rt-thread/bsp/hc32/libraries/hc32_drivers/drv_usart_v2.c

2026 lines
61 KiB
C

/*
* Copyright (C) 2022-2024, Xiaohua Semiconductor Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-04-28 CDT first version
* 2024-02-06 CDT support HC32F448
* 2024-04-15 CDT support HC32F472
*/
/*******************************************************************************
* Include files
******************************************************************************/
#include <rtdevice.h>
#include <rthw.h>
#ifdef RT_USING_SERIAL_V2
#if defined (BSP_USING_UART1) || defined (BSP_USING_UART2) || defined (BSP_USING_UART3) || \
defined (BSP_USING_UART4) || defined (BSP_USING_UART5) || defined (BSP_USING_UART6) || \
defined (BSP_USING_UART7) || defined (BSP_USING_UART8) || defined (BSP_USING_UART9) || \
defined (BSP_USING_UART10)
#include "drv_usart_v2.h"
#include "board_config.h"
/*******************************************************************************
* Local type definitions ('typedef')
******************************************************************************/
/*******************************************************************************
* Local pre-processor symbols/macros ('#define')
******************************************************************************/
#define DMA_CH_REG(reg_base, ch) \
(*(uint32_t *)((uint32_t)(&(reg_base)) + ((ch) * 0x40UL)))
#define DMA_TRANS_SET_CNT(unit, ch) \
(READ_REG32(DMA_CH_REG((unit)->DTCTL0,(ch))) >> DMA_DTCTL_CNT_POS)
#define DMA_TRANS_CNT(unit, ch) \
(READ_REG32(DMA_CH_REG((unit)->MONDTCTL0, (ch))) >> DMA_DTCTL_CNT_POS)
#define UART_BAUDRATE_ERR_MAX (0.025F)
#if defined (HC32F460)
#define FCG_USART_CLK FCG_Fcg1PeriphClockCmd
#elif defined (HC32F4A0) || defined (HC32F448) || defined (HC32F472)
#define FCG_USART_CLK FCG_Fcg3PeriphClockCmd
#endif
#define FCG_TMR0_CLK FCG_Fcg2PeriphClockCmd
#define FCG_DMA_CLK FCG_Fcg0PeriphClockCmd
/*******************************************************************************
* Global variable definitions (declared in header file with 'extern')
******************************************************************************/
extern rt_err_t rt_hw_board_uart_init(CM_USART_TypeDef *USARTx);
/*******************************************************************************
* Local function prototypes ('static')
******************************************************************************/
#ifdef RT_SERIAL_USING_DMA
static void hc32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag);
#endif
/*******************************************************************************
* Local variable definitions ('static')
******************************************************************************/
enum
{
#ifdef BSP_USING_UART1
UART1_INDEX,
#endif
#ifdef BSP_USING_UART2
UART2_INDEX,
#endif
#ifdef BSP_USING_UART3
UART3_INDEX,
#endif
#ifdef BSP_USING_UART4
UART4_INDEX,
#endif
#ifdef BSP_USING_UART5
UART5_INDEX,
#endif
#ifdef BSP_USING_UART6
UART6_INDEX,
#endif
#ifdef BSP_USING_UART7
UART7_INDEX,
#endif
#ifdef BSP_USING_UART8
UART8_INDEX,
#endif
#ifdef BSP_USING_UART9
UART9_INDEX,
#endif
#ifdef BSP_USING_UART10
UART10_INDEX,
#endif
};
static struct hc32_uart_config uart_config[] =
{
#ifdef BSP_USING_UART1
UART1_CONFIG,
#endif
#ifdef BSP_USING_UART2
UART2_CONFIG,
#endif
#ifdef BSP_USING_UART3
UART3_CONFIG,
#endif
#ifdef BSP_USING_UART4
UART4_CONFIG,
#endif
#ifdef BSP_USING_UART5
UART5_CONFIG,
#endif
#ifdef BSP_USING_UART6
UART6_CONFIG,
#endif
#ifdef BSP_USING_UART7
UART7_CONFIG,
#endif
#ifdef BSP_USING_UART8
UART8_CONFIG,
#endif
#ifdef BSP_USING_UART9
UART9_CONFIG,
#endif
#ifdef BSP_USING_UART10
UART10_CONFIG,
#endif
};
static struct hc32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0};
/*******************************************************************************
* Function implementation - global ('extern') and local ('static')
******************************************************************************/
static rt_err_t hc32_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
struct hc32_uart *uart;
stc_usart_uart_init_t uart_init;
RT_ASSERT(RT_NULL != cfg);
RT_ASSERT(RT_NULL != serial);
uart = rt_container_of(serial, struct hc32_uart, serial);
USART_UART_StructInit(&uart_init);
uart_init.u32OverSampleBit = USART_OVER_SAMPLE_8BIT;
uart_init.u32Baudrate = cfg->baud_rate;
uart_init.u32ClockSrc = USART_CLK_SRC_INTERNCLK;
#if defined (HC32F4A0)
if ((CM_USART1 == uart->config->Instance) || (CM_USART2 == uart->config->Instance) || \
(CM_USART6 == uart->config->Instance) || (CM_USART7 == uart->config->Instance))
#elif defined (HC32F460)
if ((CM_USART1 == uart->config->Instance) || (CM_USART2 == uart->config->Instance) || \
(CM_USART3 == uart->config->Instance) || (CM_USART4 == uart->config->Instance))
#elif defined (HC32F448) || defined (HC32F472)
if ((CM_USART1 == uart->config->Instance) || (CM_USART2 == uart->config->Instance) || \
(CM_USART4 == uart->config->Instance) || (CM_USART5 == uart->config->Instance))
#endif
{
uart_init.u32CKOutput = USART_CK_OUTPUT_ENABLE;
}
switch (cfg->data_bits)
{
case DATA_BITS_8:
uart_init.u32DataWidth = USART_DATA_WIDTH_8BIT;
break;
case DATA_BITS_9:
uart_init.u32DataWidth = USART_DATA_WIDTH_9BIT;
break;
default:
uart_init.u32DataWidth = USART_DATA_WIDTH_8BIT;
break;
}
switch (cfg->stop_bits)
{
case STOP_BITS_1:
uart_init.u32StopBit = USART_STOPBIT_1BIT;
break;
case STOP_BITS_2:
uart_init.u32StopBit = USART_STOPBIT_2BIT;
break;
default:
uart_init.u32StopBit = USART_STOPBIT_1BIT;
break;
}
switch (cfg->parity)
{
case PARITY_NONE:
uart_init.u32Parity = USART_PARITY_NONE;
break;
case PARITY_EVEN:
uart_init.u32Parity = USART_PARITY_EVEN;
break;
case PARITY_ODD:
uart_init.u32Parity = USART_PARITY_ODD;
break;
default:
uart_init.u32Parity = USART_PARITY_NONE;
break;
}
if (BIT_ORDER_LSB == cfg->bit_order)
{
uart_init.u32FirstBit = USART_FIRST_BIT_LSB;
}
else
{
uart_init.u32FirstBit = USART_FIRST_BIT_MSB;
}
#if defined (HC32F4A0) || defined (HC32F448) || defined (HC32F472)
switch (cfg->flowcontrol)
{
case RT_SERIAL_FLOWCONTROL_NONE:
uart_init.u32HWFlowControl = USART_HW_FLOWCTRL_NONE;
break;
case RT_SERIAL_FLOWCONTROL_CTSRTS:
uart_init.u32HWFlowControl = USART_HW_FLOWCTRL_RTS_CTS;
break;
default:
uart_init.u32HWFlowControl = USART_HW_FLOWCTRL_NONE;
break;
}
#endif
#ifdef RT_SERIAL_USING_DMA
uart->dma_rx_remaining_cnt = (serial->config.rx_bufsz <= 1UL) ? serial->config.rx_bufsz : serial->config.rx_bufsz / 2UL;
#endif
/* Enable USART clock */
FCG_USART_CLK(uart->config->clock, ENABLE);
if (RT_EOK != rt_hw_board_uart_init(uart->config->Instance))
{
return -RT_ERROR;
}
/* Configure UART */
uint32_t u32Div;
float32_t f32Error;
int32_t i32Ret = LL_ERR;
USART_DeInit(uart->config->Instance);
USART_UART_Init(uart->config->Instance, &uart_init, NULL);
for (u32Div = 0UL; u32Div <= USART_CLK_DIV64; u32Div++)
{
USART_SetClockDiv(uart->config->Instance, u32Div);
if ((LL_OK == USART_SetBaudrate(uart->config->Instance, uart_init.u32Baudrate, &f32Error)) &&
((-UART_BAUDRATE_ERR_MAX <= f32Error) && (f32Error <= UART_BAUDRATE_ERR_MAX)))
{
i32Ret = LL_OK;
break;
}
}
if (i32Ret != LL_OK)
{
return -RT_ERROR;
}
/* Enable error interrupt */
#if defined (HC32F460) || defined (HC32F4A0)
NVIC_EnableIRQ(uart->config->rxerr_irq.irq_config.irq_num);
#elif defined (HC32F448) || defined (HC32F472)
INTC_IntSrcCmd(uart->config->tx_int_src, ENABLE);
