rt-thread/bsp/imxrt/libraries/MIMXRT1170/MIMXRT1176/drivers/fsl_puf.c

950 lines
30 KiB
C

/*
* Copyright 2018-2021 NXP
* All rights reserved.
*
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_puf.h"
#include "fsl_clock.h"
#include "fsl_common.h"
#if !(defined(FSL_FEATURE_PUF_HAS_NO_RESET) && (FSL_FEATURE_PUF_HAS_NO_RESET > 0))
#include "fsl_reset.h"
#endif /* FSL_FEATURE_PUF_HAS_NO_RESET */
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.puf"
#endif
/* RT6xx POWER CONTROL bit masks */
#if defined(FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL) && (FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL > 0)
#define PUF_PWRCTRL_CKDIS_MASK (0x4U)
#define PUF_PWRCTRL_RAMINIT_MASK (0x8U)
#define PUF_PWRCTRL_RAMPSWLARGEMA_MASK (0x10U)
#define PUF_PWRCTRL_RAMPSWLARGEMP_MASK (0x20U)
#define PUF_PWRCTRL_RAMPSWSMALLMA_MASK (0x40U)
#define PUF_PWRCTRL_RAMPSWSMALLMP_MASK (0x80U)
#endif
#if defined(FSL_FEATURE_PUF_HAS_SRAM_CTRL) && (FSL_FEATURE_PUF_HAS_SRAM_CTRL > 0)
#define DEFAULT_CKGATING 0x0u
#define PUF_ENABLE_MASK 0xFFFFFFFEu
#define PUF_ENABLE_CTRL 0x1u
#else
static void puf_wait_usec(volatile uint32_t usec, uint32_t coreClockFrequencyMHz)
{
SDK_DelayAtLeastUs(usec, coreClockFrequencyMHz * 1000000U);
/* Instead of calling SDK_DelayAtLeastUs() implement delay loop here */
// while (usec > 0U)
// {
// usec--;
// number of MHz is directly number of core clocks to wait 1 usec.
// the while loop below is actually 4 clocks so divide by 4 for ~1 usec
// volatile uint32_t ticksCount = coreClockFrequencyMHz / 4u + 1u;
// while (0U != ticksCount--)
// {
// }
// }
}
#endif /* defined(FSL_FEATURE_PUF_HAS_SRAM_CTRL) && (FSL_FEATURE_PUF_HAS_SRAM_CTRL > 0) */
static status_t puf_waitForInit(PUF_Type *base)
{
status_t status = kStatus_Fail;
/* wait until status register reads non-zero. All zero is not valid. It should be BUSY or OK or ERROR */
while (0U == base->STAT)
{
}
/* wait if busy */
while ((base->STAT & PUF_STAT_BUSY_MASK) != 0U)
{
}
/* return status */
if (0U != (base->STAT & (PUF_STAT_SUCCESS_MASK | PUF_STAT_ERROR_MASK)))
{
status = kStatus_Success;
}
return status;
}
static void puf_powerOn(PUF_Type *base, puf_config_t *conf)
{
#if defined(FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL) && (FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL > 0)
/* RT6xxs */
base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_CK_DIS_MASK);
base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_CK_DIS_MASK | PUF_PWRCTRL_RAMINIT_MASK);
base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_RAMINIT_MASK);
#elif defined(FSL_FEATURE_PUF_HAS_SRAM_CTRL) && (FSL_FEATURE_PUF_HAS_SRAM_CTRL > 0)
/* LPCXpresso55s16 */
conf->puf_sram_base->CFG |= PUF_ENABLE_CTRL;
while (0U == (PUF_SRAM_CTRL_STATUS_READY_MASK & conf->puf_sram_base->STATUS))
{
}
#else /* !FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL */
/* LPCXpresso55s69 & LPCXpresso54S018 */
base->PWRCTRL = PUF_PWRCTRL_RAMON_MASK;
while (0U == (PUF_PWRCTRL_RAMSTAT_MASK & base->PWRCTRL))
{
}
#endif /* FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL */
}
/*!
