rt-thread/bsp/gd32450z-eval/drivers/drv_enet.c

662 lines
22 KiB
C

/*
* File : eth_driver.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2012, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-11-30 aozima the first version.
* 2011-12-10 aozima support dual ethernet.
* 2011-12-21 aozima cleanup code.
* 2012-07-13 aozima mask all GMAC MMC Interrupt.
* 2012-07-20 aozima fixed mask all GMAC MMC Interrupt,and read clear.
* 2012-07-20 aozima use memcpy replace byte copy.
*/
#include <rtthread.h>
#include <rthw.h>
#include "lwipopts.h"
#include <netif/ethernetif.h>
#include <netif/etharp.h>
#include <lwip/icmp.h>
#include "gd32f4xx.h"
#include "synopsys_emac.h"
#define ETHERNET_MAC0 ((struct rt_synopsys_eth *)(0x40020000U + 0x00008000U))
//#define EMAC_DEBUG
//#define EMAC_RX_DUMP
//#define EMAC_TX_DUMP
#ifdef EMAC_DEBUG
#define EMAC_TRACE rt_kprintf
#else
#define EMAC_TRACE(...)
#endif
#define EMAC_RXBUFNB 4
#define EMAC_TXBUFNB 2
#define EMAC_PHY_AUTO 0
#define EMAC_PHY_10MBIT 1
#define EMAC_PHY_100MBIT 2
#define MAX_ADDR_LEN 6
struct gd32_emac
{
/* inherit from Ethernet device */
struct eth_device parent;
rt_uint8_t phy_mode;
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
struct rt_synopsys_eth * ETHERNET_MAC;
IRQn_Type ETHER_MAC_IRQ;
EMAC_DMADESCTypeDef *DMATxDescToSet;
EMAC_DMADESCTypeDef *DMARxDescToGet;
#pragma pack(4)
EMAC_DMADESCTypeDef DMARxDscrTab[EMAC_RXBUFNB];
#pragma pack(4)
EMAC_DMADESCTypeDef DMATxDscrTab[EMAC_TXBUFNB];
#pragma pack(4)
rt_uint8_t Rx_Buff[EMAC_RXBUFNB][EMAC_MAX_PACKET_SIZE];
#pragma pack(4)
rt_uint8_t Tx_Buff[EMAC_TXBUFNB][EMAC_MAX_PACKET_SIZE];
struct rt_semaphore tx_buf_free;
};
static struct gd32_emac gd32_emac_device0;
/**
* Initializes the DMA Tx descriptors in chain mode.
*/
static void EMAC_DMA_tx_desc_init(EMAC_DMADESCTypeDef *DMATxDescTab, uint8_t* TxBuff, uint32_t TxBuffCount)
{
uint32_t i = 0;
EMAC_DMADESCTypeDef *DMATxDesc;
/* Fill each DMATxDesc descriptor with the right values */
for(i=0; i < TxBuffCount; i++)
{
/* Get the pointer on the ith member of the Tx Desc list */
DMATxDesc = DMATxDescTab + i;
/* Set Second Address Chained bit */
DMATxDesc->Status = EMAC_DMATxDesc_TCH;
/* Set Buffer1 address pointer */
DMATxDesc->Buffer1Addr = (uint32_t)(&TxBuff[i*EMAC_MAX_PACKET_SIZE]);
/* Initialize the next descriptor with the Next Descriptor Polling Enable */
if(i < (TxBuffCount-1))
{
/* Set next descriptor address register with next descriptor base address */
DMATxDesc->Buffer2NextDescAddr = (uint32_t)(DMATxDescTab+i+1);
}
else
{
/* For last descriptor, set next descriptor address register equal to the first descriptor base address */
DMATxDesc->Buffer2NextDescAddr = (uint32_t) DMATxDescTab;
}
}
}
/**
* Initializes the DMA Rx descriptors in chain mode.