INTC_IntSrcCmd(uart->config->rx_int_src, DISABLE);
INTC_IntSrcCmd(uart->config->rxerr_int_src, ENABLE);
NVIC_EnableIRQ(uart->config->irq_num);
INTC_IntSrcCmd(uart->config->tc_irq.irq_config.int_src, ENABLE);
#endif
USART_FuncCmd(uart->config->Instance, USART_TX | USART_RX | USART_INT_RX, ENABLE);
return RT_EOK;
}
static rt_err_t hc32_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct hc32_uart *uart;
rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
RT_ASSERT(RT_NULL != serial);
uart = rt_container_of(serial, struct hc32_uart, serial);
RT_ASSERT(RT_NULL != uart->config->Instance);
if (ctrl_arg & (RT_DEVICE_FLAG_RX_BLOCKING | RT_DEVICE_FLAG_RX_NON_BLOCKING))
{
if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_RX)
{
ctrl_arg = RT_DEVICE_FLAG_DMA_RX;
}
else
{
ctrl_arg = RT_DEVICE_FLAG_INT_RX;
}
}
else if (ctrl_arg & (RT_DEVICE_FLAG_TX_BLOCKING | RT_DEVICE_FLAG_TX_NON_BLOCKING))
{
if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_TX)
{
ctrl_arg = RT_DEVICE_FLAG_DMA_TX;
}
else
{
ctrl_arg = RT_DEVICE_FLAG_INT_TX;
}
}
switch (cmd)
{
/* Disable interrupt */
case RT_DEVICE_CTRL_CLR_INT:
if (RT_DEVICE_FLAG_INT_RX == ctrl_arg)
{
#if defined (HC32F460) || defined (HC32F4A0)
NVIC_DisableIRQ(uart->config->rx_irq.irq_config.irq_num);
INTC_IrqSignOut(uart->config->rx_irq.irq_config.irq_num);
#elif defined (HC32F448) || defined (HC32F472)
INTC_IntSrcCmd(uart->config->rx_int_src, DISABLE);
#endif
}
else if (RT_DEVICE_FLAG_INT_TX == ctrl_arg)
{
#if defined (HC32F460) || defined (HC32F4A0)
NVIC_DisableIRQ(uart->config->tx_irq.irq_config.irq_num);
NVIC_DisableIRQ(uart->config->tc_irq.irq_config.irq_num);
USART_FuncCmd(uart->config->Instance, (USART_INT_TX_EMPTY | USART_INT_TX_CPLT), DISABLE);
INTC_IrqSignOut(uart->config->tx_irq.irq_config.irq_num);
INTC_IrqSignOut(uart->config->tc_irq.irq_config.irq_num);
#elif defined (HC32F448) || defined (HC32F472)
NVIC_DisableIRQ(uart->config->tc_irq.irq_config.irq_num);
INTC_IrqSignOut(uart->config->tc_irq.irq_config.irq_num);
USART_FuncCmd(uart->config->Instance, (USART_INT_TX_EMPTY | USART_INT_TX_CPLT), DISABLE);
#endif
}
#ifdef RT_SERIAL_USING_DMA
else if (RT_DEVICE_FLAG_DMA_RX == ctrl_arg)
{
NVIC_DisableIRQ(uart->config->dma_rx->irq_config.irq_num);
}
else if (RT_DEVICE_FLAG_DMA_TX == ctrl_arg)
{
USART_FuncCmd(uart->config->Instance, USART_INT_TX_CPLT, DISABLE);
NVIC_DisableIRQ(uart->config->dma_tx->irq_config.irq_num);
}
#endif
break;
/* Enable interrupt */
case RT_DEVICE_CTRL_SET_INT:
#if defined (HC32F460) || defined (HC32F4A0)
if (RT_DEVICE_FLAG_INT_RX == ctrl_arg)
{
hc32_install_irq_handler(&uart->config->rx_irq.irq_config, uart->config->rx_irq.irq_callback, RT_TRUE);
USART_FuncCmd(uart->config->Instance, USART_INT_RX, ENABLE);
}
else if (RT_DEVICE_FLAG_INT_TX == ctrl_arg)
{
INTC_IrqSignOut(uart->config->tx_irq.irq_config.irq_num);
INTC_IrqSignOut(uart->config->tc_irq.irq_config.irq_num);
hc32_install_irq_handler(&uart->config->tx_irq.irq_config, uart->config->tx_irq.irq_callback, RT_TRUE);
hc32_install_irq_handler(&uart->config->tc_irq.irq_config, uart->config->tc_irq.irq_callback, RT_TRUE);
USART_FuncCmd(uart->config->Instance, USART_TX, DISABLE);
USART_FuncCmd(uart->config->Instance, USART_TX | USART_INT_TX_EMPTY, ENABLE);
}
#elif defined (HC32F448) || defined (HC32F472)
/* NVIC config */
if (RT_DEVICE_FLAG_INT_RX == ctrl_arg)
{
/* intsrc enable */
INTC_IntSrcCmd(uart->config->rx_int_src, ENABLE);
USART_FuncCmd(uart->config->Instance, USART_INT_RX, ENABLE);
}
else if (RT_DEVICE_FLAG_INT_TX == ctrl_arg)
{
NVIC_ClearPendingIRQ(uart->config->tc_irq.irq_config.irq_num);
NVIC_EnableIRQ(uart->config->tc_irq.irq_config.irq_num);
USART_FuncCmd(uart->config->Instance, USART_TX | USART_INT_TX_EMPTY, ENABLE);
}
#endif
break;
case RT_DEVICE_CTRL_CONFIG:
if (ctrl_arg & (RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX))
{
#ifdef RT_SERIAL_USING_DMA
hc32_dma_config(serial, ctrl_arg);
#endif
}
else
{
hc32_control(serial, RT_DEVICE_CTRL_SET_INT, (void *)ctrl_arg);
}
break;
case RT_DEVICE_CHECK_OPTMODE:
if (ctrl_arg & RT_DEVICE_FLAG_DMA_TX)
{
return RT_SERIAL_TX_BLOCKING_NO_BUFFER;
}
else
{
return RT_SERIAL_TX_BLOCKING_BUFFER;
}
case RT_DEVICE_CTRL_CLOSE:
USART_DeInit(uart->config->Instance);
break;
}
return RT_EOK;
}
static int hc32_putc(struct rt_serial_device *serial, char c)
{
struct hc32_uart *uart;
RT_ASSERT(RT_NULL != serial);
uart = rt_container_of(serial, struct hc32_uart, serial);
RT_ASSERT(RT_NULL != uart->config->Instance);
/* Polling mode. */
while (USART_GetStatus(uart->config->Instance, USART_FLAG_TX_CPLT) != SET);
USART_WriteData(uart->config->Instance, c);
return 1;
}
static int hc32_getc(struct rt_serial_device *serial)
{
int ch = -1;
struct hc32_uart *uart;
RT_ASSERT(RT_NULL != serial);
uart = rt_container_of(serial, struct hc32_uart, serial);
RT_ASSERT(RT_NULL != uart->config->Instance);
if (SET == USART_GetStatus(uart->config->Instance, USART_FLAG_RX_FULL))
{
ch = (rt_uint8_t)USART_ReadData(uart->config->Instance);
}
return ch;
}
static rt_ssize_t hc32_transmit(struct rt_serial_device *serial,
rt_uint8_t *buf,
rt_size_t size,
rt_uint32_t tx_flag)
{
struct hc32_uart *uart;
#ifdef RT_SERIAL_USING_DMA
struct dma_config *uart_dma;
#endif
RT_ASSERT(RT_NULL != serial);
RT_ASSERT(RT_NULL != buf);
if (0 == size)
{
return 0;
}
uart = rt_container_of(serial, struct hc32_uart, serial);
if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_TX)
{
#ifdef RT_SERIAL_USING_DMA
uart_dma = uart->config->dma_tx;
if (RESET == USART_GetStatus(uart->config->Instance, USART_FLAG_TX_CPLT))
{
RT_ASSERT(0);
}
DMA_SetSrcAddr(uart_dma->Instance, uart_dma->channel, (uint32_t)buf);
DMA_SetTransCount(uart_dma->Instance, uart_dma->channel, size);
DMA_ChCmd(uart_dma->Instance, uart_dma->channel, ENABLE);
USART_FuncCmd(uart->config->Instance, USART_TX, ENABLE);
USART_FuncCmd(uart->config->Instance, USART_INT_TX_CPLT, ENABLE);
return size;
#endif
}
hc32_control(serial, RT_DEVICE_CTRL_SET_INT, (void *)tx_flag);
return size;
}
static void hc32_uart_rx_irq_handler(struct hc32_uart *uart)
{
RT_ASSERT(RT_NULL != uart);
struct rt_serial_rx_fifo *rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo *)uart->serial.serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_ringbuffer_putchar(&(rx_fifo->rb), (rt_uint8_t)USART_ReadData(uart->config->Instance));
rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_RX_IND);
}
static void hc32_uart_tx_irq_handler(struct hc32_uart *uart)
{
RT_ASSERT(RT_NULL != uart);
struct rt_serial_tx_fifo *tx_fifo;
tx_fifo = (struct rt_serial_tx_fifo *)uart->serial.serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
rt_uint8_t put_char = 0;
if (rt_ringbuffer_getchar(&(tx_fifo->rb), &put_char))
{
USART_WriteData(uart->config->Instance, put_char);
}
else
{
USART_FuncCmd(uart->config->Instance, USART_INT_TX_EMPTY, DISABLE);
USART_FuncCmd(uart->config->Instance, USART_INT_TX_CPLT, ENABLE);
}
}
static void hc32_uart_rxerr_irq_handler(struct hc32_uart *uart)
{
RT_ASSERT(RT_NULL != uart);
RT_ASSERT(RT_NULL != uart->config->Instance);
if (SET == USART_GetStatus(uart->config->Instance, (USART_FLAG_OVERRUN | USART_FLAG_PARITY_ERR | USART_FLAG_FRAME_ERR)))
{
USART_ReadData(uart->config->Instance);
}
USART_ClearStatus(uart->config->Instance, (USART_FLAG_PARITY_ERR | USART_FLAG_FRAME_ERR | USART_FLAG_OVERRUN));
}
static void hc32_uart_tc_irq_handler(struct hc32_uart *uart)
{
RT_ASSERT(RT_NULL != uart);