* brief Powercycle PUF
*
* This function make powercycle of PUF.
*
* param base PUF peripheral base address
* param conf PUF configuration structure
* return Status of the powercycle operation.
*/
status_t PUF_PowerCycle(PUF_Type *base, puf_config_t *conf)
{
#if defined(FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL) && (FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL > 0)
/* RT6xxs */
uint32_t coreClockFrequencyMHz = conf->coreClockFrequencyHz / 1000000u;
base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_CK_DIS_MASK | PUF_PWRCTRL_RAMINIT_MASK); /* disable RAM CK */
/* enter ASPS mode */
base->PWRCTRL = (PUF_PWRCTRL_CK_DIS_MASK | PUF_PWRCTRL_RAMINIT_MASK); /* SLEEP = 1 */
base->PWRCTRL = (PUF_PWRCTRL_RAMINIT_MASK); /* enable RAM CK */
base->PWRCTRL = (PUF_PWRCTRL_RAMINIT_MASK | PUF_PWRCTRL_RAMPSWLARGEMA_MASK | PUF_PWRCTRL_RAMPSWLARGEMP_MASK |
PUF_PWRCTRL_RAMPSWSMALLMA_MASK | PUF_PWRCTRL_RAMPSWSMALLMP_MASK); /* SLEEP=1, PSW*=1 */
/* Wait enough time to discharge fully */
puf_wait_usec(conf->dischargeTimeMsec * 1000u, conf->coreClockFrequencyHz / 1000000u);
/* write PWRCTRL=0x38. wait time > 1 us */
base->PWRCTRL = (PUF_PWRCTRL_RAMINIT_MASK | PUF_PWRCTRL_RAMPSWLARGEMA_MASK |
PUF_PWRCTRL_RAMPSWLARGEMP_MASK); /* SLEEP=1. PSWSMALL*=0. PSWLARGE*=1. */
puf_wait_usec(1, coreClockFrequencyMHz);
/* write PWRCTRL=0x8. wait time > 1 us */
base->PWRCTRL = PUF_PWRCTRL_RAMINIT_MASK; /* SLEEP=1. PSWSMALL*=0. PSWLARGE*=0 */
puf_wait_usec(1, coreClockFrequencyMHz);
base->PWRCTRL = (PUF_PWRCTRL_CK_DIS_MASK | PUF_PWRCTRL_RAMINIT_MASK);
base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_CK_DIS_MASK | PUF_PWRCTRL_RAMINIT_MASK);
base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_RAMINIT_MASK);
/* Generate INITN low pulse */
base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_CK_DIS_MASK | PUF_PWRCTRL_RAMINIT_MASK);
base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_CK_DIS_MASK);
base->PWRCTRL = PUF_PWRCTRL_RAM_ON_MASK;
#elif defined(FSL_FEATURE_PUF_HAS_SRAM_CTRL) && (FSL_FEATURE_PUF_HAS_SRAM_CTRL > 0)
/* LPCXpresso55s16 */
conf->puf_sram_base->CFG &= PUF_ENABLE_MASK;
#else
/* LPCXpresso55s69 & LPCXpresso54S018 */
base->PWRCTRL = 0x0u;
while (0U != (PUF_PWRCTRL_RAMSTAT_MASK & base->PWRCTRL))
{
}
/* Wait enough time to discharge fully */
puf_wait_usec(conf->dischargeTimeMsec * 1000u, conf->coreClockFrequencyHz / 1000000u);
#endif
#if !(defined(FSL_FEATURE_PUF_HAS_NO_RESET) && (FSL_FEATURE_PUF_HAS_NO_RESET > 0))
/* Reset PUF and reenable power to PUF SRAM */
RESET_PeripheralReset(kPUF_RST_SHIFT_RSTn);
#endif /* FSL_TEATURE_PUF_HAS_NO_RESET */
puf_powerOn(base, conf);
return kStatus_Success;
}
/*!
