rt-thread/bsp/gd32/arm/libraries/gd32_drivers/drv_pwm.c

572 lines
15 KiB
C

/*
* Copyright (c) 2006-2023
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-06-05 zengjianwei first version
*/
#include <board.h>
#include <gd32f30x.h>
#include <rtdevice.h>
#include <rtthread.h>
#ifdef RT_USING_PWM
//#define DRV_DEBUG
#define LOG_TAG "drv.pwm"
#include <rtdbg.h>
#define MAX_PERIOD 65535
#define MIN_PERIOD 3
#define MIN_PULSE 2
typedef struct
{
rt_int8_t TimerIndex; // timer index:0~13
rt_uint32_t Port; // gpio port:GPIOA/GPIOB/GPIOC/...
rt_uint32_t pin; // gpio pin:GPIO_PIN_0~GPIO_PIN_15
rt_uint16_t channel; // timer channel
char *name;
} TIMER_PORT_CHANNEL_MAP_S;
struct gd32_pwm
{
struct rt_device_pwm pwm_device;
TIMER_PORT_CHANNEL_MAP_S tim_handle;
};
static struct gd32_pwm gd32_pwm_obj[] = {
#ifdef RT_USING_PWM1
{.tim_handle = {3, GPIOB, GPIO_PIN_8, 2, "pwm1"}},
#endif
#ifdef RT_USING_PWM2
{.tim_handle = {3, GPIOB, GPIO_PIN_8, 2, "pwm2"}},
#endif
#ifdef RT_USING_PWM3
{.tim_handle = {3, GPIOB, GPIO_PIN_8, 2, "pwm3"}},
#endif
#ifdef RT_USING_PWM4
{.tim_handle = {3, GPIOB, GPIO_PIN_8, 2, "pwm4"}},
#endif
#ifdef RT_USING_PWM5
{.tim_handle = {3, GPIOB, GPIO_PIN_8, 2, "pwm5"}},
#endif
#ifdef RT_USING_PWM6
{.tim_handle = {3, GPIOB, GPIO_PIN_8, 2, "pwm6"}},
#endif
#ifdef RT_USING_PWM7
{.tim_handle = {3, GPIOB, GPIO_PIN_8, 2, "pwm7"}},
#endif
#ifdef RT_USING_PWM8
{.tim_handle = {3, GPIOB, GPIO_PIN_8, 2, "pwm8"}},
#endif
#ifdef RT_USING_PWM9
{.tim_handle = {3, GPIOB, GPIO_PIN_8, 2, "pwm9"}},
#endif
#ifdef RT_USING_PWM10
{.tim_handle = {3, GPIOB, GPIO_PIN_8, 2, "pwm10"}},
#endif
#ifdef RT_USING_PWM11
{.tim_handle = {3, GPIOB, GPIO_PIN_8, 2, "pwm11"}},
#endif
#ifdef RT_USING_PWM12
{.tim_handle = {3, GPIOB, GPIO_PIN_8, 2, "pwm12"}},
#endif
#ifdef RT_USING_PWM13
{.tim_handle = {3, GPIOB, GPIO_PIN_8, 2, "pwm13"}},
#endif
#ifdef RT_USING_PWM14
{.tim_handle = {3, GPIOB, GPIO_PIN_8, 2, "pwm14"}},
#endif
};
typedef struct
{
rt_uint32_t Port[7];
rt_int8_t TimerIndex[14];
} TIMER_PERIPH_LIST_S;
static TIMER_PERIPH_LIST_S gd32_timer_periph_list = {
.Port = {0, 0, 0, 0, 0, 0, 0},
.TimerIndex = {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
};
/*
* 将所有用到的 gpio port 和 timer 不重复地列举出来,以方便后面不重复地初始化
*/
static rt_err_t pwm_find_timer_periph(void)
{
rt_int16_t i, j, k;
/* find gpio port of defined table */
for (i = 0; i < sizeof(gd32_pwm_obj) / sizeof(gd32_pwm_obj[0]); ++i)
{
/* find -1 of gd32_periph_list's member of Port */
for (j = 0; j < sizeof(gd32_timer_periph_list.Port) / sizeof(gd32_timer_periph_list.Port[0]); ++j)
{
if (0 == gd32_timer_periph_list.Port[j])
{
break;
}
}
if (j >= sizeof(gd32_timer_periph_list.Port) / sizeof(gd32_timer_periph_list.Port[0]))
{
LOG_E("Can not find -1 of gd32_periph_list's member of Port!\n");
break;
}
/* find the different of Port */
for (k = 0; k < j; ++k)
{
if (gd32_pwm_obj[i].tim_handle.Port == gd32_timer_periph_list.Port[k])
{
break;
}
}
/* if can not find the same Port */
if (k == j)
{
gd32_timer_periph_list.Port[j] = gd32_pwm_obj[i].tim_handle.Port;
}
}
/* find timer periph of defined table */
for (i = 0; i < sizeof(gd32_pwm_obj) / sizeof(gd32_pwm_obj[0]); ++i)
{
/* find -1 of gd32_periph_list's member of TimerIndex */