USART_FuncCmd(uart->config->Instance, (USART_TX | USART_INT_TX_CPLT), DISABLE);
if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_TX)
{
#ifdef RT_SERIAL_USING_DMA
DMA_ClearTransCompleteStatus(uart->config->dma_tx->Instance, (DMA_FLAG_TC_CH0 | DMA_FLAG_BTC_CH0) << uart->config->dma_tx->channel);
#endif
rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_TX_DMADONE);
}
else
{
rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_TX_DONE);
}
}
#ifdef RT_SERIAL_USING_DMA
static void hc32_uart_rx_timeout(struct rt_serial_device *serial)
{
struct hc32_uart *uart;
CM_TMR0_TypeDef *TMR0_Instance;
uint8_t ch;
uint32_t rtb;
uint32_t alpha;
uint32_t ckdiv;
uint32_t cmp_val;
stc_tmr0_init_t stcTmr0Init;
RT_ASSERT(RT_NULL != serial);
uart = rt_container_of(serial, struct hc32_uart, serial);
RT_ASSERT(RT_NULL != uart->config->Instance);
TMR0_Instance = uart->config->rx_timeout->TMR0_Instance;
ch = uart->config->rx_timeout->channel;
rtb = uart->config->rx_timeout->timeout_bits;
#if defined (HC32F460)
if ((CM_USART1 == uart->config->Instance) || (CM_USART3 == uart->config->Instance))
{
RT_ASSERT(TMR0_CH_A == ch);
}
else if ((CM_USART2 == uart->config->Instance) || (CM_USART4 == uart->config->Instance))
{
RT_ASSERT(TMR0_CH_B == ch);
}
#elif defined (HC32F4A0)
if ((CM_USART1 == uart->config->Instance) || (CM_USART6 == uart->config->Instance))
{
RT_ASSERT(TMR0_CH_A == ch);
}
else if ((CM_USART2 == uart->config->Instance) || (CM_USART7 == uart->config->Instance))
{
RT_ASSERT(TMR0_CH_B == ch);
}
#elif defined (HC32F448) || defined (HC32F472)
if ((CM_USART1 == uart->config->Instance) || (CM_USART4 == uart->config->Instance))
{
RT_ASSERT(TMR0_CH_A == ch);
}
else if ((CM_USART2 == uart->config->Instance) || (CM_USART5 == uart->config->Instance))
{
RT_ASSERT(TMR0_CH_B == ch);
}
#endif
FCG_TMR0_CLK(uart->config->rx_timeout->clock, ENABLE);
/* TIMER0 basetimer function initialize */
TMR0_SetCountValue(TMR0_Instance, ch, 0U);
TMR0_StructInit(&stcTmr0Init);
stcTmr0Init.u32ClockDiv = TMR0_CLK_DIV1;
stcTmr0Init.u32ClockSrc = TMR0_CLK_SRC_XTAL32;
if (TMR0_CLK_DIV1 == stcTmr0Init.u32ClockDiv)
{
alpha = 7UL;
}
else if (TMR0_CLK_DIV2 == stcTmr0Init.u32ClockDiv)
{
alpha = 5UL;
}
else if ((TMR0_CLK_DIV4 == stcTmr0Init.u32ClockDiv) || \
(TMR0_CLK_DIV8 == stcTmr0Init.u32ClockDiv) || \
(TMR0_CLK_DIV16 == stcTmr0Init.u32ClockDiv))
{
alpha = 3UL;
}
else
{
alpha = 2UL;
}
/* TMR0_CMPA<B>R calculation formula: CMPA<B>R = (RTB / (2 ^ CKDIVA<B>)) - alpha */
ckdiv = 1UL << (stcTmr0Init.u32ClockDiv >> TMR0_BCONR_CKDIVA_POS);
cmp_val = ((rtb + ckdiv - 1UL) / ckdiv) - alpha;
DDL_ASSERT(cmp_val <= 0xFFFFUL);
stcTmr0Init.u16CompareValue = (uint16_t)(cmp_val);
TMR0_Init(TMR0_Instance, ch, &stcTmr0Init);
TMR0_HWStartCondCmd(TMR0_Instance, ch, ENABLE);
TMR0_HWClearCondCmd(TMR0_Instance, ch, ENABLE);
/* Clear compare flag */
TMR0_ClearStatus(TMR0_Instance, (uint32_t)(0x1UL << (ch * TMR0_STFLR_CMFB_POS)));
#if defined (HC32F460) || defined (HC32F4A0)
NVIC_EnableIRQ(uart->config->rx_timeout->irq_config.irq_num);
#endif
USART_ClearStatus(uart->config->Instance, USART_FLAG_RX_TIMEOUT);
USART_FuncCmd(uart->config->Instance, (USART_RX_TIMEOUT | USART_INT_RX_TIMEOUT), ENABLE);
}
static void hc32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag)
{
rt_uint32_t trans_count = (serial->config.rx_bufsz <= 1UL) ? serial->config.rx_bufsz : serial->config.rx_bufsz / 2UL;
struct hc32_uart *uart;
stc_dma_init_t dma_init;
struct dma_config *uart_dma;
RT_ASSERT(RT_NULL != serial);
RT_ASSERT(RT_NULL == ((serial->config.rx_bufsz) & ((RT_ALIGN_SIZE) - 1)));
uart = rt_container_of(serial, struct hc32_uart, serial);
RT_ASSERT(RT_NULL != uart->config->Instance);
if (RT_DEVICE_FLAG_DMA_RX == flag)
{
stc_dma_llp_init_t llp_init;
struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
RT_ASSERT(RT_NULL != uart->config->rx_timeout->TMR0_Instance);
RT_ASSERT(RT_NULL != uart->config->dma_rx->Instance);
RT_ASSERT(RT_NULL != rx_fifo);
#if defined (HC32F448) || defined (HC32F472)
INTC_IntSrcCmd(uart->config->rx_int_src, DISABLE);
#endif
uart_dma = uart->config->dma_rx;
/* Initialization uart rx timeout for DMA */
hc32_uart_rx_timeout(serial);
/* Enable DMA clock */
FCG_DMA_CLK(uart_dma->clock, ENABLE);
DMA_ChCmd(uart_dma->Instance, uart_dma->channel, DISABLE);
/* Initialize DMA */
DMA_StructInit(&dma_init);
dma_init.u32IntEn = DMA_INT_ENABLE;
dma_init.u32SrcAddr = (uint32_t)(&uart->config->Instance->RDR);
dma_init.u32DestAddr = (uint32_t)rx_fifo->buffer;
dma_init.u32DataWidth = DMA_DATAWIDTH_8BIT;
dma_init.u32BlockSize = 1UL;
dma_init.u32TransCount = trans_count;
dma_init.u32SrcAddrInc = DMA_SRC_ADDR_FIX;
dma_init.u32DestAddrInc = DMA_DEST_ADDR_INC;
DMA_Init(uart_dma->Instance, uart_dma->channel, &dma_init);
/* Initialize LLP */
llp_init.u32State = DMA_LLP_ENABLE;
llp_init.u32Mode = DMA_LLP_WAIT;
llp_init.u32Addr = (uint32_t)&uart->config->llp_desc;
DMA_LlpInit(uart_dma->Instance, uart_dma->channel, &llp_init);
/* Configure LLP descriptor */
uart->config->llp_desc[0U].SARx = dma_init.u32SrcAddr;
uart->config->llp_desc[0U].DARx = dma_init.u32DestAddr + ((serial->config.rx_bufsz <= 1UL) ? 0UL : dma_init.u32TransCount);
uart->config->llp_desc[0U].DTCTLx = (((serial->config.rx_bufsz <= 1U) ? dma_init.u32TransCount : (serial->config.rx_bufsz - dma_init.u32TransCount)) << DMA_DTCTL_CNT_POS) | \
(dma_init.u32BlockSize << DMA_DTCTL_BLKSIZE_POS);
uart->config->llp_desc[0U].LLPx = (serial->config.rx_bufsz <= 1U) ? (uint32_t)&uart->config->llp_desc[0U] : (uint32_t)&uart->config->llp_desc[1U];
uart->config->llp_desc[0U].CHCTLx = (dma_init.u32SrcAddrInc | dma_init.u32DestAddrInc | dma_init.u32DataWidth | \
llp_init.u32State | llp_init.u32Mode | dma_init.u32IntEn);
if (serial->config.rx_bufsz > 1UL)
{
uart->config->llp_desc[1U].SARx = dma_init.u32SrcAddr;
uart->config->llp_desc[1U].DARx = dma_init.u32DestAddr;
uart->config->llp_desc[1U].DTCTLx = (dma_init.u32TransCount << DMA_DTCTL_CNT_POS) | (dma_init.u32BlockSize << DMA_DTCTL_BLKSIZE_POS);
uart->config->llp_desc[1U].LLPx = (uint32_t)&uart->config->llp_desc[0U];
uart->config->llp_desc[1U].CHCTLx = (dma_init.u32SrcAddrInc | dma_init.u32DestAddrInc | dma_init.u32DataWidth | \
llp_init.u32State | llp_init.u32Mode | dma_init.u32IntEn);
}
/* Enable DMA interrupt */
NVIC_EnableIRQ(uart->config->dma_rx->irq_config.irq_num);
/* Enable DMA module */
DMA_Cmd(uart_dma->Instance, ENABLE);
AOS_SetTriggerEventSrc(uart_dma->trigger_select, uart_dma->trigger_event);
DMA_ChCmd(uart_dma->Instance, uart_dma->channel, ENABLE);
}
else if (RT_DEVICE_FLAG_DMA_TX == flag)
{
RT_ASSERT(RT_NULL != uart->config->dma_tx->Instance);
uart_dma = uart->config->dma_tx;
/* Enable DMA clock */
FCG_DMA_CLK(uart_dma->clock, ENABLE);
DMA_ChCmd(uart_dma->Instance, uart_dma->channel, DISABLE);
/* Initialize DMA */
DMA_StructInit(&dma_init);
dma_init.u32IntEn = DMA_INT_DISABLE;
dma_init.u32SrcAddr = 0UL;
dma_init.u32DestAddr = (uint32_t)(&uart->config->Instance->TDR);
dma_init.u32DataWidth = DMA_DATAWIDTH_8BIT;
dma_init.u32BlockSize = 1UL;
dma_init.u32TransCount = 0UL;
dma_init.u32SrcAddrInc = DMA_SRC_ADDR_INC;
dma_init.u32DestAddrInc = DMA_DEST_ADDR_FIX;
DMA_Init(uart_dma->Instance, uart_dma->channel, &dma_init);
/* Enable DMA module */
DMA_Cmd(uart_dma->Instance, ENABLE);
AOS_SetTriggerEventSrc(uart_dma->trigger_select, uart_dma->trigger_event);