*/
static void EMAC_DMA_rx_desc_init(EMAC_DMADESCTypeDef *DMARxDescTab, uint8_t *RxBuff, uint32_t RxBuffCount)
{
uint32_t i = 0;
EMAC_DMADESCTypeDef *DMARxDesc;
/* Fill each DMARxDesc descriptor with the right values */
for(i=0; i < RxBuffCount; i++)
{
/* Get the pointer on the ith member of the Rx Desc list */
DMARxDesc = DMARxDescTab+i;
/* Set Own bit of the Rx descriptor Status */
DMARxDesc->Status = EMAC_DMARxDesc_OWN;
/* Set Buffer1 size and Second Address Chained bit */
DMARxDesc->ControlBufferSize = EMAC_DMARxDesc_RCH | (uint32_t)EMAC_MAX_PACKET_SIZE;
/* Set Buffer1 address pointer */
DMARxDesc->Buffer1Addr = (uint32_t)(&RxBuff[i*EMAC_MAX_PACKET_SIZE]);
/* Initialize the next descriptor with the Next Descriptor Polling Enable */
if(i < (RxBuffCount-1))
{
/* Set next descriptor address register with next descriptor base address */
DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab+i+1);
}
else
{
/* For last descriptor, set next descriptor address register equal to the first descriptor base address */
DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab);
}
}
}
static rt_err_t gd32_emac_init(rt_device_t dev)
{
struct gd32_emac * gd32_emac_device;
struct rt_synopsys_eth * ETHERNET_MAC;
gd32_emac_device = (struct gd32_emac *)dev;
ETHERNET_MAC = gd32_emac_device->ETHERNET_MAC;
/* Software reset */
ETHERNET_MAC->BMR |= (1<<0); /* [bit0]SWR (Software Reset) */
/* Wait for software reset */
while(ETHERNET_MAC->BMR & (1<<0));
/* Configure ETHERNET */
EMAC_init(ETHERNET_MAC, SystemCoreClock);
/* mask all GMAC MMC Interrupt.*/
ETHERNET_MAC->mmc_cntl = (1<<3) | (1<<0); /* MMC Counter Freeze and reset. */
ETHERNET_MAC->mmc_intr_mask_rx = 0xFFFFFFFF;
ETHERNET_MAC->mmc_intr_mask_tx = 0xFFFFFFFF;
ETHERNET_MAC->mmc_ipc_intr_mask_rx = 0xFFFFFFFF;
/* Enable DMA Receive interrupt (need to enable in this case Normal interrupt) */
EMAC_INT_config(ETHERNET_MAC, EMAC_DMA_INT_NIS | EMAC_DMA_INT_R | EMAC_DMA_INT_T , ENABLE);
/* Initialize Tx Descriptors list: Chain Mode */
EMAC_DMA_tx_desc_init(gd32_emac_device->DMATxDscrTab, &gd32_emac_device->Tx_Buff[0][0], EMAC_TXBUFNB);
gd32_emac_device->DMATxDescToSet = gd32_emac_device->DMATxDscrTab;
/* Set Transmit Descriptor List Address Register */
ETHERNET_MAC->TDLAR = (uint32_t) gd32_emac_device->DMATxDescToSet;
/* Initialize Rx Descriptors list: Chain Mode */
EMAC_DMA_rx_desc_init(gd32_emac_device->DMARxDscrTab, &gd32_emac_device->Rx_Buff[0][0], EMAC_RXBUFNB);
gd32_emac_device->DMARxDescToGet = gd32_emac_device->DMARxDscrTab;
/* Set Receive Descriptor List Address Register */
ETHERNET_MAC->RDLAR = (uint32_t) gd32_emac_device->DMARxDescToGet;
/* MAC address configuration */
EMAC_MAC_Addr_config(ETHERNET_MAC, EMAC_MAC_Address0, (uint8_t*)&gd32_emac_device->dev_addr[0]);
NVIC_EnableIRQ( gd32_emac_device->ETHER_MAC_IRQ );
/* Enable MAC and DMA transmission and reception */
EMAC_start(ETHERNET_MAC);