* brief Sets the default configuration of PUF
*
* This function initialize PUF config structure to default values.
*
* param conf PUF configuration structure
*/
void PUF_GetDefaultConfig(puf_config_t *conf)
{
#if defined(FSL_FEATURE_PUF_HAS_SRAM_CTRL) && (FSL_FEATURE_PUF_HAS_SRAM_CTRL > 0)
/* LPCXpresso55s16 */
conf->puf_sram_base = PUF_SRAM_CTRL;
/* Default configuration after reset */
conf->CKGATING = DEFAULT_CKGATING; /* PUF SRAM Clock Gating */
#endif /* FSL_FEATURE_PUF_HAS_SRAM_CTRL */
conf->dischargeTimeMsec = KEYSTORE_PUF_DISCHARGE_TIME_FIRST_TRY_MS;
conf->coreClockFrequencyHz = CLOCK_GetFreq(kCLOCK_CoreSysClk);
return;
}
/*!
* brief Initialize PUF
*
* This function enables power to PUF block and waits until the block initializes.
*
* param base PUF peripheral base address
* param conf PUF configuration structure
* return Status of the init operation
*/
status_t PUF_Init(PUF_Type *base, puf_config_t *conf)
{
status_t status = kStatus_Fail;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
CLOCK_EnableClock(kCLOCK_Puf);
#endif
#if !(defined(FSL_FEATURE_PUF_HAS_NO_RESET) && (FSL_FEATURE_PUF_HAS_NO_RESET > 0))
/* Reset PUF */
RESET_PeripheralReset(kPUF_RST_SHIFT_RSTn);
#endif /* FSL_FEATURE_PUF_HAS_NO_RESET */
#if defined(FSL_FEATURE_PUF_HAS_SRAM_CTRL) && (FSL_FEATURE_PUF_HAS_SRAM_CTRL > 0)
/* Set configuration for SRAM */
conf->puf_sram_base->CFG |= PUF_SRAM_CTRL_CFG_CKGATING(conf->CKGATING);
#endif /* FSL_FEATURE_PUF_HAS_SRAM_CTRL */
/* Enable power to PUF SRAM */
puf_powerOn(base, conf);
/* Wait for peripheral to become ready */
status = puf_waitForInit(base);
/* In case of error or enroll or start not allowed, do power-cycle */
/* First try with shorter discharge time, if then it also fails try with longer time */
/* conf->dischargeTimeMsec = KEYSTORE_PUF_DISCHARGE_TIME_FIRST_TRY_MS; */
if ((status != kStatus_Success) || (0U == (base->ALLOW & (PUF_ALLOW_ALLOWENROLL_MASK | PUF_ALLOW_ALLOWSTART_MASK))))
{
(void)PUF_PowerCycle(base, conf);
status = puf_waitForInit(base);
}
/* In case of error or enroll or start not allowed, do power-cycle with worst discharge timing */
if ((status != kStatus_Success) || (0U == (base->ALLOW & (PUF_ALLOW_ALLOWENROLL_MASK | PUF_ALLOW_ALLOWSTART_MASK))))
{
conf->dischargeTimeMsec = KEYSTORE_PUF_DISCHARGE_TIME_MAX_MS;
(void)PUF_PowerCycle(base, conf);
status = puf_waitForInit(base);
}
return status;
}
/*!
* brief Denitialize PUF
*
* This function disables power to PUF SRAM and peripheral clock.