USART_FuncCmd(uart->config->Instance, (USART_TX | USART_INT_TX_EMPTY | USART_INT_TX_CPLT), DISABLE);
NVIC_EnableIRQ(uart->config->tc_irq.irq_config.irq_num);
}
}
#if defined (BSP_UART1_RX_USING_DMA) || defined (BSP_UART2_RX_USING_DMA) || defined (BSP_UART3_RX_USING_DMA) || \
defined (BSP_UART4_RX_USING_DMA) || defined (BSP_UART5_RX_USING_DMA) || defined (BSP_UART6_RX_USING_DMA) || \
defined (BSP_UART7_RX_USING_DMA)
static void hc32_uart_dma_rx_irq_handler(struct hc32_uart *uart)
{
rt_base_t level;
rt_size_t recv_len;
struct rt_serial_device *serial;
RT_ASSERT(RT_NULL != uart);
RT_ASSERT(RT_NULL != uart->config->Instance);
serial = &uart->serial;
RT_ASSERT(RT_NULL != serial);
level = rt_hw_interrupt_disable();
recv_len = uart->dma_rx_remaining_cnt;
uart->dma_rx_remaining_cnt = DMA_TRANS_SET_CNT(uart->config->dma_rx->Instance, uart->config->dma_rx->channel);
if (recv_len)
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
}
rt_hw_interrupt_enable(level);
}
static void hc32_uart_rxto_irq_handler(struct hc32_uart *uart)
{
rt_base_t level;
rt_size_t dma_set_cnt, cnt;
rt_size_t recv_len;
struct rt_serial_device *serial;
serial = &uart->serial;
RT_ASSERT(serial != RT_NULL);
cnt = DMA_TRANS_CNT(uart->config->dma_rx->Instance, uart->config->dma_rx->channel);
dma_set_cnt = DMA_TRANS_SET_CNT(uart->config->dma_rx->Instance, uart->config->dma_rx->channel);
level = rt_hw_interrupt_disable();
if (cnt <= uart->dma_rx_remaining_cnt)
{
recv_len = uart->dma_rx_remaining_cnt - cnt;
}
else
{
recv_len = uart->dma_rx_remaining_cnt + dma_set_cnt - cnt;
}
if (recv_len)
{
uart->dma_rx_remaining_cnt = cnt;
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
}
rt_hw_interrupt_enable(level);
TMR0_Stop(uart->config->rx_timeout->TMR0_Instance, uart->config->rx_timeout->channel);
USART_ClearStatus(uart->config->Instance, USART_FLAG_RX_TIMEOUT);
}
#endif
#endif
#if defined (HC32F448) || defined (HC32F472)
static void hc32_usart_handler(struct hc32_uart *uart)
{
RT_ASSERT(RT_NULL != uart);
#if defined (RT_SERIAL_USING_DMA)
if ((SET == USART_GetStatus(uart->config->Instance, USART_FLAG_RX_TIMEOUT)) && \
(ENABLE == USART_GetFuncState(uart->config->Instance, USART_RX_TIMEOUT)) && \
(ENABLE == INTC_GetIntSrcState(uart->config->rxto_int_src)))
{
#if defined (BSP_UART1_RX_USING_DMA) || defined (BSP_UART2_RX_USING_DMA) || \
defined (BSP_UART4_RX_USING_DMA) || defined (BSP_UART5_RX_USING_DMA)
hc32_uart_rxto_irq_handler(uart);
#endif
}
#endif
if ((SET == USART_GetStatus(uart->config->Instance, USART_FLAG_RX_FULL)) && \
(ENABLE == USART_GetFuncState(uart->config->Instance, USART_INT_RX)) && \
(ENABLE == INTC_GetIntSrcState(uart->config->rx_int_src)))
{
hc32_uart_rx_irq_handler(uart);
}
if ((SET == USART_GetStatus(uart->config->Instance, USART_FLAG_TX_EMPTY)) && \
(ENABLE == USART_GetFuncState(uart->config->Instance, USART_INT_TX_EMPTY)) && \
(ENABLE == INTC_GetIntSrcState(uart->config->tx_int_src)))
{
hc32_uart_tx_irq_handler(uart);
}
if ((SET == USART_GetStatus(uart->config->Instance, (USART_FLAG_OVERRUN | \
USART_FLAG_FRAME_ERR | USART_FLAG_PARITY_ERR))) && \
(ENABLE == USART_GetFuncState(uart->config->Instance, USART_INT_RX)) && \
(ENABLE == INTC_GetIntSrcState(uart->config->rxerr_int_src)))
{
hc32_uart_rxerr_irq_handler(uart);
}
}
#endif
#if defined (BSP_USING_UART1)
#if defined (HC32F460) || defined (HC32F4A0)
static void hc32_uart1_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart1_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart1_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F460, HC32F4A0 */
static void hc32_uart1_tc_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tc_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#if defined (RT_SERIAL_USING_DMA)
#if defined (BSP_UART1_RX_USING_DMA)
#if defined (HC32F460) || defined (HC32F4A0)
static void hc32_uart1_rxto_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxto_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F460, HC32F4A0 */
static void hc32_uart1_dma_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_dma_rx_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_UART1_RX_USING_DMA */
#endif /* RT_SERIAL_USING_DMA */
#if defined (HC32F448) || defined (HC32F472)
void USART1_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_usart_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
void USART1_TxComplete_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart1_tc_irq_handler();
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F448, HC32F472 */
#endif /* BSP_USING_UART1 */
#if defined (BSP_USING_UART2)
#if defined (HC32F460) || defined (HC32F4A0)
static void hc32_uart2_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART2_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart2_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART2_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart2_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART2_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F460, HC32F4A0 */
static void hc32_uart2_tc_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tc_irq_handler(&uart_obj[UART2_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#if defined (RT_SERIAL_USING_DMA)
#if defined (BSP_UART2_RX_USING_DMA)
#if defined (HC32F460) || defined (HC32F4A0)
static void hc32_uart2_rxto_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxto_irq_handler(&uart_obj[UART2_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F460, HC32F4A0 */
static void hc32_uart2_dma_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_dma_rx_irq_handler(&uart_obj[UART2_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_UART2_RX_USING_DMA */
#endif /* RT_SERIAL_USING_DMA */
#if defined (HC32F448) || defined (HC32F472)
void USART2_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_usart_handler(&uart_obj[UART2_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
void USART2_TxComplete_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart2_tc_irq_handler();
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F448, HC32F472 */
#endif /* BSP_USING_UART2 */
#if defined (BSP_USING_UART3)
#if defined (HC32F460) || defined (HC32F4A0)
static void hc32_uart3_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART3_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart3_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART3_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart3_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART3_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F460, HC32F4A0 */
static void hc32_uart3_tc_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tc_irq_handler(&uart_obj[UART3_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#if defined (RT_SERIAL_USING_DMA)
#if defined (BSP_UART3_RX_USING_DMA)
#if defined (HC32F460) || defined (HC32F4A0)
static void hc32_uart3_rxto_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxto_irq_handler(&uart_obj[UART3_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart3_dma_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_dma_rx_irq_handler(&uart_obj[UART3_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F460, HC32F4A0 */
#endif /* BSP_UART3_RX_USING_DMA */
#endif /* RT_SERIAL_USING_DMA */
#if defined (HC32F448) || defined (HC32F472)
void USART3_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_usart_handler(&uart_obj[UART3_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