return RT_EOK;
}
static rt_err_t gd32_emac_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t gd32_emac_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_size_t gd32_emac_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t gd32_emac_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t gd32_emac_control(rt_device_t dev, int cmd, void *args)
{
struct gd32_emac * gd32_emac_device = (struct gd32_emac *)dev;
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args) memcpy(args, &gd32_emac_device->dev_addr[0], MAX_ADDR_LEN);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
static void EMAC_IRQHandler(struct gd32_emac * gd32_emac_device)
{
rt_uint32_t status, ier;
struct rt_synopsys_eth * ETHERNET_MAC;
ETHERNET_MAC = gd32_emac_device->ETHERNET_MAC;
/* get DMA IT status */
status = ETHERNET_MAC->SR;
ier = ETHERNET_MAC->IER;
/* GMAC MMC Interrupt. */
if(status & EMAC_DMA_INT_GMI)
{
volatile rt_uint32_t dummy;
volatile rt_uint32_t * reg;
EMAC_TRACE("EMAC_DMA_INT_GMI\r\n");
/* read clear all MMC interrupt. */
reg = &ETHERNET_MAC->mmc_cntl;
while((uint32_t)reg < (uint32_t)&ETHERNET_MAC->rxicmp_err_octets)
{
dummy = *reg++;
}
}
/* Normal interrupt summary. */
if(status & EMAC_DMA_INT_NIS)
{
rt_uint32_t nis_clear = EMAC_DMA_INT_NIS;
/* [0]:Transmit Interrupt. */
if((status & ier) & EMAC_DMA_INT_T) /* packet transmission */
{
rt_sem_release(&gd32_emac_device->tx_buf_free);
nis_clear |= EMAC_DMA_INT_T;
}
/* [2]:Transmit Buffer Unavailable. */
/* [6]:Receive Interrupt. */
if((status & ier) & EMAC_DMA_INT_R) /* packet reception */
{
/* a frame has been received */
eth_device_ready(&(gd32_emac_device->parent));
nis_clear |= EMAC_DMA_INT_R;
}
/* [14]:Early Receive Interrupt. */
EMAC_clear_pending(ETHERNET_MAC, nis_clear);
}
/* Abnormal interrupt summary. */
if( status & EMAC_DMA_INT_AIS)
{
rt_uint32_t ais_clear = EMAC_DMA_INT_AIS;
/* [1]:Transmit Process Stopped. */
/* [3]:Transmit Jabber Timeout. */
/* [4]: Receive FIFO Overflow. */
/* [5]: Transmit Underflow. */
/* [7]: Receive Buffer Unavailable. */
/* [8]: Receive Process Stopped. */
/* [9]: Receive Watchdog Timeout. */
/* [10]: Early Transmit Interrupt. */
/* [13]: Fatal Bus Error. */
EMAC_clear_pending(ETHERNET_MAC, ais_clear);
}
}
void ENET_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
EMAC_IRQHandler(&gd32_emac_device0);
/* leave interrupt */
rt_interrupt_leave();
}
/* EtherNet Device Interface */
rt_err_t gd32_emac_tx( rt_device_t dev, struct pbuf* p)
{
struct pbuf* q;
char * to;
struct gd32_emac * gd32_emac_device;
struct rt_synopsys_eth * ETHERNET_MAC;
gd32_emac_device = (struct gd32_emac *)dev;
ETHERNET_MAC = gd32_emac_device->ETHERNET_MAC;
/* get free tx buffer */
{
rt_err_t result;
result = rt_sem_take(&gd32_emac_device->tx_buf_free, RT_TICK_PER_SECOND/10);
if (result != RT_EOK) return -RT_ERROR;
}
to = (char *)gd32_emac_device->DMATxDescToSet->Buffer1Addr;