for (j = 0; j < sizeof(gd32_timer_periph_list.TimerIndex) / sizeof(gd32_timer_periph_list.TimerIndex[0]); ++j)
{
if (-1 == gd32_timer_periph_list.TimerIndex[j])
{
break;
}
}
if (j >= sizeof(gd32_timer_periph_list.TimerIndex) / sizeof(gd32_timer_periph_list.TimerIndex[0]))
{
LOG_E("Can not find -1 of gd32_periph_list's member of TimerIndex!\n");
break;
}
/* find the different of TimerIndex */
for (k = 0; k < j; ++k)
{
if (gd32_pwm_obj[i].tim_handle.TimerIndex == gd32_timer_periph_list.TimerIndex[k])
{
break;
}
}
/* if can not find the same TimerIndex */
if (k == j)
{
gd32_timer_periph_list.TimerIndex[j] = gd32_pwm_obj[i].tim_handle.TimerIndex;
}
}
return RT_EOK;
}
static rt_uint32_t index_to_timer(rt_int8_t TimerIndex)
{
switch (TimerIndex)
{
case 0:
return TIMER0;
case 1:
return TIMER1;
case 2:
return TIMER2;
case 3:
return TIMER3;
case 4:
return TIMER4;
case 5:
return TIMER5;
case 6:
return TIMER6;
case 7:
return TIMER7;
case 8:
return TIMER8;
case 9:
return TIMER9;
case 10:
return TIMER10;
case 11:
return TIMER11;
case 12:
return TIMER12;
case 13:
return TIMER13;
default:
LOG_E("Unsport timer periph!\n");
}
return TIMER0;
}
static void gpio_clock_enable(rt_uint32_t Port)
{
switch (Port)
{
case GPIOA:
rcu_periph_clock_enable(RCU_GPIOA);
break;
case GPIOB:
rcu_periph_clock_enable(RCU_GPIOB);
break;
case GPIOC:
rcu_periph_clock_enable(RCU_GPIOC);
break;
case GPIOD:
rcu_periph_clock_enable(RCU_GPIOD);
break;
case GPIOE:
rcu_periph_clock_enable(RCU_GPIOE);
break;
case GPIOF:
rcu_periph_clock_enable(RCU_GPIOF);
break;
case GPIOG:
rcu_periph_clock_enable(RCU_GPIOG);
break;
default:
LOG_E("Unsport gpio port!\n");
}
}
static void timer_clock_enable(rt_int8_t TimerIndex)
{
switch (TimerIndex)
{
case 0:
rcu_periph_clock_enable(RCU_TIMER0);
break;
case 1:
rcu_periph_clock_enable(RCU_TIMER1);
break;
case 2:
rcu_periph_clock_enable(RCU_TIMER2);
break;
case 3:
rcu_periph_clock_enable(RCU_TIMER3);
break;
case 4:
rcu_periph_clock_enable(RCU_TIMER4);
break;
case 5:
rcu_periph_clock_enable(RCU_TIMER5);
break;
case 6:
rcu_periph_clock_enable(RCU_TIMER6);
break;
case 7:
rcu_periph_clock_enable(RCU_TIMER7);
break;
#ifndef GD32F30X_HD
case 8:
rcu_periph_clock_enable(RCU_TIMER8);
break;
case 9:
rcu_periph_clock_enable(RCU_TIMER9);
break;
case 10:
rcu_periph_clock_enable(RCU_TIMER10);
break;
case 11:
rcu_periph_clock_enable(RCU_TIMER11);
break;
case 12:
rcu_periph_clock_enable(RCU_TIMER12);
break;
case 13:
rcu_periph_clock_enable(RCU_TIMER13);
break;
#endif
default:
LOG_E("Unsport timer periph!\n");
}
}
static void rcu_config(void)
{
rt_int16_t i;
for (i = 0; i < sizeof(gd32_timer_periph_list.Port) / sizeof(gd32_timer_periph_list.Port[0]); ++i)
{
if (0 == gd32_timer_periph_list.Port[i])
{
break;
}
/* enable GPIO clock */
gpio_clock_enable(gd32_timer_periph_list.Port[i]);
}
rcu_periph_clock_enable(RCU_AF);
for (i = 0; i < sizeof(gd32_timer_periph_list.TimerIndex) / sizeof(gd32_timer_periph_list.TimerIndex[0]); ++i)
{
if (-1 == gd32_timer_periph_list.TimerIndex[i])
{
break;
}
/* enable timer clock */
timer_clock_enable(gd32_timer_periph_list.TimerIndex[i]);
timer_deinit(index_to_timer(gd32_timer_periph_list.TimerIndex[i]));
}
}
static void gpio_config(void)
{
rt_int16_t i;