*
* param base PUF peripheral base address
* param conf PUF configuration structure
*/
void PUF_Deinit(PUF_Type *base, puf_config_t *conf)
{
#if defined(FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL) && (FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL > 0)
/* RT6xxs */
base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_CK_DIS_MASK | PUF_PWRCTRL_RAMINIT_MASK); /* disable RAM CK */
/* enter ASPS mode */
base->PWRCTRL = (PUF_PWRCTRL_CK_DIS_MASK | PUF_PWRCTRL_RAMINIT_MASK); /* SLEEP = 1 */
base->PWRCTRL = PUF_PWRCTRL_RAMINIT_MASK; /* enable RAM CK */
base->PWRCTRL = (PUF_PWRCTRL_RAMINIT_MASK | PUF_PWRCTRL_RAMPSWLARGEMA_MASK | PUF_PWRCTRL_RAMPSWLARGEMP_MASK |
PUF_PWRCTRL_RAMPSWSMALLMA_MASK | PUF_PWRCTRL_RAMPSWSMALLMP_MASK); /* SLEEP=1, PSW*=1 */
puf_wait_usec(conf->dischargeTimeMsec * 1000u, conf->coreClockFrequencyHz / 1000000u);
#elif defined(FSL_FEATURE_PUF_HAS_SRAM_CTRL) && (FSL_FEATURE_PUF_HAS_SRAM_CTRL > 0)
/* LPCXpresso55s16 */
conf->puf_sram_base = PUF_SRAM_CTRL;
conf->puf_sram_base->CFG &= PUF_ENABLE_MASK;
#else /* !FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL */
/* LPCXpresso55s69 & LPCXpresso54S018 */
base->PWRCTRL = 0x00u;
puf_wait_usec(conf->dischargeTimeMsec * 1000u, conf->coreClockFrequencyHz / 1000000u);
#endif
#if !(defined(FSL_FEATURE_PUF_HAS_NO_RESET) && (FSL_FEATURE_PUF_HAS_NO_RESET > 0))
RESET_SetPeripheralReset(kPUF_RST_SHIFT_RSTn);
#endif /* FSL_FEATURE_PUF_HAS_NO_RESET */
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
CLOCK_DisableClock(kCLOCK_Puf);
#endif
}
/*!
* brief Enroll PUF
*
* This function derives a digital fingerprint, generates the corresponding Activation Code (AC)
* and returns it to be stored in an NVM or a file. This step needs to be
* performed only once for each device. This function may be permanently disallowed by a fuse.
*
* param base PUF peripheral base address
* param[out] activationCode Word aligned address of the resulting activation code.
* param activationCodeSize Size of the activationCode buffer in bytes. Shall be 1192 bytes.
* return Status of enroll operation.
*/
status_t PUF_Enroll(PUF_Type *base, uint8_t *activationCode, size_t activationCodeSize)
{
status_t status = kStatus_Fail;
uint32_t *activationCodeAligned = NULL;
register uint32_t temp32 = 0;
/* check that activation code buffer size is at least 1192 bytes */
if (activationCodeSize < PUF_ACTIVATION_CODE_SIZE)
{
return kStatus_InvalidArgument;
}
/* only work with aligned activationCode */
if (0U != (0x3u & (uintptr_t)activationCode))
{
return kStatus_InvalidArgument;
}
activationCodeAligned = (uint32_t *)(uintptr_t)activationCode;
/* check if ENROLL is allowed */
if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWENROLL_MASK))
{
return kStatus_EnrollNotAllowed;
}
/* begin */
base->CTRL = PUF_CTRL_ENROLL_MASK;
/* check status */
while (0U == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK)))
{
}
/* read out AC */
while (0U != (base->STAT & PUF_STAT_BUSY_MASK))
{
if (0U != (PUF_STAT_CODEOUTAVAIL_MASK & base->STAT))
{
temp32 = base->CODEOUTPUT;
if (activationCodeSize >= sizeof(uint32_t))
{
*activationCodeAligned = temp32;
activationCodeAligned++;
activationCodeSize -= sizeof(uint32_t);
}
}
}
if (((base->STAT & PUF_STAT_SUCCESS_MASK) != 0U) && (activationCodeSize == 0U))
{
status = kStatus_Success;
}
return status;
}
/*!
* brief Start PUF
*
* The Activation Code generated during the Enroll operation is used to
* reconstruct the digital fingerprint. This needs to be done after every power-up
* and reset.
*
* param base PUF peripheral base address
* param activationCode Word aligned address of the input activation code.