for (q = p; q != NULL; q = q->next)
{
/* Copy the frame to be sent into memory pointed by the current ETHERNET DMA Tx descriptor */
memcpy(to, q->payload, q->len);
to += q->len;
}
#ifdef EMAC_TX_DUMP
{
rt_uint32_t i;
rt_uint8_t *ptr = (rt_uint8_t*)(gd32_emac_device->DMATxDescToSet->Buffer1Addr);
EMAC_TRACE("\r\n%c%c tx_dump:", gd32_emac_device->parent.netif->name[0], gd32_emac_device->parent.netif->name[1]);
for(i=0; i<p->tot_len; i++)
{
if( (i%8) == 0 )
{
EMAC_TRACE(" ");
}
if( (i%16) == 0 )
{
EMAC_TRACE("\r\n");
}
EMAC_TRACE("%02x ",*ptr);
ptr++;
}
EMAC_TRACE("\r\ndump done!\r\n");
}
#endif
/* Setting the Frame Length: bits[12:0] */
gd32_emac_device->DMATxDescToSet->ControlBufferSize = (p->tot_len & EMAC_DMATxDesc_TBS1);
/* Setting the last segment and first segment bits (in this case a frame is transmitted in one descriptor) */
gd32_emac_device->DMATxDescToSet->Status |= EMAC_DMATxDesc_LS | EMAC_DMATxDesc_FS;
/* Enable TX Completion Interrupt */
gd32_emac_device->DMATxDescToSet->Status |= EMAC_DMATxDesc_IC;
#ifdef CHECKSUM_BY_HARDWARE
gd32_emac_device->DMATxDescToSet->Status |= EMAC_DMATxDesc_ChecksumTCPUDPICMPFull;
/* clean ICMP checksum */
{
struct eth_hdr *ethhdr = (struct eth_hdr *)(gd32_emac_device->DMATxDescToSet->Buffer1Addr);
/* is IP ? */
if( ethhdr->type == htons(ETHTYPE_IP) )
{
struct ip_hdr *iphdr = (struct ip_hdr *)(gd32_emac_device->DMATxDescToSet->Buffer1Addr + SIZEOF_ETH_HDR);
/* is ICMP ? */
if( IPH_PROTO(iphdr) == IP_PROTO_ICMP )
{
struct icmp_echo_hdr *iecho = (struct icmp_echo_hdr *)(gd32_emac_device->DMATxDescToSet->Buffer1Addr + SIZEOF_ETH_HDR + sizeof(struct ip_hdr) );
iecho->chksum = 0;
}
}
}
#endif
/* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */
gd32_emac_device->DMATxDescToSet->Status |= EMAC_DMATxDesc_OWN;
/* When Tx Buffer unavailable flag is set: clear it and resume transmission */
if ((ETHERNET_MAC->SR & EMAC_DMASR_TBUS) != (uint32_t)RESET)
{
/* Clear TBUS ETHERNET DMA flag */
ETHERNET_MAC->SR = EMAC_DMASR_TBUS;
/* Transmit Poll Demand to resume DMA transmission*/
ETHERNET_MAC->TPDR = 0;
}
/* Update the ETHERNET DMA global Tx descriptor with next Tx decriptor */
/* Chained Mode */
/* Selects the next DMA Tx descriptor list for next buffer to send */
gd32_emac_device->DMATxDescToSet = (EMAC_DMADESCTypeDef*) (gd32_emac_device->DMATxDescToSet->Buffer2NextDescAddr);
/* Return SUCCESS */
return RT_EOK;
}
/* reception a Ethernet packet. */
struct pbuf * gd32_emac_rx(rt_device_t dev)
{
struct pbuf* p;
rt_uint32_t framelength = 0;
struct gd32_emac * gd32_emac_device;
struct rt_synopsys_eth * ETHERNET_MAC;
gd32_emac_device = (struct gd32_emac *)dev;
ETHERNET_MAC = gd32_emac_device->ETHERNET_MAC;
/* init p pointer */
p = RT_NULL;
/* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
if(((gd32_emac_device->DMARxDescToGet->Status & EMAC_DMARxDesc_OWN) != (uint32_t)RESET))
{
return p;
}
