rt-thread/bsp/gd32/arm/libraries/gd32_drivers/drv_sdio.c

2928 lines
108 KiB
C

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-07-20 jiezhi320 the first version
*/
#include <stddef.h>
#include <rthw.h>
#include <rtthread.h>
#ifdef RT_USING_SDIO
#include "drv_sdio.h"
//#define DRV_DEBUG
#define LOG_TAG "drv.sdio"
#include "drv_log.h"
#define SDIO_DMA_USE_IPC 0//1:使用ipc做同步
/* card status of R1 definitions */
#define SD_R1_OUT_OF_RANGE BIT(31) /* command's argument was out of the allowed range */
#define SD_R1_ADDRESS_ERROR BIT(30) /* misaligned address which did not match the block length */
#define SD_R1_BLOCK_LEN_ERROR BIT(29) /* transferred block length is not allowed */
#define SD_R1_ERASE_SEQ_ERROR BIT(28) /* an error in the sequence of erase commands occurred */
#define SD_R1_ERASE_PARAM BIT(27) /* an invalid selection of write-blocks for erase occurred */
#define SD_R1_WP_VIOLATION BIT(26) /* the host attempts to write to a protected block or to the temporary or permanent write protected card */
#define SD_R1_CARD_IS_LOCKED BIT(25) /* the card is locked by the host */
#define SD_R1_LOCK_UNLOCK_FAILED BIT(24) /* a sequence or password error has been detected in lock/unlock card command */
#define SD_R1_COM_CRC_ERROR BIT(23) /* CRC check of the previous command failed */
#define SD_R1_ILLEGAL_COMMAND BIT(22) /* command not legal for the card state */
#define SD_R1_CARD_ECC_FAILED BIT(21) /* card internal ECC was applied but failed to correct the data */
#define SD_R1_CC_ERROR BIT(20) /* internal card controller error */
#define SD_R1_GENERAL_UNKNOWN_ERROR BIT(19) /* a general or an unknown error occurred during the operation */
#define SD_R1_CSD_OVERWRITE BIT(16) /* read only section of the CSD does not match or attempt to reverse the copy or permanent WP bits */
#define SD_R1_WP_ERASE_SKIP BIT(15) /* partial address space was erased */
#define SD_R1_CARD_ECC_DISABLED BIT(14) /* command has been executed without using the internal ECC */
#define SD_R1_ERASE_RESET BIT(13) /* an erase sequence was cleared before executing */
#define SD_R1_READY_FOR_DATA BIT(8) /* correspond to buffer empty signaling on the bus */
#define SD_R1_APP_CMD BIT(5) /* card will expect ACMD */
#define SD_R1_AKE_SEQ_ERROR BIT(3) /* error in the sequence of the authentication process */
#define SD_R1_ERROR_BITS (uint32_t)0xFDF9E008 /* all the R1 error bits */
/* card status of R6 definitions */
#define SD_R6_COM_CRC_ERROR BIT(15) /* CRC check of the previous command failed */
#define SD_R6_ILLEGAL_COMMAND BIT(14) /* command not legal for the card state */
#define SD_R6_GENERAL_UNKNOWN_ERROR BIT(13) /* a general or an unknown error occurred during the operation */
/* card state */
#define SD_CARDSTATE_IDLE ((uint8_t)0x00) /* card is in idle state */
#define SD_CARDSTATE_READY ((uint8_t)0x01) /* card is in ready state */
#define SD_CARDSTATE_IDENTIFICAT ((uint8_t)0x02) /* card is in identificat state */
#define SD_CARDSTATE_STANDBY ((uint8_t)0x03) /* card is in standby state */
#define SD_CARDSTATE_TRANSFER ((uint8_t)0x04) /* card is in transfer state */
#define SD_CARDSTATE_DATA ((uint8_t)0x05) /* card is in data sending state */
#define SD_CARDSTATE_RECEIVING ((uint8_t)0x06) /* card is in receiving state */
#define SD_CARDSTATE_PROGRAMMING ((uint8_t)0x07) /* card is in programming state */
#define SD_CARDSTATE_DISCONNECT ((uint8_t)0x08) /* card is in disconnect state */
#define SD_CARDSTATE_LOCKED ((uint32_t)0x02000000) /* card is in locked state */
#define SD_CHECK_PATTERN ((uint32_t)0x000001AA) /* check pattern for CMD8 */
#define SD_VOLTAGE_WINDOW ((uint32_t)0x80100000) /* host 3.3V request in ACMD41 */
/* parameters for ACMD41(voltage validation) */
#define SD_HIGH_CAPACITY ((uint32_t)0x40000000) /* high capacity SD memory card */
#define SD_STD_CAPACITY ((uint32_t)0x00000000) /* standard capacity SD memory card */
/* SD bus width, check SCR register */
#define SD_BUS_WIDTH_4BIT ((uint32_t)0x00040000) /* 4-bit width bus mode */
#define SD_BUS_WIDTH_1BIT ((uint32_t)0x00010000) /* 1-bit width bus mode */
/* masks for SCR register */
#define SD_MASK_0_7BITS ((uint32_t)0x000000FF) /* mask [7:0] bits */
#define SD_MASK_8_15BITS ((uint32_t)0x0000FF00) /* mask [15:8] bits */
#define SD_MASK_16_23BITS ((uint32_t)0x00FF0000) /* mask [23:16] bits */
#define SD_MASK_24_31BITS ((uint32_t)0xFF000000) /* mask [31:24] bits */
#define SDIO_FIFO_ADDR ((uint32_t)0x40012C80) /* address of SDIO_FIFO */
#define SD_FIFOHALF_WORDS ((uint32_t)0x00000008) /* words of FIFO half full/empty */
#define SD_FIFOHALF_BYTES ((uint32_t)0x00000020) /* bytes of FIFO half full/empty */
#define SD_DATATIMEOUT ((uint32_t)0xFFFFFFFF) /* DSM data timeout */
#define SD_MAX_VOLT_VALIDATION ((uint32_t)0x0000FFFF) /* the maximum times of voltage validation */
#define SD_MAX_DATA_LENGTH ((uint32_t)0x01FFFFFF) /* the maximum length of data */
#define SD_ALLZERO ((uint32_t)0x00000000) /* all zero */
#define SD_RCA_SHIFT ((uint8_t)0x10) /* RCA shift bits */
#define SD_CLK_DIV_INIT ((uint16_t)0x0076) /* SD clock division in initialization phase */
#define SD_CLK_DIV_TRANS ((uint16_t)0x0002) /* SD clock division in transmission phase */
#define SDIO_MASK_INTC_FLAGS ((uint32_t)0x00C007FF) /* mask flags of SDIO_INTC */
typedef struct{
uint32_t sd_scr[2] ; /* content of SCR register */
sdio_card_type_enum cardtype; /* SD card type */
uint32_t sd_csd[4]; /* content of CSD register */
uint32_t sd_cid[4]; /* content of CID register */
uint16_t sd_rca; /* RCA of SD card */
uint32_t transmode;
uint32_t totalnumber_bytes;
uint32_t stopcondition;
__IO sd_error_enum transerror;
__IO uint32_t transend;
__IO uint32_t number_bytes;
}sdcard_opration_t;
static sdcard_opration_t card_opration = {
.sd_scr = {0,0},
.cardtype = SDIO_STD_CAPACITY_SD_CARD_V1_1,
.sd_csd = {0,0,0,0},
.sd_cid = {0,0,0,0},
.sd_rca = 0,
.transmode = SD_POLLING_MODE,
.totalnumber_bytes = 0,
.stopcondition = 0,
.transerror = SD_OK,
.transend = 0,
.number_bytes = 0,
};
/* set sector size to 512 */
#define SECTOR_SIZE 512
typedef struct
{
struct rt_device sdcard_device;
sd_card_info_struct sd_cardinfo;
IRQn_Type irqn;
struct rt_mutex sd_lock;
struct rt_semaphore sem;
char *device_name;
} gd32_sdio_t;
static gd32_sdio_t sd = {
.irqn = SDIO_IRQn,
.device_name = "sd0",
};
/* check if the command sent error occurs */
static sd_error_enum cmdsent_error_check(void);
/* check if error occurs for R1 response */
static sd_error_enum r1_error_check(uint8_t cmdindex);
/* check if error type for R1 response */
static sd_error_enum r1_error_type_check(uint32_t resp);
/* check if error occurs for R2 response */
static sd_error_enum r2_error_check(void);
/* check if error occurs for R3 response */
static sd_error_enum r3_error_check(void);
/* check if error occurs for R6 response */
static sd_error_enum r6_error_check(uint8_t cmdindex, uint16_t *prca);
/* check if error occurs for R7 response */
static sd_error_enum r7_error_check(void);
/* get the state which the card is in */
static sd_error_enum sd_card_state_get(uint8_t *pcardstate);
/* configure the bus width mode */
static sd_error_enum sd_bus_width_config(uint32_t buswidth);
/* get the SCR of corresponding card */
static sd_error_enum sd_scr_get(uint16_t rca, uint32_t *pscr);
/* get the data block size */
static uint32_t sd_datablocksize_get(uint16_t bytesnumber);
/* configure the GPIO of SDIO interface */
static void gpio_config(void);
/* configure the RCU of SDIO and DMA */
static void rcu_config(void);
/* configure the DMA for SDIO transfer request */
static void dma_transfer_config(uint32_t *srcbuf, uint32_t bufsize);
/* configure the DMA for SDIO reveive request */
static void dma_receive_config(uint32_t *dstbuf, uint32_t bufsize);
static void nvic_config(void);
static sd_error_enum sd_config(void);
static void card_info_get(void);
#if SDIO_DMA_USE_IPC
static void sdio_dma_irq_config(void);
#endif
/* RT-Thread Device Driver Interface */
static rt_err_t rt_sdcard_init(rt_device_t dev)
{
rt_err_t ret = RT_EOK;
sd_error_enum sd_error = SD_OK;
uint16_t retry = 5;
ret = rt_mutex_init(&sd.sd_lock, "sd_lock", RT_IPC_FLAG_FIFO);
if (RT_EOK != ret) {
LOG_E("init mutex failed\n");
return ret;
}
ret = rt_sem_init(&sd.sem, "sd_sem", 0, RT_IPC_FLAG_FIFO);
if (RT_EOK != ret) {
LOG_E("init semaphore failed\n");
return ret;
}
nvic_irq_enable(sd.irqn, 0, 0);
do {
/* initialize the card, get the card information and configurate the bus mode and transfer mode */
sd_error = sd_config();
} while((SD_OK != sd_error) && (--retry));
if (retry) {
LOG_I("\r\n Card init success!\r\n");
}
else {
LOG_E("\r\n Card init failed!\r\n");
ret = -RT_EIO;
return ret;
}
card_info_get();
return ret;
}
static rt_err_t rt_sdcard_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_sdcard_close(rt_device_t dev)
{
return RT_EOK;
}
static uint32_t dma_buffer[SECTOR_SIZE/sizeof(uint32_t)];
static rt_ssize_t rt_sdcard_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
RT_ASSERT(dev != RT_NULL);
sd_error_enum sd_error;
uint32_t status;
gd32_sdio_t *sd = (gd32_sdio_t *)dev->user_data;
if (!buffer) {
return 0;
}
rt_mutex_take(&sd->sd_lock, RT_WAITING_FOREVER);
if(((uint32_t)buffer & 0x03) != 0)
{
/* non-aligned. */
uint32_t i;
uint32_t sector_adr;
uint32_t* copy_buffer;
sector_adr = pos*SECTOR_SIZE;
copy_buffer = (uint32_t*)buffer;
for(i=0; i<size; i++){
sd_error = sd_block_read((uint32_t*)dma_buffer, sector_adr, SECTOR_SIZE);
rt_memcpy(copy_buffer, dma_buffer, SECTOR_SIZE);
sector_adr += SECTOR_SIZE;
copy_buffer += SECTOR_SIZE;
}
}
else {
if (size == 1){
sd_error = sd_block_read((uint32_t*)buffer, pos*SECTOR_SIZE, SECTOR_SIZE);
}
else {
sd_error = sd_multiblocks_read((uint32_t*)buffer, pos*SECTOR_SIZE, SECTOR_SIZE, size);
}
}
rt_mutex_release(&sd->sd_lock);
if (sd_error == SD_OK){
return size;
}
else {
return 0;
}
}
static rt_ssize_t rt_sdcard_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
#define WR_RETRY_TIMES 2
RT_ASSERT(dev != RT_NULL);
uint8_t retry = 0;
sd_error_enum sd_error;
uint32_t status;
gd32_sdio_t *sd = (gd32_sdio_t *)dev->user_data;
rt_mutex_take(&sd->sd_lock, RT_WAITING_FOREVER);
if (((uint32_t)buffer & 0x03) != 0) {
/* non-aligned. */
uint32_t i;
rt_size_t sector_adr;
uint32_t* copy_buffer;
sector_adr = pos*SECTOR_SIZE;
copy_buffer = (uint32_t*)buffer;
for (i=0; i<size; i++) {
retry = WR_RETRY_TIMES;
rt_memcpy(dma_buffer, copy_buffer, SECTOR_SIZE);
while (retry > 0) {
sd_error = sd_block_write((uint32_t*)dma_buffer, sector_adr, SECTOR_SIZE);
retry--;
if (sd_error == SD_OK) {
break;
}
}
sector_adr += SECTOR_SIZE;
copy_buffer += SECTOR_SIZE;
}
}
else {
retry = WR_RETRY_TIMES;
if (size == 1) {
while (retry > 0) {
sd_error = sd_block_write((uint32_t*)buffer, pos*SECTOR_SIZE, SECTOR_SIZE);
retry--;
if (sd_error == SD_OK) {
break;
}
}
}
else {
while (retry > 0) {
sd_error = sd_multiblocks_write((uint32_t*)buffer, pos*SECTOR_SIZE, SECTOR_SIZE, size);
retry--;
if (sd_error == SD_OK) {
break;
}
}
}
}
rt_mutex_release(&sd->sd_lock);
if (!retry) {
LOG_D("sdio e:%d r:%d\n", sd_error, retry);
}
if (sd_error == SD_OK) {
return size;
}
else {
return 0;
}
}
static rt_err_t rt_sdcard_control(rt_device_t dev, int cmd, void *args)
{
RT_ASSERT(dev != RT_NULL);
gd32_sdio_t *sd = (gd32_sdio_t *)dev->user_data;
if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME) {
struct rt_device_blk_geometry *geometry;
geometry = (struct rt_device_blk_geometry *)args;
if (geometry == RT_NULL)
return -RT_ERROR;
geometry->bytes_per_sector = 512;
geometry->block_size = sd->sd_cardinfo.card_blocksize;
if (sd->sd_cardinfo.card_type == SDIO_HIGH_CAPACITY_SD_CARD)
geometry->sector_count = (sd->sd_cardinfo.card_csd.c_size + 1) * 1024;
else
geometry->sector_count = sd->sd_cardinfo.card_capacity/sd->sd_cardinfo.card_blocksize;
}
return RT_EOK;
}
int rt_hw_sdcard_init(void)
{
/* register sdcard device */
sd.sdcard_device.type = RT_Device_Class_Block;
sd.sdcard_device.init = rt_sdcard_init;
sd.sdcard_device.open = rt_sdcard_open;
sd.sdcard_device.close = rt_sdcard_close;
sd.sdcard_device.read = rt_sdcard_read;
sd.sdcard_device.write = rt_sdcard_write;
sd.sdcard_device.control = rt_sdcard_control;
sd.sdcard_device.user_data = &sd;
rt_device_register(&sd.sdcard_device, sd.device_name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_sdcard_init);
/*!