* param activationCodeSize Size of the activationCode buffer in bytes. Shall be 1192 bytes.
* return Status of start operation.
*/
status_t PUF_Start(PUF_Type *base, const uint8_t *activationCode, size_t activationCodeSize)
{
status_t status = kStatus_Fail;
const uint32_t *activationCodeAligned = NULL;
register uint32_t temp32 = 0;
/* check that activation code size is at least 1192 bytes */
if (activationCodeSize < 1192U)
{
return kStatus_InvalidArgument;
}
/* only work with aligned activationCode */
if (0U != (0x3u & (uintptr_t)activationCode))
{
return kStatus_InvalidArgument;
}
activationCodeAligned = (const uint32_t *)(uintptr_t)activationCode;
/* check if START is allowed */
if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWSTART_MASK))
{
return kStatus_StartNotAllowed;
}
/* begin */
base->CTRL = PUF_CTRL_START_MASK;
/* check status */
while (0U == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK)))
{
}
/* while busy send AC */
while (0U != (base->STAT & PUF_STAT_BUSY_MASK))
{
if (0U != (PUF_STAT_CODEINREQ_MASK & base->STAT))
{
if (activationCodeSize >= sizeof(uint32_t))
{
temp32 = *activationCodeAligned;
activationCodeAligned++;
activationCodeSize -= sizeof(uint32_t);
}
base->CODEINPUT = temp32;
}
}
/* get status */
if (0U != (base->STAT & PUF_STAT_SUCCESS_MASK))
{
status = kStatus_Success;
}
return status;
}
/*!
* brief Set intrinsic key
*
* The digital fingerprint generated during the Enroll/Start
* operations is used to generate a Key Code (KC) that defines a unique intrinsic
* key. This KC is returned to be stored in an NVM or a file. This operation
* needs to be done only once for each intrinsic key.
* Each time a Set Intrinsic Key operation is executed a new unique key is
* generated.
*
* param base PUF peripheral base address
* param keyIndex PUF key index register
* param keySize Size of the intrinsic key to generate in bytes.
* param[out] keyCode Word aligned address of the resulting key code.
* param keyCodeSize Size of the keyCode buffer in bytes. Shall be PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(keySize).
* return Status of set intrinsic key operation.
*/
status_t PUF_SetIntrinsicKey(
PUF_Type *base, puf_key_index_register_t keyIndex, size_t keySize, uint8_t *keyCode, size_t keyCodeSize)
{
status_t status = kStatus_Fail;
uint32_t *keyCodeAligned = NULL;
register uint32_t temp32 = 0;
/* check if SET KEY is allowed */
if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWSETKEY_MASK))
{
return kStatus_Fail;
}
/* only work with aligned keyCode */
if (0U != (0x3u & (uintptr_t)keyCode))
{
return kStatus_InvalidArgument;
}
/* Check that keySize is in the correct range and that it is multiple of 8 */
if ((keySize < (uint32_t)kPUF_KeySizeMin) || (keySize > (uint32_t)kPUF_KeySizeMax) || (0U != (keySize & 0x7U)))
{
return kStatus_InvalidArgument;
}
/* check that keyCodeSize is correct for given keySize */
if (keyCodeSize < PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(keySize))
{
return kStatus_InvalidArgument;
}
if ((uint32_t)keyIndex > (uint32_t)kPUF_KeyIndexMax)
{
return kStatus_InvalidArgument;
}
keyCodeAligned = (uint32_t *)(uintptr_t)keyCode;
/* program the key size and index */
base->KEYSIZE = keySize >> 3;
base->KEYINDEX = (uint32_t)keyIndex;
/* begin */
base->CTRL = PUF_CTRL_GENERATEKEY_MASK;
/* wait till command is accepted */
while (0U == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK)))
{
}
/* while busy read KC */
while (0U != (base->STAT & PUF_STAT_BUSY_MASK))
{
if (0U != (PUF_STAT_CODEOUTAVAIL_MASK & base->STAT))
{
temp32 = base->CODEOUTPUT;
if (keyCodeSize >= sizeof(uint32_t))
{
*keyCodeAligned = temp32;
keyCodeAligned++;
keyCodeSize -= sizeof(uint32_t);
}
}
}
/* get status */
if (0U != (base->STAT & PUF_STAT_SUCCESS_MASK))
{
status = kStatus_Success;
}
return status;
}
/*!