if (((gd32_emac_device->DMARxDescToGet->Status & EMAC_DMARxDesc_ES) == (uint32_t)RESET) &&
((gd32_emac_device->DMARxDescToGet->Status & EMAC_DMARxDesc_LS) != (uint32_t)RESET) &&
((gd32_emac_device->DMARxDescToGet->Status & EMAC_DMARxDesc_FS) != (uint32_t)RESET))
{
/* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */
framelength = ((gd32_emac_device->DMARxDescToGet->Status & EMAC_DMARxDesc_FL)
>> EMAC_DMARXDESC_FRAME_LENGTHSHIFT) - 4;
/* allocate buffer */
p = pbuf_alloc(PBUF_LINK, framelength, PBUF_RAM);
if (p != RT_NULL)
{
const char * from;
struct pbuf* q;
from = (const char *)gd32_emac_device->DMARxDescToGet->Buffer1Addr;
for (q = p; q != RT_NULL; q= q->next)
{
/* Copy the received frame into buffer from memory pointed by the current ETHERNET DMA Rx descriptor */
memcpy(q->payload, from, q->len);
from += q->len;
}
#ifdef EMAC_RX_DUMP
{
rt_uint32_t i;
rt_uint8_t *ptr = (rt_uint8_t*)(gd32_emac_device->DMARxDescToGet->Buffer1Addr);
EMAC_TRACE("\r\n%c%c rx_dump:", gd32_emac_device->parent.netif->name[0], gd32_emac_device->parent.netif->name[1]);
for(i=0; i<p->tot_len; i++)
{
if( (i%8) == 0 )
{
EMAC_TRACE(" ");
}
if( (i%16) == 0 )
{
EMAC_TRACE("\r\n");
}
EMAC_TRACE("%02x ",*ptr);
ptr++;
}
EMAC_TRACE("\r\ndump done!\r\n");
}
#endif
}
}
/* Set Own bit of the Rx descriptor Status: gives the buffer back to ETHERNET DMA */
gd32_emac_device->DMARxDescToGet->Status = EMAC_DMARxDesc_OWN;
/* When Rx Buffer unavailable flag is set: clear it and resume reception */
if ((ETHERNET_MAC->SR & EMAC_DMASR_RBUS) != (uint32_t)RESET)
{
/* Clear RBUS ETHERNET DMA flag */
ETHERNET_MAC->SR = EMAC_DMASR_RBUS;
/* Resume DMA reception */
ETHERNET_MAC->RPDR = 0;
}
/* Update the ETHERNET DMA global Rx descriptor with next Rx decriptor */
/* Chained Mode */
if((gd32_emac_device->DMARxDescToGet->ControlBufferSize & EMAC_DMARxDesc_RCH) != (uint32_t)RESET)
{
/* Selects the next DMA Rx descriptor list for next buffer to read */
gd32_emac_device->DMARxDescToGet = (EMAC_DMADESCTypeDef*) (gd32_emac_device->DMARxDescToGet->Buffer2NextDescAddr);
}
else /* Ring Mode */
{
if((gd32_emac_device->DMARxDescToGet->ControlBufferSize & EMAC_DMARxDesc_RER) != (uint32_t)RESET)
{
/* Selects the first DMA Rx descriptor for next buffer to read: last Rx descriptor was used */
gd32_emac_device->DMARxDescToGet = (EMAC_DMADESCTypeDef*) (ETHERNET_MAC->RDLAR);
}
else
{
/* Selects the next DMA Rx descriptor list for next buffer to read */
gd32_emac_device->DMARxDescToGet = (EMAC_DMADESCTypeDef*) ((uint32_t)gd32_emac_device->DMARxDescToGet + 0x10 + ((ETHERNET_MAC->BMR & EMAC_DMABMR_DSL) >> 2));
}
}
return p;
}
/*!
\brief configures the nested vectored interrupt controller
\param[in] none
\param[out] none
\retval none
*/
static void nvic_configuration(void)
{
nvic_vector_table_set(NVIC_VECTTAB_FLASH, 0x0);
nvic_priority_group_set(NVIC_PRIGROUP_PRE2_SUB2);
nvic_irq_enable(ENET_IRQn, 0, 0);
}
/*!