/* config the GPIO as analog mode */
for (i = 0; i < sizeof(gd32_pwm_obj) / sizeof(gd32_pwm_obj[0]); ++i)
{
gpio_init(gd32_pwm_obj[i].tim_handle.Port, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, gd32_pwm_obj[i].tim_handle.pin);
}
}
static void timer_init_para(timer_parameter_struct *initpara)
{
rt_int16_t i;
for (i = 0; i < sizeof(gd32_timer_periph_list.TimerIndex) / sizeof(gd32_timer_periph_list.TimerIndex[0]); ++i)
{
/* config timer */
if (-1 != gd32_timer_periph_list.TimerIndex[i])
{
timer_init(index_to_timer(gd32_timer_periph_list.TimerIndex[i]), initpara);
}
}
}
static void channel_output_config(timer_oc_parameter_struct *ocpara)
{
rt_int16_t i;
rt_uint32_t timer_periph;
/* config the channel config */
for (i = 0; i < sizeof(gd32_pwm_obj) / sizeof(gd32_pwm_obj[0]); ++i)
{
timer_periph = index_to_timer(gd32_pwm_obj[i].tim_handle.TimerIndex);
timer_channel_output_config(timer_periph, gd32_pwm_obj[i].tim_handle.channel, ocpara);
timer_channel_output_pulse_value_config(timer_periph, gd32_pwm_obj[i].tim_handle.channel, 7999);
timer_channel_output_mode_config(timer_periph, gd32_pwm_obj[i].tim_handle.channel, TIMER_OC_MODE_PWM0);
timer_channel_output_shadow_config(timer_periph, gd32_pwm_obj[i].tim_handle.channel, TIMER_OC_SHADOW_DISABLE);
/* auto-reload preload shadow reg enable */
// timer_auto_reload_shadow_enable(timer_periph);
timer_channel_output_state_config(timer_periph, gd32_pwm_obj[i].tim_handle.channel, TIMER_CCX_DISABLE);
}
/* enable timer */
for (i = 0; i < sizeof(gd32_timer_periph_list.TimerIndex) / sizeof(gd32_timer_periph_list.TimerIndex[0]); ++i)
{
if (-1 != gd32_timer_periph_list.TimerIndex[i])
{
timer_periph = index_to_timer(gd32_timer_periph_list.TimerIndex[i]);
timer_enable(timer_periph);
}
}
}
static void timer_config(void)
{
timer_oc_parameter_struct timer_ocintpara;
timer_parameter_struct timer_initpara;
/* TIMER configuration */
timer_initpara.prescaler = 119;
timer_initpara.alignedmode = TIMER_COUNTER_EDGE;
timer_initpara.counterdirection = TIMER_COUNTER_UP;
timer_initpara.period = 15999;
timer_initpara.clockdivision = TIMER_CKDIV_DIV1;
timer_initpara.repetitioncounter = 0;
timer_init_para(&timer_initpara);
/* CHX configuration in PWM mode */
timer_ocintpara.outputstate = TIMER_CCX_ENABLE;
timer_ocintpara.outputnstate = TIMER_CCXN_DISABLE;
timer_ocintpara.ocpolarity = TIMER_OC_POLARITY_HIGH;
timer_ocintpara.ocnpolarity = TIMER_OCN_POLARITY_HIGH;
timer_ocintpara.ocidlestate = TIMER_OC_IDLE_STATE_LOW;
timer_ocintpara.ocnidlestate = TIMER_OCN_IDLE_STATE_LOW;
channel_output_config(&timer_ocintpara);
}
static rt_err_t drv_pwm_enable(TIMER_PORT_CHANNEL_MAP_S *pstTimerMap, struct rt_pwm_configuration *configuration,
rt_bool_t enable)
{
if (!enable)
{
timer_channel_output_state_config(index_to_timer(pstTimerMap->TimerIndex), configuration->channel,
TIMER_CCX_DISABLE);
}
else
{
timer_channel_output_state_config(index_to_timer(pstTimerMap->TimerIndex), configuration->channel,
TIMER_CCX_ENABLE);
}
return RT_EOK;
}
static rt_err_t drv_pwm_get(TIMER_PORT_CHANNEL_MAP_S *pstTimerMap, struct rt_pwm_configuration *configuration)
{
rt_uint64_t tim_clock;
rt_uint16_t psc;
rt_uint32_t chxcv;
tim_clock = rcu_clock_freq_get(CK_SYS);