* brief Set user key
*
* The digital fingerprint generated during the Enroll/Start
* operations and a user key (UK) provided as input are used to
* generate a Key Code (KC). This KC is sent returned to be stored
* in an NVM or a file. This operation needs to be done only once for each user key.
*
* param base PUF peripheral base address
* param keyIndex PUF key index register
* param userKey Word aligned address of input user key.
* param userKeySize Size of the input user key in bytes.
* param[out] keyCode Word aligned address of the resulting key code.
* param keyCodeSize Size of the keyCode buffer in bytes. Shall be PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(userKeySize).
* return Status of set user key operation.
*/
status_t PUF_SetUserKey(PUF_Type *base,
puf_key_index_register_t keyIndex,
const uint8_t *userKey,
size_t userKeySize,
uint8_t *keyCode,
size_t keyCodeSize)
{
status_t status = kStatus_Fail;
uint32_t *keyCodeAligned = NULL;
const uint32_t *userKeyAligned = NULL;
register uint32_t temp32 = 0;
/* check if SET KEY is allowed */
if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWSETKEY_MASK))
{
return kStatus_Fail;
}
/* only work with aligned keyCode */
if (0U != (0x3u & (uintptr_t)keyCode))
{
return kStatus_InvalidArgument;
}
/* Check that userKeySize is in the correct range and that it is multiple of 8 */
if ((userKeySize < (uint32_t)kPUF_KeySizeMin) || (userKeySize > (uint32_t)kPUF_KeySizeMax) ||
(0U != (userKeySize & 0x7U)))
{
return kStatus_InvalidArgument;
}
/* check that keyCodeSize is correct for given userKeySize */
if (keyCodeSize < PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(userKeySize))
{
return kStatus_InvalidArgument;
}
if ((uint32_t)keyIndex > (uint32_t)kPUF_KeyIndexMax)
{
return kStatus_InvalidArgument;
}
keyCodeAligned = (uint32_t *)(uintptr_t)keyCode;
userKeyAligned = (const uint32_t *)(uintptr_t)userKey;
/* program the key size and index */
base->KEYSIZE = userKeySize >> 3; /* convert to 64-bit blocks */
base->KEYINDEX = (uint32_t)keyIndex;
/* We have to store the user key on index 0 swaped for HW bus */
if (keyIndex == kPUF_KeyIndex_00)
{
userKeyAligned = userKeyAligned + (userKeySize / sizeof(uint32_t));
}
/* begin */
base->CTRL = PUF_CTRL_SETKEY_MASK;
/* wait till command is accepted */
while (0U == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK)))
{
}
/* while busy write UK and read KC */
while (0U != (base->STAT & PUF_STAT_BUSY_MASK))
{
if (0U != (PUF_STAT_KEYINREQ_MASK & base->STAT))
{
if (userKeySize >= sizeof(uint32_t))
{
#if defined(LPC54S018_SERIES)
if (keyIndex == kPUF_KeyIndex_00)
{
userKeyAligned--;
temp32 = *userKeyAligned;
userKeySize -= sizeof(uint32_t);
}
#else
if (keyIndex == kPUF_KeyIndex_00)
{
userKeyAligned--;
temp32 = __REV(*userKeyAligned);
userKeySize--;
}
#endif /* defined(LPC54S018_SERIES) */
else if (keyIndex != kPUF_KeyIndex_00)
{
temp32 = *userKeyAligned;
userKeyAligned++;
userKeySize -= sizeof(uint32_t);
}
else
{
/* Intentional empty */
}
}
base->KEYINPUT = temp32;
}
if (0U != (PUF_STAT_CODEOUTAVAIL_MASK & base->STAT))
{
temp32 = base->CODEOUTPUT;
if (keyCodeSize >= sizeof(uint32_t))