void USART3_TxComplete_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart3_tc_irq_handler();
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F448, HC32F472 */
#endif /* BSP_USING_UART3 */
#if defined (BSP_USING_UART4)
#if defined (HC32F460) || defined (HC32F4A0)
static void hc32_uart4_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART4_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart4_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART4_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart4_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART4_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F460, HC32F4A0 */
static void hc32_uart4_tc_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tc_irq_handler(&uart_obj[UART4_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#if defined (RT_SERIAL_USING_DMA)
#if defined (BSP_UART4_RX_USING_DMA)
#if defined (HC32F460) || defined (HC32F4A0)
static void hc32_uart4_rxto_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxto_irq_handler(&uart_obj[UART4_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F460, HC32F4A0 */
static void hc32_uart4_dma_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_dma_rx_irq_handler(&uart_obj[UART4_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_UART4_RX_USING_DMA */
#endif /* RT_SERIAL_USING_DMA */
#if defined (HC32F448) || defined (HC32F472)
void USART4_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_usart_handler(&uart_obj[UART4_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
void USART4_TxComplete_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart4_tc_irq_handler();
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F448, HC32F472 */
#endif /* BSP_USING_UART4 */
#if defined (BSP_USING_UART5)
#if defined (HC32F460) || defined (HC32F4A0)
static void hc32_uart5_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART5_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart5_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART5_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart5_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART5_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F460, HC32F4A0 */
static void hc32_uart5_tc_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tc_irq_handler(&uart_obj[UART5_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#if defined (HC32F448) || defined (HC32F472)
#if defined (RT_SERIAL_USING_DMA)
#if defined (BSP_UART5_RX_USING_DMA)
static void hc32_uart5_dma_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_dma_rx_irq_handler(&uart_obj[UART5_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_UART5_RX_USING_DMA */
#endif /* RT_SERIAL_USING_DMA */
void USART5_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_usart_handler(&uart_obj[UART5_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
void USART5_TxComplete_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart5_tc_irq_handler();
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F448, HC32F472 */
#endif /* BSP_USING_UART5 */
#if defined (BSP_USING_UART6)
#if defined (HC32F460) || defined (HC32F4A0)
static void hc32_uart6_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART6_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart6_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART6_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart6_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART6_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F460, HC32F4A0 */
static void hc32_uart6_tc_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tc_irq_handler(&uart_obj[UART6_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#if defined (RT_SERIAL_USING_DMA)
#if defined (BSP_UART6_RX_USING_DMA)
#if defined (HC32F460) || defined (HC32F4A0)
static void hc32_uart6_rxto_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxto_irq_handler(&uart_obj[UART6_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart6_dma_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_dma_rx_irq_handler(&uart_obj[UART6_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F460, HC32F4A0 */
#endif /* BSP_UART6_RX_USING_DMA */
#endif /* RT_SERIAL_USING_DMA */
#if defined (HC32F448) || defined (HC32F472)
void USART6_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_usart_handler(&uart_obj[UART6_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
void USART6_TxComplete_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart6_tc_irq_handler();
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* HC32F448, HC32F472 */
#endif /* BSP_USING_UART6 */
#if defined (BSP_USING_UART7)
static void hc32_uart7_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART7_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart7_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART7_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart7_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART7_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart7_tc_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tc_irq_handler(&uart_obj[UART7_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#if defined (RT_SERIAL_USING_DMA)
#if defined (BSP_UART7_RX_USING_DMA)
static void hc32_uart7_rxto_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxto_irq_handler(&uart_obj[UART7_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart7_dma_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_dma_rx_irq_handler(&uart_obj[UART7_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_UART7_RX_USING_DMA */
#endif /* RT_SERIAL_USING_DMA */
#endif /* BSP_USING_UART7 */
#if defined (BSP_USING_UART8)
static void hc32_uart8_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART8_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart8_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART8_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart8_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART8_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart8_tc_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tc_irq_handler(&uart_obj[UART8_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART8 */
#if defined (BSP_USING_UART9)
static void hc32_uart9_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART9_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart9_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART9_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart9_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART9_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart9_tc_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tc_irq_handler(&uart_obj[UART9_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART9 */
#if defined (BSP_USING_UART10)
static void hc32_uart10_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART10_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart10_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART10_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart10_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART10_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart10_tc_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tc_irq_handler(&uart_obj[UART10_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART10 */
/**
* @brief This function gets dma witch uart used infomation include unit,
* channel, interrupt etc.