\brief initialize the card, get the card information, set the bus mode and transfer mode
\param[in] none
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_config(void)
{
sd_error_enum status = SD_OK;
uint32_t cardstate = 0;
/* initialize the card */
status = sd_init();
if(SD_OK == status){
status = sd_card_information_get(&sd.sd_cardinfo);
}
if(SD_OK == status){
status = sd_card_select_deselect(sd.sd_cardinfo.card_rca);
}
status = sd_cardstatus_get(&cardstate);
if(cardstate & 0x02000000){
LOG_D("\r\n The card is locked!");
#if 0
/* unlock the card if necessary */
status = sd_lock_unlock(SD_UNLOCK);
if(SD_OK != status){
LOG_D("\r\n Unlock failed!");
while (1){
}
}else{
LOG_W("\r\n The card is unlocked! Please reset MCU!");
}
#endif
while (1){
}
}
if ((SD_OK == status) && (!(cardstate & 0x02000000)))
{
/* set bus mode */
status = sd_bus_mode_config(SDIO_BUSMODE_4BIT);
// status = sd_bus_mode_config( SDIO_BUSMODE_1BIT );
}
if (SD_OK == status)
{
/* set data transfer mode */
status = sd_transfer_mode_config(SD_DMA_MODE);
//status = sd_transfer_mode_config(SD_POLLING_MODE);
}
return status;
}
/*!
\brief get the card information and print it out by USRAT
\param[in] none
\param[out] none
\retval none
*/
void card_info_get(void)
{
uint8_t sd_spec, sd_spec3, sd_spec4, sd_security;
uint32_t block_count, block_size;
uint16_t temp_ccc;
LOG_D("\r\nCard information:");
sd_spec = (card_opration.sd_scr[1] & 0x0F000000) >> 24;
sd_spec3 = (card_opration.sd_scr[1] & 0x00008000) >> 15;
sd_spec4 = (card_opration.sd_scr[1] & 0x00000400) >> 10;
if(2 == sd_spec){
if(1 == sd_spec3){
if(1 == sd_spec4){
LOG_D("\r\n## Card version 4.xx ##");
}else{
LOG_D("\r\n## Card version 3.0x ##");
}
}else{
LOG_D("\r\n## Card version 2.00 ##");
}
}else if(1 == sd_spec){
LOG_D("\r\n## Card version 1.10 ##");
}else if(0 == sd_spec){
LOG_D("\r\n## Card version 1.0x ##");
}
sd_security = (card_opration.sd_scr[1] & 0x00700000) >> 20;
if(2 == sd_security){
LOG_I("\r\n## SDSC card ##");
}else if(3 == sd_security){
LOG_I("\r\n## SDHC card ##");
}else if(4 == sd_security){
LOG_I("\r\n## SDXC card ##");
}
block_count = (sd.sd_cardinfo.card_csd.c_size + 1)*1024;
block_size = 512;
LOG_I("\r\n## Device size is %dKB ##", sd_card_capacity_get());
LOG_D("\r\n## Block size is %dB - %dB ##", block_size, sd.sd_cardinfo.card_blocksize);
LOG_D("\r\n## Block count is %d ##", block_count);
if(sd.sd_cardinfo.card_csd.read_bl_partial){
LOG_D("\r\n## Partial blocks for read allowed ##" );
}
if(sd.sd_cardinfo.card_csd.write_bl_partial){
LOG_D("\r\n## Partial blocks for write allowed ##" );
}
temp_ccc = sd.sd_cardinfo.card_csd.ccc;
LOG_D("\r\n## CardCommandClasses is: %x ##", temp_ccc);
if((SD_CCC_BLOCK_READ & temp_ccc) && (SD_CCC_BLOCK_WRITE & temp_ccc)){
LOG_D("\r\n## Block operation supported ##");
}
if(SD_CCC_ERASE & temp_ccc){
LOG_D("\r\n## Erase supported ##");
}
if(SD_CCC_WRITE_PROTECTION & temp_ccc){
LOG_D("\r\n## Write protection supported ##");
}
if(SD_CCC_LOCK_CARD & temp_ccc){
LOG_D("\r\n## Lock unlock supported ##");
}
if(SD_CCC_APPLICATION_SPECIFIC & temp_ccc){
LOG_D("\r\n## Application specific supported ##");
}
if(SD_CCC_IO_MODE & temp_ccc){
LOG_D("\r\n## I/O mode supported ##");
}
if(SD_CCC_SWITCH & temp_ccc){
LOG_D("\r\n## Switch function supported ##");
}
}
void SDIO_IRQHandler(void)
{
sd_error_enum status;
rt_interrupt_enter();
status = sd_interrupts_process();
if (SD_OK != status) {
LOG_D("irq:%d", status);
}
rt_interrupt_leave();
}
/*!
\brief initialize the SD card and make it in standby state
\param[in] none
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_init(void)
{
sd_error_enum status = SD_OK;
/* configure the RCU and GPIO, deinitialize the SDIO */
rcu_config();
gpio_config();
sdio_deinit();
/* configure the clock and work voltage */
status = sd_power_on();
if(SD_OK != status){
return status;
}
/* initialize the card and get CID and CSD of the card */
status = sd_card_init();
if(SD_OK != status){
return status;
}
/* configure the SDIO peripheral */
sdio_clock_config(SDIO_SDIOCLKEDGE_RISING, SDIO_CLOCKBYPASS_DISABLE, SDIO_CLOCKPWRSAVE_DISABLE, SD_CLK_DIV_TRANS);
sdio_bus_mode_set(SDIO_BUSMODE_1BIT);
sdio_hardware_clock_enable();//sdio_hardware_clock_disable();
return status;
}
/*!
\brief initialize the card and get CID and CSD of the card
\param[in] none
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_card_init(void)
{
sd_error_enum status = SD_OK;
uint16_t temp_rca = 0x01;
if(SDIO_POWER_OFF == sdio_power_state_get()){
status = SD_OPERATION_IMPROPER;
return status;
}
/* the card is not I/O only card */
if(SDIO_SECURE_DIGITAL_IO_CARD != card_opration.cardtype){
/* send CMD2(SD_CMD_ALL_SEND_CID) to get the CID numbers */
sdio_command_response_config(SD_CMD_ALL_SEND_CID, (uint32_t)0x0, SDIO_RESPONSETYPE_LONG);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r2_error_check();
if(SD_OK != status){
return status;
}
/* store the CID numbers */
card_opration.sd_cid[0] = sdio_response_get(SDIO_RESPONSE0);
card_opration.sd_cid[1] = sdio_response_get(SDIO_RESPONSE1);
card_opration.sd_cid[2] = sdio_response_get(SDIO_RESPONSE2);
card_opration.sd_cid[3] = sdio_response_get(SDIO_RESPONSE3);
}
/* the card is SD memory card or the I/O card has the memory portion */
if ((SDIO_STD_CAPACITY_SD_CARD_V1_1 == card_opration.cardtype) || (SDIO_STD_CAPACITY_SD_CARD_V2_0 == card_opration.cardtype) ||
(SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype) || (SDIO_SECURE_DIGITAL_IO_COMBO_CARD == card_opration.cardtype)){
/* send CMD3(SEND_RELATIVE_ADDR) to ask the card to publish a new relative address (RCA) */
sdio_command_response_config(SD_CMD_SEND_RELATIVE_ADDR, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r6_error_check(SD_CMD_SEND_RELATIVE_ADDR, &temp_rca);
if(SD_OK != status){
return status;
}
}
if(SDIO_SECURE_DIGITAL_IO_CARD != card_opration.cardtype){
/* the card is not I/O only card */
card_opration.sd_rca = temp_rca;
/* send CMD9(SEND_CSD) to get the addressed card's card-specific data (CSD) */
sdio_command_response_config(SD_CMD_SEND_CSD, (uint32_t)(temp_rca << SD_RCA_SHIFT), SDIO_RESPONSETYPE_LONG);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r2_error_check();
if(SD_OK != status){
return status;
}
/* store the card-specific data (CSD) */
card_opration.sd_csd[0] = sdio_response_get(SDIO_RESPONSE0);
card_opration.sd_csd[1] = sdio_response_get(SDIO_RESPONSE1);
card_opration.sd_csd[2] = sdio_response_get(SDIO_RESPONSE2);
card_opration.sd_csd[3] = sdio_response_get(SDIO_RESPONSE3);
}
return status;
}
/*!
\brief configure the clock and the work voltage, and get the card type
\param[in] none
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_power_on(void)
{
sd_error_enum status = SD_OK;
uint32_t sdcardtype = SD_STD_CAPACITY, response = 0, count = 0;
uint8_t busyflag = 0;
/* configure the SDIO peripheral */
sdio_clock_config(SDIO_SDIOCLKEDGE_RISING, SDIO_CLOCKBYPASS_DISABLE, SDIO_CLOCKPWRSAVE_DISABLE, SD_CLK_DIV_INIT);
sdio_bus_mode_set(SDIO_BUSMODE_1BIT);
sdio_hardware_clock_enable();//sdio_hardware_clock_disable();
sdio_power_state_set(SDIO_POWER_ON);
/* enable SDIO_CLK clock output */
sdio_clock_enable();
/* send CMD0(GO_IDLE_STATE) to reset the card */
sdio_command_response_config(SD_CMD_GO_IDLE_STATE, (uint32_t)0x0, SDIO_RESPONSETYPE_NO);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
/* enable the CSM */
sdio_csm_enable();
/* check if command sent error occurs */
status = cmdsent_error_check();
if(SD_OK != status){
return status;
}
/* send CMD8(SEND_IF_COND) to get SD memory card interface condition */
sdio_command_response_config(SD_CMD_SEND_IF_COND, SD_CHECK_PATTERN, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
if(SD_OK == r7_error_check()){
/* SD Card 2.0 */
card_opration.cardtype = SDIO_STD_CAPACITY_SD_CARD_V2_0;
sdcardtype = SD_HIGH_CAPACITY;
}
/* send CMD55(APP_CMD) to indicate next command is application specific command */
sdio_command_response_config(SD_CMD_APP_CMD, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
if(SD_OK == r1_error_check(SD_CMD_APP_CMD)){
/* SD memory card */
while((!busyflag) && (count < SD_MAX_VOLT_VALIDATION)){
/* send CMD55(APP_CMD) to indicate next command is application specific command */
sdio_command_response_config(SD_CMD_APP_CMD, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_APP_CMD);
if(SD_OK != status){
return status;
}
/* send ACMD41(SD_SEND_OP_COND) to get host capacity support information (HCS) and OCR content */
sdio_command_response_config(SD_APPCMD_SD_SEND_OP_COND, (SD_VOLTAGE_WINDOW | sdcardtype), SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r3_error_check();
if(SD_OK != status){
return status;
}
/* get the response and check card power up status bit(busy) */
response = sdio_response_get(SDIO_RESPONSE0);
busyflag = (uint8_t)((response >> 31)&(uint32_t)0x01);
++count;
}
if(count >= SD_MAX_VOLT_VALIDATION){
status = SD_VOLTRANGE_INVALID;
return status;
}
if(response &= SD_HIGH_CAPACITY){
/* SDHC card */
card_opration.cardtype = SDIO_HIGH_CAPACITY_SD_CARD;
}
}
return status;
}
/*!
