2024-08-28 21:07:05 -04:00

196 lines
5.9 KiB
C

/*
* Copyright (c) 2006-2024 RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024-08-1 hywing The first version for MCXA
*/
#include "rtdevice.h"
#include "drv_spi.h"
#include "fsl_lpspi.h"
#include "fsl_lpspi_edma.h"
#define DMA_MAX_TRANSFER_SIZE (32767)
enum
{
#ifdef BSP_USING_SPI0
SPI0_INDEX,
#endif
#ifdef BSP_USING_SPI1
SPI1_INDEX,
#endif
};
struct lpc_spi
{
struct rt_spi_bus parent;
LPSPI_Type *LPSPIx;
clock_attach_id_t clock_attach_id;
clock_div_name_t clock_div_name;
clock_name_t clock_name;
DMA_Type *DMAx;
uint8_t tx_dma_chl;
uint8_t rx_dma_chl;
edma_handle_t dma_tx_handle;
edma_handle_t dma_rx_handle;
dma_request_source_t tx_dma_request;
dma_request_source_t rx_dma_request;
lpspi_master_edma_handle_t spi_dma_handle;
rt_sem_t sem;
char *name;
};
static struct lpc_spi lpc_obj[] =
{
#ifdef BSP_USING_SPI0
{
.LPSPIx = LPSPI0,
.clock_attach_id = kFRO12M_to_LPSPI0,
.clock_div_name = kCLOCK_DivLPSPI0,
.clock_name = kCLOCK_Fro12M,
.tx_dma_request = kDma0RequestLPSPI0Tx,
.rx_dma_request = kDma0RequestLPSPI0Rx,
.DMAx = DMA0,
.tx_dma_chl = 0,
.rx_dma_chl = 1,
.name = "spi0",
},
#endif
#ifdef BSP_USING_SPI1
{
.LPSPIx = LPSPI1,
.clock_attach_id = kFRO12M_to_LPSPI1,
.clock_div_name = kCLOCK_DivLPSPI1,
.clock_name = kCLOCK_Fro12M,
.tx_dma_request = kDma0RequestLPSPI1Tx,
.rx_dma_request = kDma0RequestLPSPI1Rx,
.DMAx = DMA0,
.tx_dma_chl = 0,
.rx_dma_chl = 1,
.name = "spi1",
},
#endif
};
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, rt_uint32_t pin)
{
struct rt_spi_device *spi_device = rt_malloc(sizeof(struct rt_spi_device));
if (!spi_device)
{
return -RT_ENOMEM;
}
return rt_spi_bus_attach_device_cspin(spi_device, device_name, bus_name, pin, NULL);
}
static rt_err_t spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *cfg)
{
return RT_EOK;
}
static void LPSPI_MasterUserCallback(LPSPI_Type *base, lpspi_master_edma_handle_t *handle, status_t status, void *userData)
{
struct lpc_spi *spi = (struct lpc_spi *)userData;
rt_sem_release(spi->sem);
}
static rt_ssize_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
int i;
lpspi_transfer_t transfer = {0};
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
struct lpc_spi *spi = device->bus->parent.user_data;
if (message->cs_take)
{
rt_pin_write(device->cs_pin, PIN_LOW);
}
transfer.dataSize = message->length;
transfer.rxData = (uint8_t *)(message->recv_buf);
transfer.txData = (uint8_t *)(message->send_buf);
/* if(message->length < MAX_DMA_TRANSFER_SIZE)*/
uint32_t block, remain;
block = message->length / DMA_MAX_TRANSFER_SIZE;
remain = message->length % DMA_MAX_TRANSFER_SIZE;
for (i = 0; i < block; i++)
{
transfer.dataSize = DMA_MAX_TRANSFER_SIZE;
if (message->recv_buf) transfer.rxData = (uint8_t *)(message->recv_buf + i *DMA_MAX_TRANSFER_SIZE);
if (message->send_buf) transfer.txData = (uint8_t *)(message->send_buf + i *DMA_MAX_TRANSFER_SIZE);
LPSPI_MasterTransferEDMA(spi->LPSPIx, &spi->spi_dma_handle, &transfer);
rt_sem_take(spi->sem, RT_WAITING_FOREVER);
}
if (remain)
{
transfer.dataSize = remain;
if (message->recv_buf) transfer.rxData = (uint8_t *)(message->recv_buf + i *DMA_MAX_TRANSFER_SIZE);
if (message->send_buf) transfer.txData = (uint8_t *)(message->send_buf + i *DMA_MAX_TRANSFER_SIZE);
LPSPI_MasterTransferEDMA(spi->LPSPIx, &spi->spi_dma_handle, &transfer);
rt_sem_take(spi->sem, RT_WAITING_FOREVER);
}
if (message->cs_release)
{
rt_pin_write(device->cs_pin, PIN_HIGH);
}
return message->length;
}
static struct rt_spi_ops lpc_spi_ops =
{
.configure = spi_configure,
.xfer = spixfer
};
int rt_hw_spi_init(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(lpc_obj); i++)
{
CLOCK_SetClockDiv(lpc_obj[i].clock_div_name, 1u);
CLOCK_AttachClk(lpc_obj[i].clock_attach_id);
lpc_obj[i].parent.parent.user_data = &lpc_obj[i];
lpc_obj[i].sem = rt_sem_create("sem_spi", 0, RT_IPC_FLAG_FIFO);
lpspi_master_config_t masterConfig;
LPSPI_MasterGetDefaultConfig(&masterConfig);
masterConfig.baudRate = 1 * 1000 * 1000;
masterConfig.pcsToSckDelayInNanoSec = 1000000000U / masterConfig.baudRate * 1U;
masterConfig.lastSckToPcsDelayInNanoSec = 1000000000U / masterConfig.baudRate * 1U;
masterConfig.betweenTransferDelayInNanoSec = 1000000000U / masterConfig.baudRate * 1U;
LPSPI_MasterInit(lpc_obj[i].LPSPIx, &masterConfig, CLOCK_GetFreq(lpc_obj[i].clock_name));
EDMA_CreateHandle(&lpc_obj[i].dma_tx_handle, lpc_obj[i].DMAx, lpc_obj[i].tx_dma_chl);
EDMA_CreateHandle(&lpc_obj[i].dma_rx_handle, lpc_obj[i].DMAx, lpc_obj[i].rx_dma_chl);
EDMA_SetChannelMux(lpc_obj[i].DMAx, lpc_obj[i].tx_dma_chl, lpc_obj[i].tx_dma_request);
EDMA_SetChannelMux(lpc_obj[i].DMAx, lpc_obj[i].rx_dma_chl, lpc_obj[i].rx_dma_request);
LPSPI_MasterTransferCreateHandleEDMA(lpc_obj[i].LPSPIx, &lpc_obj[i].spi_dma_handle, LPSPI_MasterUserCallback, &lpc_obj[i], &lpc_obj[i].dma_rx_handle, &lpc_obj[i].dma_tx_handle);
rt_spi_bus_register(&lpc_obj[i].parent, lpc_obj[i].name, &lpc_spi_ops);
}
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_spi_init);