* @param None
* @retval None
*/
static void hc32_uart_get_info(void)
{
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
#ifdef BSP_USING_UART1
uart_obj[UART1_INDEX].uart_dma_flag = 0;
uart_obj[UART1_INDEX].serial.config = config;
uart_obj[UART1_INDEX].serial.config.rx_bufsz = BSP_UART1_RX_BUFSIZE;
uart_obj[UART1_INDEX].serial.config.tx_bufsz = BSP_UART1_TX_BUFSIZE;
#ifdef BSP_UART1_RX_USING_DMA
uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config uart1_dma_rx = UART1_DMA_RX_CONFIG;
static struct hc32_uart_rxto uart1_rx_timeout = UART1_RXTO_CONFIG;
uart1_dma_rx.irq_callback = hc32_uart1_dma_rx_irq_handler;
#if defined (HC32F460) || defined (HC32F4A0)
uart1_rx_timeout.irq_callback = hc32_uart1_rxto_irq_handler;
#endif
uart_config[UART1_INDEX].rx_timeout = &uart1_rx_timeout;
uart_config[UART1_INDEX].dma_rx = &uart1_dma_rx;
#endif
#ifdef BSP_UART1_TX_USING_DMA
uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart1_dma_tx = UART1_DMA_TX_CONFIG;
uart_config[UART1_INDEX].dma_tx = &uart1_dma_tx;
#endif
#endif
#ifdef BSP_USING_UART2
uart_obj[UART2_INDEX].uart_dma_flag = 0;
uart_obj[UART2_INDEX].serial.config = config;
uart_obj[UART2_INDEX].serial.config.rx_bufsz = BSP_UART2_RX_BUFSIZE;
uart_obj[UART2_INDEX].serial.config.tx_bufsz = BSP_UART2_TX_BUFSIZE;
#ifdef BSP_UART2_RX_USING_DMA
uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config uart2_dma_rx = UART2_DMA_RX_CONFIG;
static struct hc32_uart_rxto uart2_rx_timeout = UART2_RXTO_CONFIG;
uart2_dma_rx.irq_callback = hc32_uart2_dma_rx_irq_handler;
#if defined (HC32F460) || defined (HC32F4A0)
uart2_rx_timeout.irq_callback = hc32_uart2_rxto_irq_handler;
#endif
uart_config[UART2_INDEX].rx_timeout = &uart2_rx_timeout;
uart_config[UART2_INDEX].dma_rx = &uart2_dma_rx;
#endif
#ifdef BSP_UART2_TX_USING_DMA
uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart2_dma_tx = UART2_DMA_TX_CONFIG;
uart_config[UART2_INDEX].dma_tx = &uart2_dma_tx;
#endif
#endif
#ifdef BSP_USING_UART3
uart_obj[UART3_INDEX].uart_dma_flag = 0;
uart_obj[UART3_INDEX].serial.config = config;
uart_obj[UART3_INDEX].serial.config.rx_bufsz = BSP_UART3_RX_BUFSIZE;
uart_obj[UART3_INDEX].serial.config.tx_bufsz = BSP_UART3_TX_BUFSIZE;
#if defined (HC32F460)
#ifdef BSP_UART3_RX_USING_DMA
uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config uart3_dma_rx = UART3_DMA_RX_CONFIG;
static struct hc32_uart_rxto uart3_rx_timeout = UART3_RXTO_CONFIG;
uart3_dma_rx.irq_callback = hc32_uart3_dma_rx_irq_handler;
uart3_rx_timeout.irq_callback = hc32_uart3_rxto_irq_handler;
uart_config[UART3_INDEX].rx_timeout = &uart3_rx_timeout;
uart_config[UART3_INDEX].dma_rx = &uart3_dma_rx;
#endif
#ifdef BSP_UART3_TX_USING_DMA
uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart3_dma_tx = UART3_DMA_TX_CONFIG;
uart_config[UART3_INDEX].dma_tx = &uart3_dma_tx;
#endif
#endif
#endif
#ifdef BSP_USING_UART4
uart_obj[UART4_INDEX].uart_dma_flag = 0;
uart_obj[UART4_INDEX].serial.config = config;
uart_obj[UART4_INDEX].serial.config.rx_bufsz = BSP_UART4_RX_BUFSIZE;
uart_obj[UART4_INDEX].serial.config.tx_bufsz = BSP_UART4_TX_BUFSIZE;
#if defined (HC32F460) || defined (HC32F448) || defined (HC32F472)
#ifdef BSP_UART4_RX_USING_DMA
uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config uart4_dma_rx = UART4_DMA_RX_CONFIG;
static struct hc32_uart_rxto uart4_rx_timeout = UART4_RXTO_CONFIG;
uart4_dma_rx.irq_callback = hc32_uart4_dma_rx_irq_handler;
#if defined (HC32F460)
uart4_rx_timeout.irq_callback = hc32_uart4_rxto_irq_handler;
#endif
uart_config[UART4_INDEX].rx_timeout = &uart4_rx_timeout;
uart_config[UART4_INDEX].dma_rx = &uart4_dma_rx;
#endif
#ifdef BSP_UART4_TX_USING_DMA
uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart4_dma_tx = UART4_DMA_TX_CONFIG;
uart_config[UART4_INDEX].dma_tx = &uart4_dma_tx;
#endif
#endif
#endif
#ifdef BSP_USING_UART5
uart_obj[UART5_INDEX].uart_dma_flag = 0;
uart_obj[UART5_INDEX].serial.config = config;
uart_obj[UART5_INDEX].serial.config.rx_bufsz = BSP_UART5_RX_BUFSIZE;
uart_obj[UART5_INDEX].serial.config.tx_bufsz = BSP_UART5_TX_BUFSIZE;
#if defined (HC32F448) || defined (HC32F472)
#ifdef BSP_UART5_RX_USING_DMA
uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config uart5_dma_rx = UART5_DMA_RX_CONFIG;
static struct hc32_uart_rxto uart5_rx_timeout = UART5_RXTO_CONFIG;
uart5_dma_rx.irq_callback = hc32_uart5_dma_rx_irq_handler;
uart_config[UART5_INDEX].rx_timeout = &uart5_rx_timeout;
uart_config[UART5_INDEX].dma_rx = &uart5_dma_rx;
#endif
#ifdef BSP_UART5_TX_USING_DMA
uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart5_dma_tx = UART5_DMA_TX_CONFIG;
uart_config[UART5_INDEX].dma_tx = &uart5_dma_tx;
#endif
#endif
#endif
#ifdef BSP_USING_UART6
uart_obj[UART6_INDEX].uart_dma_flag = 0;
uart_obj[UART6_INDEX].serial.config = config;
uart_obj[UART6_INDEX].serial.config.rx_bufsz = BSP_UART6_RX_BUFSIZE;
uart_obj[UART6_INDEX].serial.config.tx_bufsz = BSP_UART6_TX_BUFSIZE;
#if defined (HC32F4A0)
#ifdef BSP_UART6_RX_USING_DMA
uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config uart6_dma_rx = UART6_DMA_RX_CONFIG;