\brief close the power of SDIO
\param[in] none
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_power_off(void)
{
sd_error_enum status = SD_OK;
sdio_power_state_set(SDIO_POWER_OFF);
return status;
}
/*!
\brief configure the bus mode
\param[in] busmode: the bus mode
\arg SDIO_BUSMODE_1BIT: 1-bit SDIO card bus mode
\arg SDIO_BUSMODE_4BIT: 4-bit SDIO card bus mode
\arg SDIO_BUSMODE_8BIT: 8-bit SDIO card bus mode (MMC only)
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_bus_mode_config(uint32_t busmode)
{
sd_error_enum status = SD_OK;
if(SDIO_MULTIMEDIA_CARD == card_opration.cardtype){
/* MMC card doesn't support this function */
status = SD_FUNCTION_UNSUPPORTED;
return status;
}else if((SDIO_STD_CAPACITY_SD_CARD_V1_1 == card_opration.cardtype) || (SDIO_STD_CAPACITY_SD_CARD_V2_0 == card_opration.cardtype) ||
(SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)){
if(SDIO_BUSMODE_8BIT == busmode){
/* 8 bit bus mode doesn't support */
status = SD_FUNCTION_UNSUPPORTED;
return status;
}else if(SDIO_BUSMODE_4BIT == busmode){
/* configure SD bus width and the SDIO */
status = sd_bus_width_config(SD_BUS_WIDTH_4BIT);
if(SD_OK == status){
sdio_clock_config(SDIO_SDIOCLKEDGE_RISING, SDIO_CLOCKBYPASS_DISABLE,
SDIO_CLOCKPWRSAVE_DISABLE, SD_CLK_DIV_TRANS);
sdio_bus_mode_set(busmode);
sdio_hardware_clock_enable();//sdio_hardware_clock_disable();
}
}else if(SDIO_BUSMODE_1BIT == busmode){
/* configure SD bus width and the SDIO */
status = sd_bus_width_config(SD_BUS_WIDTH_1BIT);
if(SD_OK == status){
sdio_clock_config(SDIO_SDIOCLKEDGE_RISING, SDIO_CLOCKBYPASS_DISABLE,
SDIO_CLOCKPWRSAVE_DISABLE, SD_CLK_DIV_TRANS);
sdio_bus_mode_set(busmode);
sdio_hardware_clock_enable();//sdio_hardware_clock_disable();
}
}else{
status = SD_PARAMETER_INVALID;
}
}
return status;
}
/*!
\brief configure the mode of transmission
\param[in] txmode: transfer mode
\arg SD_DMA_MODE: DMA mode
\arg SD_POLLING_MODE: polling mode
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_transfer_mode_config(uint32_t txmode)
{
sd_error_enum status = SD_OK;
/* set the transfer mode */
if((SD_DMA_MODE == txmode) || (SD_POLLING_MODE == txmode)){
card_opration.transmode = txmode;
}else{
status = SD_PARAMETER_INVALID;
}
return status;
}
/*!
\brief read a block data into a buffer from the specified address of a card
\param[out] preadbuffer: a pointer that store a block read data
\param[in] readaddr: the read data address
\param[in] blocksize: the data block size
\retval sd_error_enum
*/
sd_error_enum sd_block_read(uint32_t *preadbuffer, uint32_t readaddr, uint16_t blocksize)
{
/* initialize the variables */
sd_error_enum status = SD_OK;
uint32_t count = 0, align = 0, datablksize = SDIO_DATABLOCKSIZE_1BYTE, *ptempbuff = preadbuffer;
__IO uint32_t timeout = 0;
if(NULL == preadbuffer){
status = SD_PARAMETER_INVALID;
return status;
}
card_opration.transerror = SD_OK;
card_opration.transend = 0;
card_opration.totalnumber_bytes = 0;
/* clear all DSM configuration */
sdio_data_config(0, 0, SDIO_DATABLOCKSIZE_1BYTE);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOCARD, SDIO_TRANSMODE_BLOCK);
sdio_dsm_disable();
sdio_dma_disable();
/* check whether the card is locked */
if(sdio_response_get(SDIO_RESPONSE0) & SD_CARDSTATE_LOCKED){
status = SD_LOCK_UNLOCK_FAILED;
return status;
}
/* blocksize is fixed in 512B for SDHC card */
if (SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)
{
blocksize = 512;
readaddr /= 512;
}
align = blocksize & (blocksize - 1);
if((blocksize > 0) && (blocksize <= 2048) && (0 == align)){
datablksize = sd_datablocksize_get(blocksize);
/* send CMD16(SET_BLOCKLEN) to set the block length */
sdio_command_response_config(SD_CMD_SET_BLOCKLEN, (uint32_t)blocksize, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SET_BLOCKLEN);
if(SD_OK != status){
return status;
}
}else{
status = SD_PARAMETER_INVALID;
return status;
}
card_opration.stopcondition = 0;
card_opration.totalnumber_bytes = blocksize;
/* configure SDIO data transmisson */
sdio_data_config(SD_DATATIMEOUT, card_opration.totalnumber_bytes, datablksize);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOSDIO, SDIO_TRANSMODE_BLOCK);
sdio_dsm_enable();
/* send CMD17(READ_SINGLE_BLOCK) to read a block */
sdio_command_response_config(SD_CMD_READ_SINGLE_BLOCK, (uint32_t)readaddr, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_READ_SINGLE_BLOCK);
if(SD_OK != status){
return status;
}
if(SD_POLLING_MODE == card_opration.transmode){
/* polling mode */
while(!sdio_flag_get(SDIO_FLAG_DTCRCERR | SDIO_FLAG_DTTMOUT | SDIO_FLAG_RXORE | SDIO_FLAG_DTBLKEND | SDIO_FLAG_STBITE)){
if(RESET != sdio_flag_get(SDIO_FLAG_RFH)){
/* at least 8 words can be read in the FIFO */
for(count = 0; count < SD_FIFOHALF_WORDS; count++){
*(ptempbuff + count) = sdio_data_read();
}
ptempbuff += SD_FIFOHALF_WORDS;
}
}
/* whether some error occurs and return it */
if(RESET != sdio_flag_get(SDIO_FLAG_DTCRCERR)){
status = SD_DATA_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_DTCRCERR);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_DTTMOUT)){
status = SD_DATA_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_DTTMOUT);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_RXORE)){
status = SD_RX_OVERRUN_ERROR;
sdio_flag_clear(SDIO_FLAG_RXORE);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_STBITE)){
status = SD_START_BIT_ERROR;
sdio_flag_clear(SDIO_FLAG_STBITE);
return status;
}
while(RESET != sdio_flag_get(SDIO_FLAG_RXDTVAL)){
*ptempbuff = sdio_data_read();
++ptempbuff;
}
/* clear the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
}else if(SD_DMA_MODE == card_opration.transmode){
/* DMA mode */
/* enable the SDIO corresponding interrupts and DMA function */
sdio_interrupt_enable(SDIO_INT_CCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_RXORE | SDIO_INT_DTEND | SDIO_INT_STBITE);
sdio_dma_enable();
dma_receive_config(preadbuffer, blocksize);
#if SDIO_DMA_USE_IPC
sdio_dma_irq_config();
if (RT_EOK != rt_sem_take(&sd.sem, 100)) {
return SD_ERROR;
}
#else
timeout = 400000;
while((RESET == dma_flag_get(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_FTF)) && (timeout > 0)){
timeout--;
if(0 == timeout){
return SD_ERROR;
}
}
#endif
}else{
status = SD_PARAMETER_INVALID;
}
return status;
}
/*!
\brief read multiple blocks data into a buffer from the specified address of a card
\param[out] preadbuffer: a pointer that store multiple blocks read data
\param[in] readaddr: the read data address
\param[in] blocksize: the data block size
\param[in] blocksnumber: number of blocks that will be read
\retval sd_error_enum
*/
sd_error_enum sd_multiblocks_read(uint32_t *preadbuffer, uint32_t readaddr, uint16_t blocksize, uint32_t blocksnumber)
{
/* initialize the variables */
sd_error_enum status = SD_OK;
uint32_t count = 0, align = 0, datablksize = SDIO_DATABLOCKSIZE_1BYTE, *ptempbuff = preadbuffer;
__IO uint32_t timeout = 0;
if(NULL == preadbuffer){
status = SD_PARAMETER_INVALID;
return status;
}
card_opration.transerror = SD_OK;
card_opration.transend = 0;
card_opration.totalnumber_bytes = 0;
/* clear all DSM configuration */
sdio_data_config(0, 0, SDIO_DATABLOCKSIZE_1BYTE);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOCARD, SDIO_TRANSMODE_BLOCK);
sdio_dsm_disable();
sdio_dma_disable();
/* check whether the card is locked */
if(sdio_response_get(SDIO_RESPONSE0) & SD_CARDSTATE_LOCKED){
status = SD_LOCK_UNLOCK_FAILED;
return status;
}
/* blocksize is fixed in 512B for SDHC card */
if (SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)
{
blocksize = 512;
readaddr /= 512;
}
align = blocksize & (blocksize - 1);
if((blocksize > 0) && (blocksize <= 2048) && (0 == align)){
datablksize = sd_datablocksize_get(blocksize);
/* send CMD16(SET_BLOCKLEN) to set the block length */
sdio_command_response_config(SD_CMD_SET_BLOCKLEN, (uint32_t)blocksize, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SET_BLOCKLEN);
if(SD_OK != status){
return status;
}
}else{
status = SD_PARAMETER_INVALID;
return status;
}
if(blocksnumber > 1){
if(blocksnumber * blocksize > SD_MAX_DATA_LENGTH){
/* exceeds the maximum length */
status = SD_PARAMETER_INVALID;
return status;
}
card_opration.stopcondition = 1;
card_opration.totalnumber_bytes = blocksnumber * blocksize;
/* configure the SDIO data transmisson */
sdio_data_config(SD_DATATIMEOUT, card_opration.totalnumber_bytes, datablksize);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOSDIO, SDIO_TRANSMODE_BLOCK);
sdio_dsm_enable();
/* send CMD18(READ_MULTIPLE_BLOCK) to read multiple blocks */
sdio_command_response_config(SD_CMD_READ_MULTIPLE_BLOCK, readaddr, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_READ_MULTIPLE_BLOCK);
if(SD_OK != status){
return status;
}
if(SD_POLLING_MODE == card_opration.transmode){
/* polling mode */
while(!sdio_flag_get(SDIO_FLAG_DTCRCERR | SDIO_FLAG_DTTMOUT | SDIO_FLAG_RXORE | SDIO_FLAG_DTEND | SDIO_FLAG_STBITE)){
if(RESET != sdio_flag_get(SDIO_FLAG_RFH)){
/* at least 8 words can be read in the FIFO */
for(count = 0; count < SD_FIFOHALF_WORDS; count++){
*(ptempbuff + count) = sdio_data_read();
}
ptempbuff += SD_FIFOHALF_WORDS;
}
}
/* whether some error occurs and return it */
if(RESET != sdio_flag_get(SDIO_FLAG_DTCRCERR)){
status = SD_DATA_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_DTCRCERR);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_DTTMOUT)){
status = SD_DATA_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_DTTMOUT);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_RXORE)){
status = SD_RX_OVERRUN_ERROR;
sdio_flag_clear(SDIO_FLAG_RXORE);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_STBITE)){
status = SD_START_BIT_ERROR;
sdio_flag_clear(SDIO_FLAG_STBITE);
return status;
}
while(RESET != sdio_flag_get(SDIO_FLAG_RXDTVAL)){
*ptempbuff = sdio_data_read();
++ptempbuff;
}
if(RESET != sdio_flag_get(SDIO_FLAG_DTEND)){
if((SDIO_STD_CAPACITY_SD_CARD_V1_1 == card_opration.cardtype) || (SDIO_STD_CAPACITY_SD_CARD_V2_0 == card_opration.cardtype) ||
(SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)){
/* send CMD12(STOP_TRANSMISSION) to stop transmission */
sdio_command_response_config(SD_CMD_STOP_TRANSMISSION, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_STOP_TRANSMISSION);
if(SD_OK != status){
return status;
}
}
}
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
}else if(SD_DMA_MODE == card_opration.transmode){
/* DMA mode */
/* enable the SDIO corresponding interrupts and DMA function */
sdio_interrupt_enable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_RXORE | SDIO_INT_DTEND | SDIO_INT_STBITE);
sdio_dma_enable();
dma_receive_config(preadbuffer, card_opration.totalnumber_bytes);
#if SDIO_DMA_USE_IPC
sdio_dma_irq_config();
if (RT_EOK != rt_sem_take(&sd.sem, 100)) {
return SD_ERROR;
}
#else
timeout = 400000;
while((RESET == dma_flag_get(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_FTF)) && (timeout > 0)){
timeout--;
if(0 == timeout){
return SD_ERROR;
}
}
#endif
while((0 == card_opration.transend) && (SD_OK == card_opration.transerror)){
}
if(SD_OK != card_opration.transerror){
return card_opration.transerror;
}
}else{
status = SD_PARAMETER_INVALID;
}
}
return status;
}
/*!
