_Pin_2,GPIO_FUNC_0); //DT
# endif
#endif
/* Init config param */
jz_spi0.base = SSI_BASE;
jz_spi0.clk = clk_get("cgu_ssi");
clk_enable(jz_spi0.clk);
jz_spi0.clk_gate = clk_get("ssi0");
clk_enable(jz_spi0.clk_gate);
rt_completion_init(&jz_spi0.completion);
/* disable the SSI controller */
spi_disable(&jz_spi0);
/* set default half_intr trigger */
jz_spi0.tx_trigger = SSI_TX_FIFO_THRESHOLD * 8;
jz_spi0.rx_trigger = SSI_RX_FIFO_THRESHOLD * 8;
spi_set_tx_trigger(&jz_spi0, jz_spi0.tx_trigger);
spi_set_rx_trigger(&jz_spi0, jz_spi0.rx_trigger);
/* First,mask the interrupt, while verify the status ? */
spi_disable_tx_intr(&jz_spi0);
spi_disable_rx_intr(&jz_spi0);
spi_disable_receive(&jz_spi0);
spi_set_clock_phase(&jz_spi0, 0);
spi_set_clock_polarity(&jz_spi0, 0);
spi_set_tx_msb(&jz_spi0);
spi_set_rx_msb(&jz_spi0);
spi_set_format(&jz_spi0);
spi_set_frame_length(&jz_spi0, 8);
spi_disable_loopback(&jz_spi0);
spi_flush_fifo(&jz_spi0);
spi_underrun_auto_clear(&jz_spi0);
spi_clear_errors(&jz_spi0);
spi_select_ce0(&jz_spi0);
/* enable the SSI controller */
spi_enable(&jz_spi0);
rt_spi_bus_register(&jz_spi0.parent,"spi0", &jz_spi_ops);
PRINT("init spi bus spi0 done\n");
rt_hw_interrupt_install(IRQ_SSI0,_spi_irq_handler,&jz_spi0,"SSI0");
rt_hw_interrupt_umask(IRQ_SSI0);
return RT_EOK;
}
INIT_BOARD_EXPORT(rt_hw_spi_master_init);