static struct hc32_uart_rxto uart6_rx_timeout = UART6_RXTO_CONFIG;
uart6_dma_rx.irq_callback = hc32_uart6_dma_rx_irq_handler;
uart6_rx_timeout.irq_callback = hc32_uart6_rxto_irq_handler;
uart_config[UART6_INDEX].rx_timeout = &uart6_rx_timeout;
uart_config[UART6_INDEX].dma_rx = &uart6_dma_rx;
#endif
#ifdef BSP_UART6_TX_USING_DMA
uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart6_dma_tx = UART6_DMA_TX_CONFIG;
uart_config[UART6_INDEX].dma_tx = &uart6_dma_tx;
#endif
#endif
#endif
#ifdef BSP_USING_UART7
uart_obj[UART7_INDEX].uart_dma_flag = 0;
uart_obj[UART7_INDEX].serial.config = config;
uart_obj[UART7_INDEX].serial.config.rx_bufsz = BSP_UART7_RX_BUFSIZE;
uart_obj[UART7_INDEX].serial.config.tx_bufsz = BSP_UART7_TX_BUFSIZE;
#if defined (HC32F4A0)
#ifdef BSP_UART7_RX_USING_DMA
uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config uart7_dma_rx = UART7_DMA_RX_CONFIG;
static struct hc32_uart_rxto uart7_rx_timeout = UART7_RXTO_CONFIG;
uart7_dma_rx.irq_callback = hc32_uart7_dma_rx_irq_handler;
uart7_rx_timeout.irq_callback = hc32_uart7_rxto_irq_handler;
uart_config[UART7_INDEX].rx_timeout = &uart7_rx_timeout;
uart_config[UART7_INDEX].dma_rx = &uart7_dma_rx;
#endif
#ifdef BSP_UART7_TX_USING_DMA
uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart7_dma_tx = UART7_DMA_TX_CONFIG;
uart_config[UART7_INDEX].dma_tx = &uart7_dma_tx;
#endif
#endif
#endif
#ifdef BSP_USING_UART8
uart_obj[UART8_INDEX].uart_dma_flag = 0;
uart_obj[UART8_INDEX].serial.config = config;
uart_obj[UART8_INDEX].serial.config.rx_bufsz = BSP_UART8_RX_BUFSIZE;
uart_obj[UART8_INDEX].serial.config.tx_bufsz = BSP_UART8_TX_BUFSIZE;
#endif
#ifdef BSP_USING_UART9
uart_obj[UART9_INDEX].uart_dma_flag = 0;
uart_obj[UART9_INDEX].serial.config = config;
uart_obj[UART9_INDEX].serial.config.rx_bufsz = BSP_UART9_RX_BUFSIZE;
uart_obj[UART9_INDEX].serial.config.tx_bufsz = BSP_UART9_TX_BUFSIZE;
#endif
#ifdef BSP_USING_UART10
uart_obj[UART10_INDEX].uart_dma_flag = 0;
uart_obj[UART10_INDEX].serial.config = config;
uart_obj[UART10_INDEX].serial.config.rx_bufsz = BSP_UART10_RX_BUFSIZE;
uart_obj[UART10_INDEX].serial.config.tx_bufsz = BSP_UART10_TX_BUFSIZE;
#endif
}
#if defined (HC32F460) || defined (HC32F4A0)
/**
* @brief This function gets uart irq handle.
* @param None
* @retval None
*/
static void hc32_get_uart_callback(void)
{
#ifdef BSP_USING_UART1
uart_config[UART1_INDEX].rxerr_irq.irq_callback = hc32_uart1_rxerr_irq_handler;
uart_config[UART1_INDEX].rx_irq.irq_callback = hc32_uart1_rx_irq_handler;
uart_config[UART1_INDEX].tx_irq.irq_callback = hc32_uart1_tx_irq_handler;
struct hc32_uart_irq_config uart1_tc_irq = UART1_TX_CPLT_CONFIG;
uart_config[UART1_INDEX].tc_irq = uart1_tc_irq;
uart_config[UART1_INDEX].tc_irq.irq_callback = hc32_uart1_tc_irq_handler;
#endif
#ifdef BSP_USING_UART2
uart_config[UART2_INDEX].rxerr_irq.irq_callback = hc32_uart2_rxerr_irq_handler;
uart_config[UART2_INDEX].rx_irq.irq_callback = hc32_uart2_rx_irq_handler;
uart_config[UART2_INDEX].tx_irq.irq_callback = hc32_uart2_tx_irq_handler;
struct hc32_uart_irq_config uart2_tc_irq = UART2_TX_CPLT_CONFIG;
uart_config[UART2_INDEX].tc_irq = uart2_tc_irq;
uart_config[UART2_INDEX].tc_irq.irq_callback = hc32_uart2_tc_irq_handler;
#endif
#ifdef BSP_USING_UART3
uart_config[UART3_INDEX].rxerr_irq.irq_callback = hc32_uart3_rxerr_irq_handler;
uart_config[UART3_INDEX].rx_irq.irq_callback = hc32_uart3_rx_irq_handler;
uart_config[UART3_INDEX].tx_irq.irq_callback = hc32_uart3_tx_irq_handler;
struct hc32_uart_irq_config uart3_tc_irq = UART3_TX_CPLT_CONFIG;
uart_config[UART3_INDEX].tc_irq = uart3_tc_irq;
uart_config[UART3_INDEX].tc_irq.irq_callback = hc32_uart3_tc_irq_handler;
#endif
#ifdef BSP_USING_UART4
uart_config[UART4_INDEX].rxerr_irq.irq_callback = hc32_uart4_rxerr_irq_handler;
uart_config[UART4_INDEX].rx_irq.irq_callback = hc32_uart4_rx_irq_handler;
uart_config[UART4_INDEX].tx_irq.irq_callback = hc32_uart4_tx_irq_handler;
struct hc32_uart_irq_config uart4_tc_irq = UART4_TX_CPLT_CONFIG;
uart_config[UART4_INDEX].tc_irq = uart4_tc_irq;
uart_config[UART4_INDEX].tc_irq.irq_callback = hc32_uart4_tc_irq_handler;
#endif
#ifdef BSP_USING_UART5
uart_config[UART5_INDEX].rxerr_irq.irq_callback = hc32_uart5_rxerr_irq_handler;
uart_config[UART5_INDEX].rx_irq.irq_callback = hc32_uart5_rx_irq_handler;
uart_config[UART5_INDEX].tx_irq.irq_callback = hc32_uart5_tx_irq_handler;
struct hc32_uart_irq_config uart5_tc_irq = UART5_TX_CPLT_CONFIG;
uart_config[UART5_INDEX].tc_irq = uart5_tc_irq;
uart_config[UART5_INDEX].tc_irq.irq_callback = hc32_uart5_tc_irq_handler;
#endif
#ifdef BSP_USING_UART6
uart_config[UART6_INDEX].rxerr_irq.irq_callback = hc32_uart6_rxerr_irq_handler;
uart_config[UART6_INDEX].rx_irq.irq_callback = hc32_uart6_rx_irq_handler;
uart_config[UART6_INDEX].tx_irq.irq_callback = hc32_uart6_tx_irq_handler;
struct hc32_uart_irq_config uart6_tc_irq = UART6_TX_CPLT_CONFIG;
uart_config[UART6_INDEX].tc_irq = uart6_tc_irq;
uart_config[UART6_INDEX].tc_irq.irq_callback = hc32_uart6_tc_irq_handler;