\brief write a block data to the specified address of a card
\param[in] pwritebuffer: a pointer that store a block data to be transferred
\param[in] writeaddr: the read data address
\param[in] blocksize: the data block size
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_block_write(uint32_t *pwritebuffer, uint32_t writeaddr, uint16_t blocksize)
{
/* initialize the variables */
sd_error_enum status = SD_OK;
uint8_t cardstate = 0;
uint32_t count = 0, align = 0, datablksize = SDIO_DATABLOCKSIZE_1BYTE, *ptempbuff = pwritebuffer;
uint32_t transbytes = 0, restwords = 0, response = 0;
__IO uint32_t timeout = 0;
if(NULL == pwritebuffer){
status = SD_PARAMETER_INVALID;
return status;
}
card_opration.transerror = SD_OK;
card_opration.transend = 0;
card_opration.totalnumber_bytes = 0;
/* clear all DSM configuration */
sdio_data_config(0, 0, SDIO_DATABLOCKSIZE_1BYTE);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOCARD, SDIO_TRANSMODE_BLOCK);
sdio_dsm_disable();
sdio_dma_disable();
/* check whether the card is locked */
if(sdio_response_get(SDIO_RESPONSE0) & SD_CARDSTATE_LOCKED){
status = SD_LOCK_UNLOCK_FAILED;
return status;
}
/* blocksize is fixed in 512B for SDHC card */
if (SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)
{
blocksize = 512;
writeaddr /= 512;
}
align = blocksize & (blocksize - 1);
if((blocksize > 0) && (blocksize <= 2048) && (0 == align)){
datablksize = sd_datablocksize_get(blocksize);
/* send CMD16(SET_BLOCKLEN) to set the block length */
sdio_command_response_config(SD_CMD_SET_BLOCKLEN, (uint32_t)blocksize, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SET_BLOCKLEN);
if(SD_OK != status){
return status;
}
}else{
status = SD_PARAMETER_INVALID;
return status;
}
/* send CMD13(SEND_STATUS), addressed card sends its status registers */
sdio_command_response_config(SD_CMD_SEND_STATUS, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SEND_STATUS);
if(SD_OK != status){
return status;
}
response = sdio_response_get(SDIO_RESPONSE0);
timeout = 400000;
while((0 == (response & SD_R1_READY_FOR_DATA)) && (timeout > 0)){
/* continue to send CMD13 to polling the state of card until buffer empty or timeout */
--timeout;
/* send CMD13(SEND_STATUS), addressed card sends its status registers */
sdio_command_response_config(SD_CMD_SEND_STATUS, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SEND_STATUS);
if(SD_OK != status){
return status;
}
response = sdio_response_get(SDIO_RESPONSE0);
}
if(0 == timeout){
return SD_ERROR;
}
/* send CMD24(WRITE_BLOCK) to write a block */
sdio_command_response_config(SD_CMD_WRITE_BLOCK, writeaddr, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_WRITE_BLOCK);
if(SD_OK != status){
return status;
}
card_opration.stopcondition = 0;
card_opration.totalnumber_bytes = blocksize;
/* configure the SDIO data transmisson */
sdio_data_config(SD_DATATIMEOUT, card_opration.totalnumber_bytes, datablksize);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOCARD, SDIO_TRANSMODE_BLOCK);
sdio_dsm_enable();
if(SD_POLLING_MODE == card_opration.transmode){
/* polling mode */
while(!sdio_flag_get(SDIO_FLAG_DTCRCERR | SDIO_FLAG_DTTMOUT | SDIO_FLAG_TXURE | SDIO_FLAG_DTBLKEND | SDIO_FLAG_STBITE)){
if(RESET != sdio_flag_get(SDIO_FLAG_TFH)){
/* at least 8 words can be written into the FIFO */
if((card_opration.totalnumber_bytes - transbytes) < SD_FIFOHALF_BYTES){
restwords = (card_opration.totalnumber_bytes - transbytes)/4 + (((card_opration.totalnumber_bytes - transbytes)%4 == 0) ? 0 : 1);
for(count = 0; count < restwords; count++){
sdio_data_write(*ptempbuff);
++ptempbuff;
transbytes += 4;
}
}else{
for(count = 0; count < SD_FIFOHALF_WORDS; count++){
sdio_data_write(*(ptempbuff + count));
}
/* 8 words(32 bytes) has been transferred */
ptempbuff += SD_FIFOHALF_WORDS;
transbytes += SD_FIFOHALF_BYTES;
}
}
}
/* whether some error occurs and return it */
if(RESET != sdio_flag_get(SDIO_FLAG_DTCRCERR)){
status = SD_DATA_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_DTCRCERR);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_DTTMOUT)){
status = SD_DATA_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_DTTMOUT);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_TXURE)){
status = SD_TX_UNDERRUN_ERROR;
sdio_flag_clear(SDIO_FLAG_TXURE);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_STBITE)){
status = SD_START_BIT_ERROR;
sdio_flag_clear(SDIO_FLAG_STBITE);
return status;
}
}else if(SD_DMA_MODE == card_opration.transmode){
/* DMA mode */
/* enable the SDIO corresponding interrupts and DMA */
sdio_interrupt_enable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_TXURE | SDIO_INT_DTEND | SDIO_INT_STBITE);
dma_transfer_config(pwritebuffer, blocksize);
sdio_dma_enable();
#if SDIO_DMA_USE_IPC
sdio_dma_irq_config();
if (RT_EOK != rt_sem_take(&sd.sem, 100)) {
return SD_ERROR;
}
#else
timeout = 400000;
while((RESET == dma_flag_get(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_FTF)) && (timeout > 0)){
timeout--;
if(0 == timeout){
return SD_ERROR;
}
}
#endif
while ((0 == card_opration.transend) && (SD_OK == card_opration.transerror)){
}
if (SD_OK != card_opration.transerror){
return card_opration.transerror;
}
}else{
status = SD_PARAMETER_INVALID;
return status;
}
/* clear the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
/* get the card state and wait the card is out of programming and receiving state */
status = sd_card_state_get(&cardstate);
while((SD_OK == status) && ((SD_CARDSTATE_PROGRAMMING == cardstate) || (SD_CARDSTATE_RECEIVING == cardstate))){
status = sd_card_state_get(&cardstate);
}
return status;
}
/*!
\brief write multiple blocks data to the specified address of a card
\param[in] pwritebuffer: a pointer that store multiple blocks data to be transferred
\param[in] writeaddr: the read data address
\param[in] blocksize: the data block size
\param[in] blocksnumber: number of blocks that will be written
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_multiblocks_write(uint32_t *pwritebuffer, uint32_t writeaddr, uint16_t blocksize, uint32_t blocksnumber)
{
/* initialize the variables */
sd_error_enum status = SD_OK;
uint8_t cardstate = 0;
uint32_t count = 0, align = 0, datablksize = SDIO_DATABLOCKSIZE_1BYTE, *ptempbuff = pwritebuffer;
uint32_t transbytes = 0, restwords = 0;
__IO uint32_t timeout = 0;
if(NULL == pwritebuffer){
status = SD_PARAMETER_INVALID;
return status;
}
card_opration.transerror = SD_OK;
card_opration.transend = 0;
card_opration.totalnumber_bytes = 0;
/* clear all DSM configuration */
sdio_data_config(0, 0, SDIO_DATABLOCKSIZE_1BYTE);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOCARD, SDIO_TRANSMODE_BLOCK);
sdio_dsm_disable();
sdio_dma_disable();
/* check whether the card is locked */
if(sdio_response_get(SDIO_RESPONSE0) & SD_CARDSTATE_LOCKED){
status = SD_LOCK_UNLOCK_FAILED;
return status;
}
/* blocksize is fixed in 512B for SDHC card */
if (SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)
{
blocksize = 512;
writeaddr /= 512;
}
align = blocksize & (blocksize - 1);
if((blocksize > 0) && (blocksize <= 2048) && (0 == align)){
datablksize = sd_datablocksize_get(blocksize);
/* send CMD16(SET_BLOCKLEN) to set the block length */
sdio_command_response_config(SD_CMD_SET_BLOCKLEN, (uint32_t)blocksize, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SET_BLOCKLEN);
if(SD_OK != status){
LOG_D("#st:%d\n", status);
return status;
}
}else{
status = SD_PARAMETER_INVALID;
return status;
}
/* send CMD13(SEND_STATUS), addressed card sends its status registers */
sdio_command_response_config(SD_CMD_SEND_STATUS, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SEND_STATUS);
if(SD_OK != status){
return status;
}
if(blocksnumber > 1){
if(blocksnumber * blocksize > SD_MAX_DATA_LENGTH){
status = SD_PARAMETER_INVALID;
return status;
}
if((SDIO_STD_CAPACITY_SD_CARD_V1_1 == card_opration.cardtype) || (SDIO_STD_CAPACITY_SD_CARD_V2_0 == card_opration.cardtype) ||
(SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)){
/* send CMD55(APP_CMD) to indicate next command is application specific command */
sdio_command_response_config(SD_CMD_APP_CMD, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_APP_CMD);
if(SD_OK != status){
return status;
}
/* send ACMD23(SET_WR_BLK_ERASE_COUNT) to set the number of write blocks to be preerased before writing */
sdio_command_response_config(SD_APPCMD_SET_WR_BLK_ERASE_COUNT, blocksnumber, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_APPCMD_SET_WR_BLK_ERASE_COUNT);
if(SD_OK != status){
return status;
}
}
/* send CMD25(WRITE_MULTIPLE_BLOCK) to continuously write blocks of data */
sdio_command_response_config(SD_CMD_WRITE_MULTIPLE_BLOCK, writeaddr, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_WRITE_MULTIPLE_BLOCK);
if(SD_OK != status){
return status;
}
card_opration.stopcondition = 1;
card_opration.totalnumber_bytes = blocksnumber * blocksize;
/* configure the SDIO data transmisson */
sdio_data_config(SD_DATATIMEOUT, card_opration.totalnumber_bytes, datablksize);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOCARD, SDIO_TRANSMODE_BLOCK);
sdio_dsm_enable();
if(SD_POLLING_MODE == card_opration.transmode){
/* polling mode */
while(!sdio_flag_get(SDIO_FLAG_DTCRCERR | SDIO_FLAG_DTTMOUT | SDIO_FLAG_TXURE | SDIO_FLAG_DTEND | SDIO_FLAG_STBITE)){
if(RESET != sdio_flag_get(SDIO_FLAG_TFH)){
/* at least 8 words can be written into the FIFO */
if(!((card_opration.totalnumber_bytes - transbytes) < SD_FIFOHALF_BYTES)){
for(count = 0; count < SD_FIFOHALF_WORDS; count++){
sdio_data_write(*(ptempbuff + count));
}
/* 8 words(32 bytes) has been transferred */
ptempbuff += SD_FIFOHALF_WORDS;
transbytes += SD_FIFOHALF_BYTES;
}else{
restwords = (card_opration.totalnumber_bytes - transbytes)/4 + (((card_opration.totalnumber_bytes - transbytes)%4 == 0) ? 0 : 1);
for(count = 0; count < restwords; count++){
sdio_data_write(*ptempbuff);
++ptempbuff;
transbytes += 4;
}
}
}
}
/* whether some error occurs and return it */
if(RESET != sdio_flag_get(SDIO_FLAG_DTCRCERR)){
status = SD_DATA_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_DTCRCERR);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_DTTMOUT)){
status = SD_DATA_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_DTTMOUT);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_TXURE)){
status = SD_TX_UNDERRUN_ERROR;
sdio_flag_clear(SDIO_FLAG_TXURE);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_STBITE)){
status = SD_START_BIT_ERROR;
sdio_flag_clear(SDIO_FLAG_STBITE);
return status;
}
if(RESET != sdio_flag_get(SDIO_FLAG_DTEND)){
if((SDIO_STD_CAPACITY_SD_CARD_V1_1 == card_opration.cardtype) || (SDIO_STD_CAPACITY_SD_CARD_V2_0 == card_opration.cardtype) ||
(SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)){
/* send CMD12(STOP_TRANSMISSION) to stop transmission */
sdio_command_response_config(SD_CMD_STOP_TRANSMISSION, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_STOP_TRANSMISSION);
if(SD_OK != status){
return status;
}
}
}
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
}else if(SD_DMA_MODE == card_opration.transmode){
/* DMA mode */
/* enable SDIO corresponding interrupts and DMA */
sdio_interrupt_enable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_TXURE | SDIO_INT_DTEND | SDIO_INT_STBITE);
sdio_dma_enable();
dma_transfer_config(pwritebuffer, card_opration.totalnumber_bytes);
#if SDIO_DMA_USE_IPC
sdio_dma_irq_config();
if (RT_EOK != rt_sem_take(&sd.sem, 100)) {
return SD_ERROR;
}
#else
timeout = 400000;
while((RESET == dma_flag_get(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_FTF) && (timeout > 0))){
timeout--;
if(0 == timeout){
return SD_ERROR;
}
}
#endif
while((0 == card_opration.transend) && (SD_OK == card_opration.transerror)){
}
if(SD_OK != card_opration.transerror){
return card_opration.transerror;
}
}else{
status = SD_PARAMETER_INVALID;
return status;
}
}
/* clear the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
/* get the card state and wait the card is out of programming and receiving state */
status = sd_card_state_get(&cardstate);
while((SD_OK == status) && ((SD_CARDSTATE_PROGRAMMING == cardstate) || (SD_CARDSTATE_RECEIVING == cardstate))){
status = sd_card_state_get(&cardstate);
}
return status;
}
/*!