\brief configures the different GPIO ports
\param[in] none
\param[out] none
\retval none
*/
static void enet_gpio_config(void)
{
rcu_periph_clock_enable(RCU_GPIOA);
rcu_periph_clock_enable(RCU_GPIOB);
rcu_periph_clock_enable(RCU_GPIOC);
rcu_periph_clock_enable(RCU_GPIOD);
rcu_periph_clock_enable(RCU_GPIOG);
rcu_periph_clock_enable(RCU_GPIOH);
rcu_periph_clock_enable(RCU_GPIOI);
gpio_af_set(GPIOA, GPIO_AF_0, GPIO_PIN_8);
gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_8);
gpio_output_options_set(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_8);
/* enable SYSCFG clock */
rcu_periph_clock_enable(RCU_SYSCFG);
/* choose DIV2 to get 50MHz from 200MHz on CKOUT0 pin (PA8) to clock the PHY */
rcu_ckout0_config(RCU_CKOUT0SRC_PLLP, RCU_CKOUT0_DIV4);
syscfg_enet_phy_interface_config(SYSCFG_ENET_PHY_RMII);
/* PA1: ETH_RMII_REF_CLK */
gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_1);
gpio_output_options_set(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_1);
/* PA2: ETH_MDIO */
gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_2);
gpio_output_options_set(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_2);
/* PA7: ETH_RMII_CRS_DV */
gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_7);
gpio_output_options_set(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_7);
gpio_af_set(GPIOA, GPIO_AF_11, GPIO_PIN_1);
gpio_af_set(GPIOA, GPIO_AF_11, GPIO_PIN_2);
gpio_af_set(GPIOA, GPIO_AF_11, GPIO_PIN_7);
/* PB11: ETH_RMII_TX_EN */
gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_11);
gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_11);
/* PB12: ETH_RMII_TXD0 */
gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_12);
gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_12);
/* PB13: ETH_RMII_TXD1 */
gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_13);
gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_13);
gpio_af_set(GPIOB, GPIO_AF_11, GPIO_PIN_11);
gpio_af_set(GPIOB, GPIO_AF_11, GPIO_PIN_12);
gpio_af_set(GPIOB, GPIO_AF_11, GPIO_PIN_13);
/* PC1: ETH_MDC */
gpio_mode_set(GPIOC, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_1);
gpio_output_options_set(GPIOC, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_1);
/* PC4: ETH_RMII_RXD0 */
gpio_mode_set(GPIOC, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_4);
gpio_output_options_set(GPIOC, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_4);
/* PC5: ETH_RMII_RXD1 */
gpio_mode_set(GPIOC, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_5);
gpio_output_options_set(GPIOC, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_5);
gpio_af_set(GPIOC, GPIO_AF_11, GPIO_PIN_1);
gpio_af_set(GPIOC, GPIO_AF_11, GPIO_PIN_4);
gpio_af_set(GPIOC, GPIO_AF_11, GPIO_PIN_5);
}
int rt_hw_gd32_eth_init(void)
{
rt_kprintf("rt_gd32_eth_init...\n");
/* enable ethernet clock */
rcu_periph_clock_enable(RCU_ENET);
rcu_periph_clock_enable(RCU_ENETTX);
rcu_periph_clock_enable(RCU_ENETRX);
nvic_configuration();
/* configure the GPIO ports for ethernet pins */
enet_gpio_config();
/* set autonegotiation mode */
gd32_emac_device0.phy_mode = EMAC_PHY_AUTO;
gd32_emac_device0.ETHERNET_MAC = ETHERNET_MAC0;
gd32_emac_device0.ETHER_MAC_IRQ = ENET_IRQn;
// OUI 00-00-0E FUJITSU LIMITED
gd32_emac_device0.dev_addr[0] = 0x00;
gd32_emac_device0.dev_addr[1] = 0x00;
gd32_emac_device0.dev_addr[2] = 0x0E;
/* set mac address: (only for test) */
gd32_emac_device0.dev_addr[3] = 0x12;
gd32_emac_device0.dev_addr[4] = 0x34;
gd32_emac_device0.dev_addr[5] = 0x56;
gd32_emac_device0.parent.parent.init = gd32_emac_init;
gd32_emac_device0.parent.parent.open = gd32_emac_open;
gd32_emac_device0.parent.parent.close = gd32_emac_close;
gd32_emac_device0.parent.parent.read = gd32_emac_read;
gd32_emac_device0.parent.parent.write = gd32_emac_write;
gd32_emac_device0.parent.parent.control = gd32_emac_control;
gd32_emac_device0.parent.parent.user_data = RT_NULL;
gd32_emac_device0.parent.eth_rx = gd32_emac_rx;
gd32_emac_device0.parent.eth_tx = gd32_emac_tx;
/* init tx buffer free semaphore */
rt_sem_init(&gd32_emac_device0.tx_buf_free, "tx_buf0", EMAC_TXBUFNB, RT_IPC_FLAG_FIFO);
eth_device_init(&(gd32_emac_device0.parent), "e0");
/* change device link status */
eth_device_linkchange(&(gd32_emac_device0.parent), RT_TRUE);
return 0;
}
INIT_DEVICE_EXPORT(rt_hw_gd32_eth_init);