#endif
#ifdef BSP_USING_UART7
uart_config[UART7_INDEX].rxerr_irq.irq_callback = hc32_uart7_rxerr_irq_handler;
uart_config[UART7_INDEX].rx_irq.irq_callback = hc32_uart7_rx_irq_handler;
uart_config[UART7_INDEX].tx_irq.irq_callback = hc32_uart7_tx_irq_handler;
struct hc32_uart_irq_config uart7_tc_irq = UART7_TX_CPLT_CONFIG;
uart_config[UART7_INDEX].tc_irq = uart7_tc_irq;
uart_config[UART7_INDEX].tc_irq.irq_callback = hc32_uart7_tc_irq_handler;
#endif
#ifdef BSP_USING_UART8
uart_config[UART8_INDEX].rxerr_irq.irq_callback = hc32_uart8_rxerr_irq_handler;
uart_config[UART8_INDEX].rx_irq.irq_callback = hc32_uart8_rx_irq_handler;
uart_config[UART8_INDEX].tx_irq.irq_callback = hc32_uart8_tx_irq_handler;
struct hc32_uart_irq_config uart8_tc_irq = UART8_TX_CPLT_CONFIG;
uart_config[UART8_INDEX].tc_irq = uart8_tc_irq;
uart_config[UART8_INDEX].tc_irq.irq_callback = hc32_uart8_tc_irq_handler;
#endif
#ifdef BSP_USING_UART9
uart_config[UART9_INDEX].rxerr_irq.irq_callback = hc32_uart9_rxerr_irq_handler;
uart_config[UART9_INDEX].rx_irq.irq_callback = hc32_uart9_rx_irq_handler;
uart_config[UART9_INDEX].tx_irq.irq_callback = hc32_uart9_tx_irq_handler;
struct hc32_uart_irq_config uart9_tc_irq = UART9_TX_CPLT_CONFIG;
uart_config[UART9_INDEX].tc_irq = uart9_tc_irq;
uart_config[UART9_INDEX].tc_irq.irq_callback = hc32_uart9_tc_irq_handler;
#endif
#ifdef BSP_USING_UART10
uart_config[UART10_INDEX].rxerr_irq.irq_callback = hc32_uart10_rxerr_irq_handler;
uart_config[UART10_INDEX].rx_irq.irq_callback = hc32_uart10_rx_irq_handler;
uart_config[UART10_INDEX].tx_irq.irq_callback = hc32_uart10_tx_irq_handler;
struct hc32_uart_irq_config uart10_tc_irq = UART10_TX_CPLT_CONFIG;
uart_config[UART10_INDEX].tc_irq = uart10_tc_irq;
uart_config[UART10_INDEX].tc_irq.irq_callback = hc32_uart10_tc_irq_handler;
#endif
}
#elif defined (HC32F448) || defined (HC32F472)
/**
* @brief This function gets uart irq handle.
* @param None
* @retval None
*/
static void hc32_get_uart_callback(void)
{
#ifdef BSP_USING_UART1
struct hc32_uart_irq_config uart1_tc_irq = UART1_TX_CPLT_CONFIG;
uart_config[UART1_INDEX].tc_irq = uart1_tc_irq;
uart_config[UART1_INDEX].tc_irq.irq_callback = hc32_uart1_tc_irq_handler;
#endif
#ifdef BSP_USING_UART2
struct hc32_uart_irq_config uart2_tc_irq = UART2_TX_CPLT_CONFIG;
uart_config[UART2_INDEX].tc_irq = uart2_tc_irq;
uart_config[UART2_INDEX].tc_irq.irq_callback = hc32_uart2_tc_irq_handler;
#endif
#ifdef BSP_USING_UART3
struct hc32_uart_irq_config uart3_tc_irq = UART3_TX_CPLT_CONFIG;
uart_config[UART3_INDEX].tc_irq = uart3_tc_irq;
uart_config[UART3_INDEX].tc_irq.irq_callback = hc32_uart3_tc_irq_handler;
#endif
#ifdef BSP_USING_UART4
struct hc32_uart_irq_config uart4_tc_irq = UART4_TX_CPLT_CONFIG;
uart_config[UART4_INDEX].tc_irq = uart4_tc_irq;
uart_config[UART4_INDEX].tc_irq.irq_callback = hc32_uart4_tc_irq_handler;
#endif
#ifdef BSP_USING_UART5
struct hc32_uart_irq_config uart5_tc_irq = UART5_TX_CPLT_CONFIG;
uart_config[UART5_INDEX].tc_irq = uart5_tc_irq;
uart_config[UART5_INDEX].tc_irq.irq_callback = hc32_uart5_tc_irq_handler;
#endif
#ifdef BSP_USING_UART6
struct hc32_uart_irq_config uart6_tc_irq = UART6_TX_CPLT_CONFIG;
uart_config[UART6_INDEX].tc_irq = uart6_tc_irq;
uart_config[UART6_INDEX].tc_irq.irq_callback = hc32_uart6_tc_irq_handler;
#endif
}
#endif /* HC32F448, HC32F472 */
static const struct rt_uart_ops hc32_uart_ops =
{
.configure = hc32_configure,
.control = hc32_control,
.putc = hc32_putc,
.getc = hc32_getc,
.transmit = hc32_transmit
};
int rt_hw_usart_init(void)
{
rt_err_t result = RT_EOK;
rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct hc32_uart);
hc32_uart_get_info();
hc32_get_uart_callback();
for (int i = 0; i < obj_num; i++)
{
/* init UART object */
uart_obj[i].serial.ops = &hc32_uart_ops;
uart_obj[i].config = &uart_config[i];
#if defined (HC32F460) || defined (HC32F4A0)
/* register the handle */
hc32_install_irq_handler(&uart_config[i].rxerr_irq.irq_config, uart_config[i].rxerr_irq.irq_callback, RT_FALSE);
#endif
#ifdef RT_SERIAL_USING_DMA
if (uart_obj[i].uart_dma_flag & RT_DEVICE_FLAG_DMA_RX)
{
hc32_install_irq_handler(&uart_config[i].dma_rx->irq_config, uart_config[i].dma_rx->irq_callback, RT_FALSE);
#if defined (HC32F460) || defined (HC32F4A0)
hc32_install_irq_handler(&uart_config[i].rx_timeout->irq_config, uart_config[i].rx_timeout->irq_callback, RT_FALSE);
#endif
}
if (uart_obj[i].uart_dma_flag & RT_DEVICE_FLAG_DMA_TX)
{
hc32_install_irq_handler(&uart_config[i].tc_irq.irq_config, uart_config[i].tc_irq.irq_callback, RT_FALSE);
}
#endif
/* register UART device */
result = rt_hw_serial_register(&uart_obj[i].serial,
uart_obj[i].config->name,
(RT_DEVICE_FLAG_RDWR |
uart_obj[i].uart_dma_flag),
&uart_obj[i]);
RT_ASSERT(result == RT_EOK);
}
return result;
}
#endif
#endif /* RT_USING_SERIAL_V2 */
/*******************************************************************************
* EOF (not truncated)
******************************************************************************/