\brief erase a continuous area of a card
\param[in] startaddr: the start address
\param[in] endaddr: the end address
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_erase(uint32_t startaddr, uint32_t endaddr)
{
/* initialize the variables */
sd_error_enum status = SD_OK;
uint32_t count = 0, clkdiv = 0;
__IO uint32_t delay = 0;
uint8_t cardstate = 0, tempbyte = 0;
uint16_t tempccc = 0;
/* get the card command classes from CSD */
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_24_31BITS) >> 24);
tempccc = (uint16_t)((uint16_t)tempbyte << 4);
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_16_23BITS) >> 16);
tempccc |= (uint16_t)((uint16_t)(tempbyte & 0xF0) >> 4);
if(0 == (tempccc & SD_CCC_ERASE)){
/* don't support the erase command */
status = SD_FUNCTION_UNSUPPORTED;
return status;
}
clkdiv = (SDIO_CLKCTL & SDIO_CLKCTL_DIV);
clkdiv += ((SDIO_CLKCTL & SDIO_CLKCTL_DIV8)>>31)*256;
clkdiv += 2;
delay = 168000 / clkdiv;
/* check whether the card is locked */
if (sdio_response_get(SDIO_RESPONSE0) & SD_CARDSTATE_LOCKED)
{
status = SD_LOCK_UNLOCK_FAILED;
return(status);
}
/* blocksize is fixed in 512B for SDHC card */
if (SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)
{
startaddr /= 512;
endaddr /= 512;
}
if((SDIO_STD_CAPACITY_SD_CARD_V1_1 == card_opration.cardtype) || (SDIO_STD_CAPACITY_SD_CARD_V2_0 == card_opration.cardtype) ||
(SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)){
/* send CMD32(ERASE_WR_BLK_START) to set the address of the first write block to be erased */
sdio_command_response_config(SD_CMD_ERASE_WR_BLK_START, startaddr, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_ERASE_WR_BLK_START);
if(SD_OK != status){
return status;
}
/* send CMD33(ERASE_WR_BLK_END) to set the address of the last write block of the continuous range to be erased */
sdio_command_response_config(SD_CMD_ERASE_WR_BLK_END, endaddr, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_ERASE_WR_BLK_END);
if(SD_OK != status){
return status;
}
}
/* send CMD38(ERASE) to set the address of the first write block to be erased */
sdio_command_response_config(SD_CMD_ERASE, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_ERASE);
if(SD_OK != status){
return status;
}
/* loop until the counter is reach to the calculated time */
for(count = 0; count < delay; count++){
}
/* get the card state and wait the card is out of programming and receiving state */
status = sd_card_state_get(&cardstate);
while((SD_OK == status) && ((SD_CARDSTATE_PROGRAMMING == cardstate) || (SD_CARDSTATE_RECEIVING == cardstate))){
status = sd_card_state_get(&cardstate);
}
return status;
}
/*!
\brief process all the interrupts which the corresponding flags are set
\param[in] none
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_interrupts_process(void)
{
card_opration.transerror = SD_OK;
if(RESET != sdio_interrupt_flag_get(SDIO_INT_DTEND)){
/* send CMD12 to stop data transfer in multipule blocks operation */
if(1 == card_opration.stopcondition){
card_opration.transerror = sd_transfer_stop();
}else{
card_opration.transerror = SD_OK;
}
sdio_interrupt_flag_clear(SDIO_INT_DTEND);
/* disable all the interrupts */
sdio_interrupt_disable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_DTEND | SDIO_INT_STBITE |
SDIO_INT_TFH | SDIO_INT_RFH | SDIO_INT_TXURE | SDIO_INT_RXORE);
card_opration.transend = 1;
card_opration.number_bytes = 0;
return card_opration.transerror;
}
if(RESET != sdio_interrupt_flag_get(SDIO_INT_DTCRCERR)){
sdio_interrupt_flag_clear(SDIO_INT_DTCRCERR);
/* disable all the interrupts */
sdio_interrupt_disable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_DTEND | SDIO_INT_STBITE |
SDIO_INT_TFH | SDIO_INT_RFH | SDIO_INT_TXURE | SDIO_INT_RXORE);
card_opration.number_bytes = 0;
card_opration.transerror = SD_DATA_CRC_ERROR;
return card_opration.transerror;
}
if(RESET != sdio_interrupt_flag_get(SDIO_INT_DTTMOUT)){
sdio_interrupt_flag_clear(SDIO_INT_DTTMOUT);
/* disable all the interrupts */
sdio_interrupt_disable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_DTEND | SDIO_INT_STBITE |
SDIO_INT_TFH | SDIO_INT_RFH | SDIO_INT_TXURE | SDIO_INT_RXORE);
card_opration.number_bytes = 0;
card_opration.transerror = SD_DATA_TIMEOUT;
return card_opration.transerror;
}
if(RESET != sdio_interrupt_flag_get(SDIO_INT_STBITE)){
sdio_interrupt_flag_clear(SDIO_INT_STBITE);
/* disable all the interrupts */
sdio_interrupt_disable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_DTEND | SDIO_INT_STBITE |
SDIO_INT_TFH | SDIO_INT_RFH | SDIO_INT_TXURE | SDIO_INT_RXORE);
card_opration.number_bytes = 0;
card_opration.transerror = SD_START_BIT_ERROR;
return card_opration.transerror;
}
if(RESET != sdio_interrupt_flag_get(SDIO_INT_TXURE)){
sdio_interrupt_flag_clear(SDIO_INT_TXURE);
/* disable all the interrupts */
sdio_interrupt_disable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_DTEND | SDIO_INT_STBITE |
SDIO_INT_TFH | SDIO_INT_RFH | SDIO_INT_TXURE | SDIO_INT_RXORE);
card_opration.number_bytes = 0;
card_opration.transerror = SD_TX_UNDERRUN_ERROR;
return card_opration.transerror;
}
if(RESET != sdio_interrupt_flag_get(SDIO_INT_RXORE)){
sdio_interrupt_flag_clear(SDIO_INT_RXORE);
/* disable all the interrupts */
sdio_interrupt_disable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_DTEND | SDIO_INT_STBITE |
SDIO_INT_TFH | SDIO_INT_RFH | SDIO_INT_TXURE | SDIO_INT_RXORE);
card_opration.number_bytes = 0;
card_opration.transerror = SD_RX_OVERRUN_ERROR;
return card_opration.transerror;
}
return card_opration.transerror;
}
/*!
\brief select or deselect a card
\param[in] cardrca: the RCA of a card
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_card_select_deselect(uint16_t cardrca)
{
sd_error_enum status = SD_OK;
/* send CMD7(SELECT/DESELECT_CARD) to select or deselect the card */
sdio_command_response_config(SD_CMD_SELECT_DESELECT_CARD, (uint32_t)(cardrca << SD_RCA_SHIFT), SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
status = r1_error_check(SD_CMD_SELECT_DESELECT_CARD);
return status;
}
/*!
\brief get the card status whose response format R1 contains a 32-bit field
\param[in] none
\param[out] pcardstatus: a pointer that store card status
\retval sd_error_enum
*/
sd_error_enum sd_cardstatus_get(uint32_t *pcardstatus)
{
sd_error_enum status = SD_OK;
if(NULL == pcardstatus){
status = SD_PARAMETER_INVALID;
return status;
}
/* send CMD13(SEND_STATUS), addressed card sends its status register */
sdio_command_response_config(SD_CMD_SEND_STATUS, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SEND_STATUS);
if(SD_OK != status){
return status;
}
*pcardstatus = sdio_response_get(SDIO_RESPONSE0);
return status;
}
/*!
\brief get the SD status, the size of the SD status is one data block of 512 bit
\param[in] none
\param[out] psdstatus: a pointer that store SD card status
\retval sd_error_enum
*/
sd_error_enum sd_sdstatus_get(uint32_t *psdstatus)
{
sd_error_enum status = SD_OK;
uint32_t count = 0;
/* check whether the card is locked */
if (sdio_response_get(SDIO_RESPONSE0) & SD_CARDSTATE_LOCKED){
status = SD_LOCK_UNLOCK_FAILED;
return(status);
}
/* send CMD16(SET_BLOCKLEN) to set the block length */
sdio_command_response_config(SD_CMD_SET_BLOCKLEN, (uint32_t)64, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SET_BLOCKLEN);
if(SD_OK != status){
return status;
}
/* send CMD55(APP_CMD) to indicate next command is application specific command */
sdio_command_response_config(SD_CMD_APP_CMD, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_APP_CMD);
if(SD_OK != status){
return status;
}
/* configure the SDIO data transmisson */
sdio_data_config(SD_DATATIMEOUT, (uint32_t)64, SDIO_DATABLOCKSIZE_64BYTES);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOSDIO, SDIO_TRANSMODE_BLOCK);
sdio_dsm_enable();
/* send ACMD13(SD_STATUS) to get the SD status */
sdio_command_response_config(SD_APPCMD_SD_STATUS, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_APPCMD_SD_STATUS);
if(SD_OK != status){
return status;
}
while(!sdio_flag_get(SDIO_FLAG_DTCRCERR | SDIO_FLAG_DTTMOUT | SDIO_FLAG_RXORE | SDIO_FLAG_DTBLKEND | SDIO_FLAG_STBITE)){
if(RESET != sdio_flag_get(SDIO_FLAG_RFH)){
for(count = 0; count < SD_FIFOHALF_WORDS; count++){
*(psdstatus + count) = sdio_data_read();
}
psdstatus += SD_FIFOHALF_WORDS;
}
}
/* whether some error occurs and return it */
if(RESET != sdio_flag_get(SDIO_FLAG_DTCRCERR)){
status = SD_DATA_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_DTCRCERR);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_DTTMOUT)){
status = SD_DATA_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_DTTMOUT);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_RXORE)){
status = SD_RX_OVERRUN_ERROR;
sdio_flag_clear(SDIO_FLAG_RXORE);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_STBITE)){
status = SD_START_BIT_ERROR;
sdio_flag_clear(SDIO_FLAG_STBITE);
return status;
}
while(RESET != sdio_flag_get(SDIO_FLAG_RXDTVAL)){
*psdstatus = sdio_data_read();
++psdstatus;
}
/* clear the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
psdstatus -= 16;
for(count = 0; count < 16; count++){
psdstatus[count] = ((psdstatus[count] & SD_MASK_0_7BITS) << 24) |((psdstatus[count] & SD_MASK_8_15BITS) << 8) |
((psdstatus[count] & SD_MASK_16_23BITS) >> 8) |((psdstatus[count] & SD_MASK_24_31BITS) >> 24);
}
return status;
}
/*!
\brief stop an ongoing data transfer
\param[in] none
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_transfer_stop(void)
{
sd_error_enum status = SD_OK;
/* send CMD12(STOP_TRANSMISSION) to stop transmission */
sdio_command_response_config(SD_CMD_STOP_TRANSMISSION, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_STOP_TRANSMISSION);
return status;
}
/*!