psc = timer_prescaler_read(index_to_timer(pstTimerMap->TimerIndex));
if (psc == TIMER_CKDIV_DIV2)
{
tim_clock = tim_clock / 2;
}
else if (psc == TIMER_CKDIV_DIV4)
{
tim_clock = tim_clock / 4;
}
chxcv = timer_channel_capture_value_register_read(index_to_timer(pstTimerMap->TimerIndex), configuration->channel);
/* Convert nanosecond to frequency and duty cycle. 1s = 1 * 1000 * 1000 * 1000 ns */
tim_clock /= 1000000UL;
configuration->period = (TIMER_CAR(index_to_timer(pstTimerMap->TimerIndex)) + 1) * (psc + 1) * 1000UL / tim_clock;
configuration->pulse = (chxcv + 1) * (psc + 1) * 1000UL / tim_clock;
return RT_EOK;
}
static rt_err_t drv_pwm_set(TIMER_PORT_CHANNEL_MAP_S *pstTimerMap, struct rt_pwm_configuration *configuration)
{
rt_uint32_t period, pulse;
rt_uint64_t tim_clock, psc;
tim_clock = rcu_clock_freq_get(CK_SYS);
/* Convert nanosecond to frequency and duty cycle. 1s = 1 * 1000 * 1000 * 1000 ns */
tim_clock /= 1000000UL;
period = (unsigned long long)configuration->period * tim_clock / 1000ULL;
psc = period / MAX_PERIOD + 1;
period = period / psc;
timer_prescaler_config(index_to_timer(pstTimerMap->TimerIndex), psc - 1, TIMER_PSC_RELOAD_NOW);
if (period < MIN_PERIOD)
{
period = MIN_PERIOD;
}
timer_autoreload_value_config(index_to_timer(pstTimerMap->TimerIndex), period - 1);
pulse = (unsigned long long)configuration->pulse * tim_clock / psc / 1000ULL;
if (pulse < MIN_PULSE)
{
pulse = MIN_PULSE;
}
else if (pulse > period)
{
pulse = period;
}
timer_channel_output_pulse_value_config(index_to_timer(pstTimerMap->TimerIndex), configuration->channel, pulse);
timer_counter_value_config(index_to_timer(pstTimerMap->TimerIndex), 0);
/* Update frequency value */
timer_event_software_generate(index_to_timer(pstTimerMap->TimerIndex), TIMER_EVENT_SRC_UPG);
return RT_EOK;
}
static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg)
{
struct rt_pwm_configuration *configuration = (struct rt_pwm_configuration *)arg;
TIMER_PORT_CHANNEL_MAP_S *pstTimerMap = (TIMER_PORT_CHANNEL_MAP_S *)device->parent.user_data;
switch (cmd)
{
case PWM_CMD_ENABLE:
return drv_pwm_enable(pstTimerMap, configuration, RT_TRUE);
case PWM_CMD_DISABLE:
return drv_pwm_enable(pstTimerMap, configuration, RT_FALSE);
case PWM_CMD_SET:
return drv_pwm_set(pstTimerMap, configuration);
case PWM_CMD_GET:
return drv_pwm_get(pstTimerMap, configuration);
default:
return RT_EINVAL;
}
}
static struct rt_pwm_ops drv_ops = {drv_pwm_control};
static rt_err_t gd32_hw_pwm_init(void)
{
pwm_find_timer_periph();
rcu_config();
gpio_config();
timer_config();
return RT_EOK;
}
static int gd32_pwm_init(void)
{
int i = 0;
int result = RT_EOK;
/* pwm init */
if (gd32_hw_pwm_init() != RT_EOK)
{
LOG_E("PWM init failed");
result = -RT_ERROR;
goto __exit;
}
LOG_D("PWM init success");
for (i = 0; i < sizeof(gd32_pwm_obj) / sizeof(gd32_pwm_obj[0]); i++)
{
/* register pwm device */
if (rt_device_pwm_register(&gd32_pwm_obj[i].pwm_device, gd32_pwm_obj[i].tim_handle.name, &drv_ops,
&gd32_pwm_obj[i].tim_handle) == RT_EOK)
{
LOG_D("%s register success", gd32_pwm_obj[i].tim_handle.name);
}
else
{
LOG_E("%s register failed", gd32_pwm_obj[i].tim_handle.name);
result = -RT_ERROR;
}
}
__exit:
return result;
}
INIT_DEVICE_EXPORT(gd32_pwm_init);
#endif /* RT_USING_PWM */