\brief lock or unlock a card
\param[in] lockstate: the lock state
\arg SD_LOCK: lock the SD card
\arg SD_UNLOCK: unlock the SD card
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_lock_unlock(uint8_t lockstate)
{
sd_error_enum status = SD_OK;
uint8_t cardstate = 0, tempbyte = 0;
uint32_t pwd1 = 0, pwd2 = 0, response = 0, timeout = 0;
uint16_t tempccc = 0;
/* get the card command classes from CSD */
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_24_31BITS) >> 24);
tempccc = (uint16_t)((uint16_t)tempbyte << 4);
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_16_23BITS) >> 16);
tempccc |= (uint16_t)((uint16_t)(tempbyte & 0xF0) >> 4);
if(0 == (tempccc & SD_CCC_LOCK_CARD)){
/* don't support the lock command */
status = SD_FUNCTION_UNSUPPORTED;
return status;
}
/* password pattern */
pwd1 = (0x01020600|lockstate);
pwd2 = 0x03040506;
/* clear all DSM configuration */
sdio_data_config(0, 0, SDIO_DATABLOCKSIZE_1BYTE);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOCARD, SDIO_TRANSMODE_BLOCK);
sdio_dsm_disable();
sdio_dma_disable();
/* send CMD16(SET_BLOCKLEN) to set the block length */
sdio_command_response_config(SD_CMD_SET_BLOCKLEN, (uint32_t)8, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SET_BLOCKLEN);
if(SD_OK != status){
return status;
}
/* send CMD13(SEND_STATUS), addressed card sends its status register */
sdio_command_response_config(SD_CMD_SEND_STATUS, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SEND_STATUS);
if(SD_OK != status){
return status;
}
response = sdio_response_get(SDIO_RESPONSE0);
timeout = 400000;
while((0 == (response & SD_R1_READY_FOR_DATA)) && (timeout > 0)){
/* continue to send CMD13 to polling the state of card until buffer empty or timeout */
--timeout;
/* send CMD13(SEND_STATUS), addressed card sends its status registers */
sdio_command_response_config(SD_CMD_SEND_STATUS, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SEND_STATUS);
if(SD_OK != status){
return status;
}
response = sdio_response_get(SDIO_RESPONSE0);
}
if(0 == timeout){
return SD_ERROR;
}
/* send CMD42(LOCK_UNLOCK) to set/reset the password or lock/unlock the card */
sdio_command_response_config(SD_CMD_LOCK_UNLOCK, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_LOCK_UNLOCK);
if(SD_OK != status){
return status;
}
response = sdio_response_get(SDIO_RESPONSE0);
/* configure the SDIO data transmisson */
sdio_data_config(SD_DATATIMEOUT, (uint32_t)8, SDIO_DATABLOCKSIZE_8BYTES);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOCARD, SDIO_TRANSMODE_BLOCK);
sdio_dsm_enable();
/* write password pattern */
sdio_data_write(pwd1);
sdio_data_write(pwd2);
/* whether some error occurs and return it */
if(RESET != sdio_flag_get(SDIO_FLAG_DTCRCERR)){
status = SD_DATA_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_DTCRCERR);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_DTTMOUT)){
status = SD_DATA_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_DTTMOUT);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_TXURE)){
status = SD_TX_UNDERRUN_ERROR;
sdio_flag_clear(SDIO_FLAG_TXURE);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_STBITE)){
status = SD_START_BIT_ERROR;
sdio_flag_clear(SDIO_FLAG_STBITE);
return status;
}
/* clear the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
/* get the card state and wait the card is out of programming and receiving state */
status = sd_card_state_get(&cardstate);
while((SD_OK == status) && ((SD_CARDSTATE_PROGRAMMING == cardstate) || (SD_CARDSTATE_RECEIVING == cardstate))){
status = sd_card_state_get(&cardstate);
}
return status;
}
/*!
\brief get the data transfer state
\param[in] none
\param[out] none
\retval sd_error_enum
*/
sd_transfer_state_enum sd_transfer_state_get(void)
{
sd_transfer_state_enum transtate = SD_NO_TRANSFER;
if(RESET != sdio_flag_get(SDIO_FLAG_TXRUN | SDIO_FLAG_RXRUN)){
transtate = SD_TRANSFER_IN_PROGRESS;
}
return transtate;
}
/*!
\brief get SD card capacity
\param[in] none
\param[out] none
\retval capacity of the card(KB)
*/
uint32_t sd_card_capacity_get(void)
{
uint8_t tempbyte = 0, devicesize_mult = 0, readblklen = 0;
uint32_t capacity = 0, devicesize = 0;
if((SDIO_STD_CAPACITY_SD_CARD_V1_1 == card_opration.cardtype) || (SDIO_STD_CAPACITY_SD_CARD_V2_0 == card_opration.cardtype)){
/* calculate the c_size(device size) */
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_8_15BITS) >> 8);
devicesize |= (uint32_t)((uint32_t)(tempbyte & 0x03) << 10);
tempbyte = (uint8_t)(card_opration.sd_csd[1] & SD_MASK_0_7BITS);
devicesize |= (uint32_t)((uint32_t)tempbyte << 2);
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_24_31BITS) >> 24);
devicesize |= (uint32_t)((uint32_t)(tempbyte & 0xC0) >> 6);
/* calculate the c_size_mult(device size multiplier) */
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_16_23BITS) >> 16);
devicesize_mult = (tempbyte & 0x03) << 1;
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_8_15BITS) >> 8);
devicesize_mult |= (tempbyte & 0x80) >> 7;
/* calculate the read_bl_len */
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_16_23BITS) >> 16);
readblklen = tempbyte & 0x0F;
/* capacity = BLOCKNR*BLOCK_LEN, BLOCKNR = (C_SIZE+1)*MULT, MULT = 2^(C_SIZE_MULT+2), BLOCK_LEN = 2^READ_BL_LEN */
capacity = (devicesize + 1)*(1 << (devicesize_mult + 2));
capacity *= (1 << readblklen);
/* change the unit of capacity to KByte */
capacity /= 1024;
}else if(SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype){
/* calculate the c_size */
tempbyte = (uint8_t)(card_opration.sd_csd[1] & SD_MASK_0_7BITS);
devicesize = (uint32_t)((uint32_t)(tempbyte & 0x3F) << 16);
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_24_31BITS) >> 24);
devicesize |= (uint32_t)((uint32_t)tempbyte << 8);
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_16_23BITS) >> 16);
devicesize |= (uint32_t)tempbyte;
/* capacity = (c_size+1)*512KByte */
capacity = (devicesize + 1)*512;
}
return capacity;
}
/*!
\brief get the detailed information of the SD card based on received CID and CSD
\param[in] none
\param[out] pcardinfo: a pointer that store the detailed card information
\retval sd_error_enum
*/
sd_error_enum sd_card_information_get(sd_card_info_struct *pcardinfo)
{
sd_error_enum status = SD_OK;
uint8_t tempbyte = 0;
if(NULL == pcardinfo){
status = SD_PARAMETER_INVALID;
return status;
}
/* store the card type and RCA */
pcardinfo->card_type = card_opration.cardtype;
pcardinfo->card_rca = card_opration.sd_rca;
/* CID byte 0 */
tempbyte = (uint8_t)((card_opration.sd_cid[0] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_cid.mid = tempbyte;
/* CID byte 1 */
tempbyte = (uint8_t)((card_opration.sd_cid[0] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_cid.oid = (uint16_t)((uint16_t)tempbyte << 8);
/* CID byte 2 */
tempbyte = (uint8_t)((card_opration.sd_cid[0] & SD_MASK_8_15BITS) >> 8);
pcardinfo->card_cid.oid |= (uint16_t)tempbyte;
/* CID byte 3 */
tempbyte = (uint8_t)(card_opration.sd_cid[0] & SD_MASK_0_7BITS);
pcardinfo->card_cid.pnm0 = (uint32_t)((uint32_t)tempbyte << 24);
/* CID byte 4 */
tempbyte = (uint8_t)((card_opration.sd_cid[1] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_cid.pnm0 |= (uint32_t)((uint32_t)tempbyte << 16);
/* CID byte 5 */
tempbyte = (uint8_t)((card_opration.sd_cid[1] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_cid.pnm0 |= (uint32_t)((uint32_t)tempbyte << 8);
/* CID byte 6 */
tempbyte = (uint8_t)((card_opration.sd_cid[1] & SD_MASK_8_15BITS) >> 8);
pcardinfo->card_cid.pnm0 |= (uint32_t)(tempbyte);
/* CID byte 7 */
tempbyte = (uint8_t)(card_opration.sd_cid[1] & SD_MASK_0_7BITS);
pcardinfo->card_cid.pnm1 = tempbyte;
/* CID byte 8 */
tempbyte = (uint8_t)((card_opration.sd_cid[2] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_cid.prv = tempbyte;
/* CID byte 9 */
tempbyte = (uint8_t)((card_opration.sd_cid[2] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_cid.psn = (uint32_t)((uint32_t)tempbyte << 24);
/* CID byte 10 */
tempbyte = (uint8_t)((card_opration.sd_cid[2] & SD_MASK_8_15BITS) >> 8);
pcardinfo->card_cid.psn |= (uint32_t)((uint32_t)tempbyte << 16);
/* CID byte 11 */
tempbyte = (uint8_t)(card_opration.sd_cid[2] & SD_MASK_0_7BITS);
pcardinfo->card_cid.psn |= (uint32_t)tempbyte;
/* CID byte 12 */
tempbyte = (uint8_t)((card_opration.sd_cid[3] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_cid.psn |= (uint32_t)tempbyte;
/* CID byte 13 */
tempbyte = (uint8_t)((card_opration.sd_cid[3] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_cid.mdt = (uint16_t)((uint16_t)(tempbyte & 0x0F) << 8);
/* CID byte 14 */
tempbyte = (uint8_t)((card_opration.sd_cid[3] & SD_MASK_8_15BITS) >> 8);
pcardinfo->card_cid.mdt |= (uint16_t)tempbyte;
/* CID byte 15 */
tempbyte = (uint8_t)(card_opration.sd_cid[3] & SD_MASK_0_7BITS);
pcardinfo->card_cid.cid_crc = (tempbyte & 0xFE) >> 1;
/* CSD byte 0 */
tempbyte = (uint8_t)((card_opration.sd_csd[0] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_csd.csd_struct = (tempbyte & 0xC0) >> 6;
/* CSD byte 1 */
tempbyte = (uint8_t)((card_opration.sd_csd[0] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_csd.taac = tempbyte;
/* CSD byte 2 */
tempbyte = (uint8_t)((card_opration.sd_csd[0] & SD_MASK_8_15BITS) >> 8);
pcardinfo->card_csd.nsac = tempbyte;
/* CSD byte 3 */
tempbyte = (uint8_t)(card_opration.sd_csd[0] & SD_MASK_0_7BITS);
pcardinfo->card_csd.tran_speed = tempbyte;
/* CSD byte 4 */
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_csd.ccc = (uint16_t)((uint16_t)tempbyte << 4);
/* CSD byte 5 */
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_csd.ccc |= (uint16_t)((uint16_t)(tempbyte & 0xF0) >> 4);
pcardinfo->card_csd.read_bl_len = tempbyte & 0x0F;
/* CSD byte 6 */
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_8_15BITS) >> 8);
pcardinfo->card_csd.read_bl_partial = (tempbyte & 0x80) >> 7;
pcardinfo->card_csd.write_blk_misalign = (tempbyte & 0x40) >> 6;
pcardinfo->card_csd.read_blk_misalign = (tempbyte & 0x20) >> 5;
pcardinfo->card_csd.dsp_imp = (tempbyte & 0x10) >> 4;
if((SDIO_STD_CAPACITY_SD_CARD_V1_1 == card_opration.cardtype) || (SDIO_STD_CAPACITY_SD_CARD_V2_0 == card_opration.cardtype)){
/* card is SDSC card, CSD version 1.0 */
pcardinfo->card_csd.c_size = (uint32_t)((uint32_t)(tempbyte & 0x03) << 10);
/* CSD byte 7 */
tempbyte = (uint8_t)(card_opration.sd_csd[1] & SD_MASK_0_7BITS);
pcardinfo->card_csd.c_size |= (uint32_t)((uint32_t)tempbyte << 2);
/* CSD byte 8 */
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_csd.c_size |= (uint32_t)((uint32_t)(tempbyte & 0xC0) >> 6);
pcardinfo->card_csd.vdd_r_curr_min = (tempbyte & 0x38) >> 3;
pcardinfo->card_csd.vdd_r_curr_max = tempbyte & 0x07;
/* CSD byte 9 */
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_csd.vdd_w_curr_min = (tempbyte & 0xE0) >> 5;
pcardinfo->card_csd.vdd_w_curr_max = (tempbyte & 0x1C) >> 2;
pcardinfo->card_csd.c_size_mult = (tempbyte & 0x03) << 1;
/* CSD byte 10 */
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_8_15BITS) >> 8);
pcardinfo->card_csd.c_size_mult |= (tempbyte & 0x80) >> 7;
/* calculate the card block size and capacity */
pcardinfo->card_blocksize = 1 << (pcardinfo->card_csd.read_bl_len);
pcardinfo->card_capacity = pcardinfo->card_csd.c_size + 1;
pcardinfo->card_capacity *= (1 << (pcardinfo->card_csd.c_size_mult + 2));
pcardinfo->card_capacity *= pcardinfo->card_blocksize;
}else if(SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype){
/* card is SDHC card, CSD version 2.0 */
/* CSD byte 7 */
tempbyte = (uint8_t)(card_opration.sd_csd[1] & SD_MASK_0_7BITS);
pcardinfo->card_csd.c_size = (uint32_t)((uint32_t)(tempbyte & 0x3F) << 16);
/* CSD byte 8 */
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_csd.c_size |= (uint32_t)((uint32_t)tempbyte << 8);
/* CSD byte 9 */
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_csd.c_size |= (uint32_t)tempbyte;
/* calculate the card block size and capacity */
pcardinfo->card_blocksize = 512;
pcardinfo->card_capacity = (pcardinfo->card_csd.c_size + 1) * 512 *1024;
}
pcardinfo->card_csd.erase_blk_en = (tempbyte & 0x40) >> 6;
pcardinfo->card_csd.sector_size = (tempbyte & 0x3F) << 1;
/* CSD byte 11 */
tempbyte = (uint8_t)(card_opration.sd_csd[2] & SD_MASK_0_7BITS);
pcardinfo->card_csd.sector_size |= (tempbyte & 0x80) >> 7;
pcardinfo->card_csd.wp_grp_size = (tempbyte & 0x7F);
/* CSD byte 12 */
tempbyte = (uint8_t)((card_opration.sd_csd[3] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_csd.wp_grp_enable = (tempbyte & 0x80) >> 7;
pcardinfo->card_csd.r2w_factor = (tempbyte & 0x1C) >> 2;
pcardinfo->card_csd.write_bl_len = (tempbyte & 0x03) << 2;
/* CSD byte 13 */
tempbyte = (uint8_t)((card_opration.sd_csd[3] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_csd.write_bl_len |= (tempbyte & 0xC0) >> 6;
pcardinfo->card_csd.write_bl_partial = (tempbyte & 0x20) >> 5;
/* CSD byte 14 */
tempbyte = (uint8_t)((card_opration.sd_csd[3] & SD_MASK_8_15BITS) >> 8);
pcardinfo->card_csd.file_format_grp = (tempbyte & 0x80) >> 7;
pcardinfo->card_csd.copy_flag = (tempbyte & 0x40) >> 6;
pcardinfo->card_csd.perm_write_protect = (tempbyte & 0x20) >> 5;
pcardinfo->card_csd.tmp_write_protect = (tempbyte & 0x10) >> 4;
pcardinfo->card_csd.file_format = (tempbyte & 0x0C) >> 2;
/* CSD byte 15 */
tempbyte = (uint8_t)(card_opration.sd_csd[3] & SD_MASK_0_7BITS);
pcardinfo->card_csd.csd_crc = (tempbyte & 0xFE) >> 1;
return status;
}
/*!
\brief check if the command sent error occurs
\param[in] none
\param[out] none
\retval sd_error_enum
*/
static sd_error_enum cmdsent_error_check(void)
{
sd_error_enum status = SD_OK;
uint32_t timeout = 400000;
/* check command sent flag */
while((RESET == sdio_flag_get(SDIO_FLAG_CMDSEND)) && (timeout > 0)){
--timeout;
}
/* command response is timeout */
if(0 == timeout){
status = SD_CMD_RESP_TIMEOUT;
return status;
}
/* if the command is sent, clear the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
return status;
}
/*!
\brief check if error type for R1 response
\param[in] resp: content of response
\param[out] none
\retval sd_error_enum
*/
static sd_error_enum r1_error_type_check(uint32_t resp)
{
sd_error_enum status = SD_ERROR;
/* check which error occurs */
if(resp & SD_R1_OUT_OF_RANGE){
status = SD_OUT_OF_RANGE;
}else if(resp & SD_R1_ADDRESS_ERROR){
status = SD_ADDRESS_ERROR;
}else if(resp & SD_R1_BLOCK_LEN_ERROR){
status = SD_BLOCK_LEN_ERROR;
}else if(resp & SD_R1_ERASE_SEQ_ERROR){
status = SD_ERASE_SEQ_ERROR;
}else if(resp & SD_R1_ERASE_PARAM){
status = SD_ERASE_PARAM;
}else if(resp & SD_R1_WP_VIOLATION){
status = SD_WP_VIOLATION;
}else if(resp & SD_R1_LOCK_UNLOCK_FAILED){
status = SD_LOCK_UNLOCK_FAILED;
}else if(resp & SD_R1_COM_CRC_ERROR){
status = SD_COM_CRC_ERROR;
}else if(resp & SD_R1_ILLEGAL_COMMAND){
status = SD_ILLEGAL_COMMAND;
}else if(resp & SD_R1_CARD_ECC_FAILED){
status = SD_CARD_ECC_FAILED;
}else if(resp & SD_R1_CC_ERROR){
status = SD_CC_ERROR;
}else if(resp & SD_R1_GENERAL_UNKNOWN_ERROR){
status = SD_GENERAL_UNKNOWN_ERROR;
}else if(resp & SD_R1_CSD_OVERWRITE){
status = SD_CSD_OVERWRITE;
}else if(resp & SD_R1_WP_ERASE_SKIP){
status = SD_WP_ERASE_SKIP;
}else if(resp & SD_R1_CARD_ECC_DISABLED){
status = SD_CARD_ECC_DISABLED;
}else if(resp & SD_R1_ERASE_RESET){
status = SD_ERASE_RESET;
}else if(resp & SD_R1_AKE_SEQ_ERROR){
status = SD_AKE_SEQ_ERROR;
}
return status;
}
/*!
\brief check if error occurs for R1 response
\param[in] cmdindex: the index of command
\param[out] none
\retval sd_error_enum
*/
static sd_error_enum r1_error_check(uint8_t cmdindex)
{
sd_error_enum status = SD_OK;
uint32_t reg_status = 0, resp_r1 = 0;
/* store the content of SDIO_STAT */
reg_status = SDIO_STAT;
while(!(reg_status & (SDIO_FLAG_CCRCERR | SDIO_FLAG_CMDTMOUT | SDIO_FLAG_CMDRECV))){
reg_status = SDIO_STAT;
}
/* check whether an error or timeout occurs or command response received */
if(reg_status & SDIO_FLAG_CCRCERR){
status = SD_CMD_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_CCRCERR);
return status;
}else if(reg_status & SDIO_FLAG_CMDTMOUT){
status = SD_CMD_RESP_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_CMDTMOUT);
return status;
}
/* check whether the last response command index is the desired one */
if(sdio_command_index_get() != cmdindex){
status = SD_ILLEGAL_COMMAND;
return status;
}
/* clear all the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
/* get the SDIO response register 0 for checking */
resp_r1 = sdio_response_get(SDIO_RESPONSE0);
if(SD_ALLZERO == (resp_r1 & SD_R1_ERROR_BITS)){
/* no error occurs, return SD_OK */
status = SD_OK;
return status;
}
/* if some error occurs, return the error type */
status = r1_error_type_check(resp_r1);
return status;
}
/*!
\brief check if error occurs for R2 response
\param[in] none
\param[out] none
\retval sd_error_enum
*/
static sd_error_enum r2_error_check(void)
{
sd_error_enum status = SD_OK;
uint32_t reg_status = 0;
/* store the content of SDIO_STAT */
reg_status = SDIO_STAT;
while(!(reg_status & (SDIO_FLAG_CCRCERR | SDIO_FLAG_CMDTMOUT | SDIO_FLAG_CMDRECV))){
reg_status = SDIO_STAT;
}
/* check whether an error or timeout occurs or command response received */
if(reg_status & SDIO_FLAG_CCRCERR){
status = SD_CMD_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_CCRCERR);
return status;
}else if(reg_status & SDIO_FLAG_CMDTMOUT){
status = SD_CMD_RESP_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_CMDTMOUT);
return status;
}
/* clear all the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
return status;
}
/*!
\brief check if error occurs for R3 response
\param[in] none
\param[out] none
\retval sd_error_enum
*/
static sd_error_enum r3_error_check(void)
{
sd_error_enum status = SD_OK;
uint32_t reg_status = 0;
/* store the content of SDIO_STAT */
reg_status = SDIO_STAT;
while(!(reg_status & (SDIO_FLAG_CCRCERR | SDIO_FLAG_CMDTMOUT | SDIO_FLAG_CMDRECV))){
reg_status = SDIO_STAT;
}
if(reg_status & SDIO_FLAG_CMDTMOUT){
status = SD_CMD_RESP_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_CMDTMOUT);
return status;
}
/* clear all the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
return status;
}
/*!
\brief check if error occurs for R6 response
\param[in] cmdindex: the index of command
\param[out] prca: a pointer that store the RCA of card
\retval sd_error_enum
*/
static sd_error_enum r6_error_check(uint8_t cmdindex, uint16_t *prca)
{
sd_error_enum status = SD_OK;
uint32_t reg_status = 0, response = 0;
/* store the content of SDIO_STAT */
reg_status = SDIO_STAT;
while(!(reg_status & (SDIO_FLAG_CCRCERR | SDIO_FLAG_CMDTMOUT | SDIO_FLAG_CMDRECV))){
reg_status = SDIO_STAT;
}
/* check whether an error or timeout occurs or command response received */
if(reg_status & SDIO_FLAG_CCRCERR){
status = SD_CMD_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_CCRCERR);
return status;
}else if(reg_status & SDIO_FLAG_CMDTMOUT){
status = SD_CMD_RESP_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_CMDTMOUT);
return status;
}
/* check whether the last response command index is the desired one */
if(sdio_command_index_get() != cmdindex){
status = SD_ILLEGAL_COMMAND;
return status;
}
/* clear all the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
/* get the SDIO response register 0 for checking */
response = sdio_response_get(SDIO_RESPONSE0);
if(SD_ALLZERO == (response & (SD_R6_COM_CRC_ERROR | SD_R6_ILLEGAL_COMMAND | SD_R6_GENERAL_UNKNOWN_ERROR))){
*prca = (uint16_t)(response >> 16);
return status;
}
/* if some error occurs, return the error type */
if(response & SD_R6_COM_CRC_ERROR){
status = SD_COM_CRC_ERROR;
}else if(response & SD_R6_ILLEGAL_COMMAND){
status = SD_ILLEGAL_COMMAND;
}else if(response & SD_R6_GENERAL_UNKNOWN_ERROR){
status = SD_GENERAL_UNKNOWN_ERROR;
}
return status;
}
/*!
\brief check if error occurs for R7 response
\param[in] none
\param[out] none
\retval sd_error_enum
*/
static sd_error_enum r7_error_check(void)
{
sd_error_enum status = SD_ERROR;
uint32_t reg_status = 0, timeout = 400000;
/* store the content of SDIO_STAT */
reg_status = SDIO_STAT;
while(!(reg_status & (SDIO_FLAG_CCRCERR | SDIO_FLAG_CMDTMOUT | SDIO_FLAG_CMDRECV)) && (timeout > 0)){
reg_status = SDIO_STAT;
--timeout;
}
/* check the flags */
if((reg_status & SDIO_FLAG_CMDTMOUT) || (0 == timeout)){
status = SD_CMD_RESP_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_CMDTMOUT);
return status;
}
if(reg_status & SDIO_FLAG_CMDRECV){
status = SD_OK;
sdio_flag_clear(SDIO_FLAG_CMDRECV);
return status;
}
return status;
}
/*!
\brief get the state which the card is in
\param[in] none
\param[out] pcardstate: a pointer that store the card state
\arg SD_CARDSTATE_IDLE: card is in idle state
\arg SD_CARDSTATE_READY: card is in ready state
\arg SD_CARDSTATE_IDENTIFICAT: card is in identificat state
\arg SD_CARDSTATE_STANDBY: card is in standby state
\arg SD_CARDSTATE_TRANSFER: card is in transfer state
\arg SD_CARDSTATE_DATA: card is in data state
\arg SD_CARDSTATE_RECEIVING: card is in receiving state
\arg SD_CARDSTATE_PROGRAMMING: card is in programming state
\arg SD_CARDSTATE_DISCONNECT: card is in disconnect state
\arg SD_CARDSTATE_LOCKED: card is in locked state
\retval sd_error_enum
*/
static sd_error_enum sd_card_state_get(uint8_t *pcardstate)
{
sd_error_enum status = SD_OK;
__IO uint32_t reg_status = 0, response = 0;
/* send CMD13(SEND_STATUS), addressed card sends its status register */
sdio_command_response_config(SD_CMD_SEND_STATUS, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* store the content of SDIO_STAT */
reg_status = SDIO_STAT;
while(!(reg_status & (SDIO_FLAG_CCRCERR | SDIO_FLAG_CMDTMOUT | SDIO_FLAG_CMDRECV))){
reg_status = SDIO_STAT;
}
/* check whether an error or timeout occurs or command response received */
if(reg_status & SDIO_FLAG_CCRCERR){
status = SD_CMD_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_CCRCERR);
return status;
}else if(reg_status & SDIO_FLAG_CMDTMOUT){
status = SD_CMD_RESP_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_CMDTMOUT);
return status;
}
/* command response received, store the response command index */
reg_status = (uint32_t)sdio_command_index_get();
if(reg_status != (uint32_t)SD_CMD_SEND_STATUS){
status = SD_ILLEGAL_COMMAND;
return status;
}
/* clear all the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
/* get the SDIO response register 0 for checking */
response = sdio_response_get(SDIO_RESPONSE0);
*pcardstate = (uint8_t)((response >> 9) & 0x0000000F);
if(SD_ALLZERO == (response & SD_R1_ERROR_BITS)){
/* no error occurs, return SD_OK */
status = SD_OK;
return status;
}
/* if some error occurs, return the error type */
status = r1_error_type_check(response);
return status;
}
/*!
\brief configure the bus width mode
\param[in] buswidth: the bus width
\arg SD_BUS_WIDTH_1BIT: 1-bit bus width
\arg SD_BUS_WIDTH_4BIT: 4-bit bus width
\param[out] none
\retval sd_error_enum
*/
static sd_error_enum sd_bus_width_config(uint32_t buswidth)
{
sd_error_enum status = SD_OK;
/* check whether the card is locked */
if(sdio_response_get(SDIO_RESPONSE0) & SD_CARDSTATE_LOCKED){
status = SD_LOCK_UNLOCK_FAILED;
return status;
}
/* get the SCR register */
status = sd_scr_get(card_opration.sd_rca, card_opration.sd_scr);
if(SD_OK != status){
return status;
}
if(SD_BUS_WIDTH_1BIT == buswidth){
if(SD_ALLZERO != (card_opration.sd_scr[1] & buswidth)){
/* send CMD55(APP_CMD) to indicate next command is application specific command */
sdio_command_response_config(SD_CMD_APP_CMD, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_APP_CMD);
if(SD_OK != status){
return status;
}
/* send ACMD6(SET_BUS_WIDTH) to define the data bus width */
sdio_command_response_config(SD_APPCMD_SET_BUS_WIDTH, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_APPCMD_SET_BUS_WIDTH);
if(SD_OK != status){
return status;
}
}else{
status = SD_OPERATION_IMPROPER;
}
return status;
}else if(SD_BUS_WIDTH_4BIT == buswidth){
if(SD_ALLZERO != (card_opration.sd_scr[1] & buswidth)){
/* send CMD55(APP_CMD) to indicate next command is application specific command */
sdio_command_response_config(SD_CMD_APP_CMD, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_APP_CMD);
if(SD_OK != status){
return status;
}
/* send ACMD6(SET_BUS_WIDTH) to define the data bus width */
sdio_command_response_config(SD_APPCMD_SET_BUS_WIDTH, (uint32_t)0x2, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_APPCMD_SET_BUS_WIDTH);
if(SD_OK != status){
return status;
}
}else{
status = SD_OPERATION_IMPROPER;
}
return status;
}else{
status = SD_PARAMETER_INVALID;
return status;
}
}
/*!
\brief get the SCR of corresponding card
\param[in] rca: RCA of a card
\param[out] pscr: a pointer that store the SCR content
\retval sd_error_enum
*/
static sd_error_enum sd_scr_get(uint16_t rca, uint32_t *pscr)
{
sd_error_enum status = SD_OK;
uint32_t temp_scr[2] = {0, 0}, idx_scr = 0;
/* send CMD16(SET_BLOCKLEN) to set block length */
sdio_command_response_config(SD_CMD_SET_BLOCKLEN, (uint32_t)8, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SET_BLOCKLEN);
if(SD_OK != status){
return status;
}
/* send CMD55(APP_CMD) to indicate next command is application specific command */
sdio_command_response_config(SD_CMD_APP_CMD, (uint32_t)rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_APP_CMD);
if(SD_OK != status){
return status;
}
/* configure SDIO data */
sdio_data_config(SD_DATATIMEOUT, (uint32_t)8, SDIO_DATABLOCKSIZE_8BYTES);
sdio_data_transfer_config(SDIO_TRANSMODE_BLOCK, SDIO_TRANSDIRECTION_TOSDIO);
sdio_dsm_enable();
/* send ACMD51(SEND_SCR) to read the SD configuration register */
sdio_command_response_config(SD_APPCMD_SEND_SCR, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_APPCMD_SEND_SCR);
if(SD_OK != status){
return status;
}
/* store the received SCR */
while(!sdio_flag_get(SDIO_FLAG_DTCRCERR | SDIO_FLAG_DTTMOUT | SDIO_FLAG_RXORE | SDIO_FLAG_DTBLKEND | SDIO_FLAG_STBITE)){
if(RESET != sdio_flag_get(SDIO_FLAG_RXDTVAL)){
*(temp_scr + idx_scr) = sdio_data_read();
++idx_scr;
}
}
/* check whether some error occurs */
if(RESET != sdio_flag_get(SDIO_FLAG_DTCRCERR)){
status = SD_DATA_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_DTCRCERR);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_DTTMOUT)){
status = SD_DATA_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_DTTMOUT);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_RXORE)){
status = SD_RX_OVERRUN_ERROR;
sdio_flag_clear(SDIO_FLAG_RXORE);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_STBITE)){
status = SD_START_BIT_ERROR;
sdio_flag_clear(SDIO_FLAG_STBITE);
return status;
}
/* clear all the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
/* readjust the temp SCR value */
*(pscr) = ((temp_scr[1] & SD_MASK_0_7BITS) << 24) | ((temp_scr[1] & SD_MASK_8_15BITS) << 8) |
((temp_scr[1] & SD_MASK_16_23BITS) >> 8) | ((temp_scr[1] & SD_MASK_24_31BITS) >> 24);
*(pscr + 1) = ((temp_scr[0] & SD_MASK_0_7BITS) << 24) | ((temp_scr[0] & SD_MASK_8_15BITS) << 8) |
((temp_scr[0] & SD_MASK_16_23BITS) >> 8) | ((temp_scr[0] & SD_MASK_24_31BITS) >> 24);
return status;
}
/*!
\brief get the data block size
\param[in] bytesnumber: the number of bytes
\param[out] none
\retval data block size
\arg SDIO_DATABLOCKSIZE_1BYTE: block size = 1 byte
\arg SDIO_DATABLOCKSIZE_2BYTES: block size = 2 bytes
\arg SDIO_DATABLOCKSIZE_4BYTES: block size = 4 bytes
\arg SDIO_DATABLOCKSIZE_8BYTES: block size = 8 bytes
\arg SDIO_DATABLOCKSIZE_16BYTES: block size = 16 bytes
\arg SDIO_DATABLOCKSIZE_32BYTES: block size = 32 bytes
\arg SDIO_DATABLOCKSIZE_64BYTES: block size = 64 bytes
\arg SDIO_DATABLOCKSIZE_128BYTES: block size = 128 bytes
\arg SDIO_DATABLOCKSIZE_256BYTES: block size = 256 bytes
\arg SDIO_DATABLOCKSIZE_512BYTES: block size = 512 bytes
\arg SDIO_DATABLOCKSIZE_1024BYTES: block size = 1024 bytes
\arg SDIO_DATABLOCKSIZE_2048BYTES: block size = 2048 bytes
\arg SDIO_DATABLOCKSIZE_4096BYTES: block size = 4096 bytes
\arg SDIO_DATABLOCKSIZE_8192BYTES: block size = 8192 bytes
\arg SDIO_DATABLOCKSIZE_16384BYTES: block size = 16384 bytes
*/
static uint32_t sd_datablocksize_get(uint16_t bytesnumber)
{
uint8_t exp_val = 0;
/* calculate the exponent of 2 */
while(1 != bytesnumber){
bytesnumber >>= 1;
++exp_val;
}
return DATACTL_BLKSZ(exp_val);
}
/*!
\brief configure the GPIO of SDIO interface
\param[in] none
\param[out] none
\retval none
*/
static void gpio_config(void)
{
/* configure the SDIO_DAT0(PC8), SDIO_DAT1(PC9), SDIO_DAT2(PC10), SDIO_DAT3(PC11), SDIO_CLK(PC12) and SDIO_CMD(PD2) */
gpio_af_set(SDIO_CLK_PORT, GPIO_AF_12, SDIO_CLK_PIN);
gpio_af_set(SDIO_CMD_PORT, GPIO_AF_12, SDIO_CMD_PIN);
gpio_af_set(SDIO_D0_PORT, GPIO_AF_12, SDIO_D0_PIN);
gpio_af_set(SDIO_D1_PORT, GPIO_AF_12, SDIO_D1_PIN);
gpio_af_set(SDIO_D2_PORT, GPIO_AF_12, SDIO_D2_PIN);
gpio_af_set(SDIO_D3_PORT, GPIO_AF_12, SDIO_D3_PIN);
gpio_mode_set(SDIO_CLK_PORT, GPIO_MODE_AF, GPIO_PUPD_NONE, SDIO_CLK_PIN);
gpio_output_options_set(SDIO_CLK_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_25MHZ, SDIO_CLK_PIN);
gpio_mode_set(SDIO_CMD_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, SDIO_CMD_PIN);
gpio_output_options_set(SDIO_CMD_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_25MHZ, SDIO_CMD_PIN);
gpio_mode_set(SDIO_D0_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, SDIO_D0_PIN);
gpio_output_options_set(SDIO_D0_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_25MHZ, SDIO_D0_PIN);
gpio_mode_set(SDIO_D1_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, SDIO_D1_PIN);
gpio_output_options_set(SDIO_D1_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_25MHZ, SDIO_D1_PIN);
gpio_mode_set(SDIO_D2_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, SDIO_D2_PIN);
gpio_output_options_set(SDIO_D2_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_25MHZ, SDIO_D2_PIN);
gpio_mode_set(SDIO_D3_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, SDIO_D3_PIN);
gpio_output_options_set(SDIO_D3_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_25MHZ, SDIO_D3_PIN);
}
/*!
\brief configure the RCU of SDIO and DMA
\param[in] none
\param[out] none
\retval none
*/
static void rcu_config(void)
{
rcu_periph_clock_enable(SDIO_GPIO_CLK);
rcu_periph_clock_enable(SDIO_GPIO_CMD);
rcu_periph_clock_enable(SDIO_GPIO_D0);
rcu_periph_clock_enable(SDIO_GPIO_D1);
rcu_periph_clock_enable(SDIO_GPIO_D2);
rcu_periph_clock_enable(SDIO_GPIO_D3);
rcu_periph_clock_enable(SDIO_PERI_CLOCK);
rcu_periph_clock_enable(SDIO_DMA_CLOCK);
}
/*!
\brief configure the DMA1 channel 3 for transferring data
\param[in] srcbuf: a pointer point to a buffer which will be transferred
\param[in] bufsize: the size of buffer(not used in flow controller is peripheral)
\param[out] none
\retval none
*/
static void dma_transfer_config(uint32_t *srcbuf, uint32_t bufsize)
{
dma_multi_data_parameter_struct dma_struct;
/* clear all the interrupt flags */
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_FEE);
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_SDE);
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_TAE);
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_HTF);
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_FTF);
dma_channel_disable(SDIO_DMA, SDIO_DMA_CHANNEL);
dma_deinit(SDIO_DMA, SDIO_DMA_CHANNEL);
/* configure the DMA1 channel 3 */
dma_struct.periph_addr = (uint32_t)SDIO_FIFO_ADDR;
dma_struct.memory0_addr = (uint32_t)srcbuf;
dma_struct.direction = DMA_MEMORY_TO_PERIPH;
dma_struct.number = 0;
dma_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_struct.periph_width = DMA_PERIPH_WIDTH_32BIT;
dma_struct.memory_width = DMA_MEMORY_WIDTH_32BIT;
dma_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
dma_struct.periph_burst_width = DMA_PERIPH_BURST_4_BEAT;
dma_struct.memory_burst_width = DMA_MEMORY_BURST_4_BEAT;
dma_struct.circular_mode = DMA_CIRCULAR_MODE_DISABLE;
dma_struct.critical_value = DMA_FIFO_4_WORD;
dma_multi_data_mode_init(SDIO_DMA, SDIO_DMA_CHANNEL, &dma_struct);
dma_flow_controller_config(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLOW_CONTROLLER_PERI);
dma_channel_subperipheral_select(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_SUBPERI4);
dma_channel_enable(SDIO_DMA, SDIO_DMA_CHANNEL);
}
/*!
\brief configure the DMA1 channel 3 for receiving data
\param[in] dstbuf: a pointer point to a buffer which will receive data
\param[in] bufsize: the size of buffer(not used in flow controller is peripheral)
\param[out] none
\retval none
*/
static void dma_receive_config(uint32_t *dstbuf, uint32_t bufsize)
{
dma_multi_data_parameter_struct dma_struct;
/* clear all the interrupt flags */
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_FEE);
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_SDE);
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_TAE);
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_HTF);
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_FTF);
dma_channel_disable(SDIO_DMA, SDIO_DMA_CHANNEL);
dma_deinit(SDIO_DMA, SDIO_DMA_CHANNEL);
/* configure the DMA1 channel 3 */
dma_struct.periph_addr = (uint32_t)SDIO_FIFO_ADDR;
dma_struct.memory0_addr = (uint32_t)dstbuf;
dma_struct.direction = DMA_PERIPH_TO_MEMORY;
dma_struct.number = 0;
dma_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_struct.periph_width = DMA_PERIPH_WIDTH_32BIT;
dma_struct.memory_width = DMA_MEMORY_WIDTH_32BIT;
dma_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
dma_struct.periph_burst_width = DMA_PERIPH_BURST_4_BEAT;
dma_struct.memory_burst_width = DMA_MEMORY_BURST_4_BEAT;
dma_struct.critical_value = DMA_FIFO_4_WORD;
dma_struct.circular_mode = DMA_CIRCULAR_MODE_DISABLE;
dma_multi_data_mode_init(SDIO_DMA, SDIO_DMA_CHANNEL, &dma_struct);
dma_flow_controller_config(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLOW_CONTROLLER_PERI);
dma_channel_subperipheral_select(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_SUBPERI4);
dma_channel_enable(SDIO_DMA, SDIO_DMA_CHANNEL);
}
#if SDIO_DMA_USE_IPC
static void sdio_dma_irq_config(void)
{
dma_interrupt_enable(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_CHXCTL_FTFIE);
nvic_irq_enable(SDIO_DMA_IRQ, 0, 1);
}
void SDIO_DMA_IRQ_HANDLER(void)
{
rt_interrupt_enter();
if(dma_interrupt_flag_get(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_INT_FLAG_FTF)) {
dma_interrupt_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_INT_FLAG_FTF);
dma_interrupt_disable(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_CHXCTL_FTFIE);
rt_sem_release(&sd.sem);
}
rt_interrupt_leave();
}
#endif /* SDIO_DMA_USE_IPC */
#endif /* RT_USING_SDIO */