{
*keyCodeAligned = temp32;
keyCodeAligned++;
keyCodeSize -= sizeof(uint32_t);
}
}
}
/* get status */
if (0U != (base->STAT & PUF_STAT_SUCCESS_MASK))
{
status = kStatus_Success;
}
return status;
}
static status_t puf_getHwKey(PUF_Type *base, const uint8_t *keyCode, size_t keyCodeSize)
{
status_t status = kStatus_Fail;
uint32_t *keyCodeAligned = NULL;
register uint32_t temp32 = 0;
keyCodeAligned = (uint32_t *)(uintptr_t)keyCode;
/* begin */
base->CTRL = PUF_CTRL_GETKEY_MASK;
/* wait till command is accepted */
while (0U == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK)))
{
}
/* while busy send KC, key is reconstructed to HW bus */
while (0U != (base->STAT & PUF_STAT_BUSY_MASK))
{
if (0U != (PUF_STAT_CODEINREQ_MASK & base->STAT))
{
if (keyCodeSize >= sizeof(uint32_t))
{
temp32 = *keyCodeAligned;
keyCodeAligned++;
keyCodeSize -= sizeof(uint32_t);
}
base->CODEINPUT = temp32;
}
}
/* get status */
if (0U != (base->STAT & PUF_STAT_SUCCESS_MASK))
{
status = kStatus_Success;
}
return status;
}
/*!
* brief Reconstruct hw bus key from a key code
*
* The digital fingerprint generated during the Start operation and the KC
* generated during a Set Key operation (Set intrinsic key or Set user key) are used to retrieve a stored key. This
* operation needs to be done every time a key is needed.
* This function accepts only Key Codes created for PUF index register kPUF_KeyIndex_00.
* Such a key is output directly to a dedicated hardware bus. The reconstructed key is not exposed to system memory.
*
* param base PUF peripheral base address
* param keyCode Word aligned address of the input key code.
* param keyCodeSize Size of the keyCode buffer in bytes. Shall be PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(keySize).
* param keySlot key slot to output on hw bus. Parameter is ignored on devices with less than two key slots.
* param keyMask key masking value. Shall be random for each POR/reset. Value does not have to be cryptographicaly
* secure.
* return Status of get key operation.
*/
status_t PUF_GetHwKey(
PUF_Type *base, const uint8_t *keyCode, size_t keyCodeSize, puf_key_slot_t keySlot, uint32_t keyMask)
{
status_t status = kStatus_Fail;
uint32_t keyIndex;
/* check if GET KEY is allowed */
if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWGETKEY_MASK))
{
return kStatus_Fail;
}
/* only work with aligned keyCode */
if (0U != (0x3u & (uintptr_t)keyCode))
{
return kStatus_Fail;
}
/* check that keyCodeSize is at least PUF_MIN_KEY_CODE_SIZE */
if (keyCodeSize < PUF_MIN_KEY_CODE_SIZE)
{
return kStatus_InvalidArgument;
}
keyIndex = (uint32_t)(0x0Fu & (uint32_t)keyCode[1]);
/* check the Key Code header byte 1. index must be zero for the hw key. */
if (kPUF_KeyIndex_00 != (puf_key_index_register_t)keyIndex)
{
return kStatus_Fail;
}
#if defined(PUF_KEYMASK_COUNT) && (PUF_KEYMASK_COUNT > 0)
volatile uint32_t *keyMask_reg = NULL;
uint32_t regVal = ((uint32_t)2U << ((uint32_t)2U * (uint32_t)keySlot));
switch (keySlot)
{
case kPUF_KeySlot0:
keyMask_reg = &base->KEYMASK[0];
break;
case kPUF_KeySlot1:
keyMask_reg = &base->KEYMASK[1];
break;
#if (PUF_KEYMASK_COUNT > 2)
case kPUF_KeySlot2:
keyMask_reg = &base->KEYMASK[2];
break;
case kPUF_KeySlot3:
keyMask_reg = &base->KEYMASK[3];
break;
#endif /* PUF_KEYMASK_COUNT > 2 */
default:
status = kStatus_InvalidArgument;
break;
}
#endif /* PUF_KEYMASK_COUNT */
if (status != kStatus_InvalidArgument)
{
#if defined(PUF_KEYMASK_COUNT) && (PUF_KEYMASK_COUNT > 0)
base->KEYRESET = regVal;
base->KEYENABLE = regVal;
*keyMask_reg = keyMask;
#endif /* FSL_FEATURE_PUF_HAS_KEYSLOTS */
status = puf_getHwKey(base, keyCode, keyCodeSize);
#if defined(FSL_FEATURE_PUF_HAS_SHIFT_STATUS) && (FSL_FEATURE_PUF_HAS_SHIFT_STATUS > 0)
size_t keyWords = 0;
if (status == kStatus_Success)
{
/* if the corresponding shift count does not match, return fail anyway */
keyWords = ((((size_t)keyCode[3]) * 2U) - 1u) << ((size_t)keySlot << 2U);
if (keyWords != ((0x0FUL << ((uint32_t)keySlot << 2U)) & base->SHIFT_STATUS))
{
status = kStatus_Fail;
}
}
#elif defined(PUF_IDXBLK_SHIFT_IND_KEY0_MASK) && PUF_IDXBLK_SHIFT_IND_KEY0_MASK
size_t keyWords = 0;
if (status == kStatus_Success)
{
/* if the corresponding shift count does not match, return fail anyway */
keyWords = ((((size_t)keyCode[3]) * 2U) - 1u) << ((size_t)keySlot << 2U);
if (keyWords != ((0x0FUL << ((uint32_t)keySlot << 2U)) & base->IDXBLK_SHIFT))
{
status = kStatus_Fail;
}
}
#endif /* FSL_FEATURE_PUF_HAS_SHIFT_STATUS || PUF_IDXBLK_SHIFT_IND_KEY0_MASK */
}
return status;
}
/*!
* brief Checks if Get Key operation is allowed.
*
* This function returns true if get key operation is allowed.
*
* param base PUF peripheral base address
* return true if get key operation is allowed
*/
bool PUF_IsGetKeyAllowed(PUF_Type *base)
{
/* check if GET KEY is allowed */
if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWGETKEY_MASK))
{
return false;
}
return true;
}
/*!
* brief Reconstruct key from a key code
*
* The digital fingerprint generated during the Start operation and the KC
* generated during a Set Key operation (Set intrinsic key or Set user key) are used to retrieve a stored key. This
* operation needs to be done every time a key is needed.
* This function accepts only Key Codes created for PUF index registers kPUF_KeyIndex_01 to kPUF_KeyIndex_15.
*
* param base PUF peripheral base address
* param keyCode Word aligned address of the input key code.
* param keyCodeSize Size of the keyCode buffer in bytes. Shall be PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(keySize).
* param[out] key Word aligned address of output key.
* param keySize Size of the output key in bytes.
* return Status of get key operation.
*/
status_t PUF_GetKey(PUF_Type *base, const uint8_t *keyCode, size_t keyCodeSize, uint8_t *key, size_t keySize)
{
status_t status = kStatus_Fail;
uint32_t *keyCodeAligned = NULL;
uint32_t *keyAligned = NULL;
uint32_t keyIndex;
register uint32_t temp32 = 0;
/* check if GET KEY is allowed */
if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWGETKEY_MASK))
{
return kStatus_Fail;
}
/* only work with aligned keyCode */
if (0U != (0x3u & (uintptr_t)keyCode))
{
return kStatus_Fail;
}
/* only work with aligned key */
if (0U != (0x3u & (uintptr_t)key))
{
return kStatus_Fail;
}
/* check that keyCodeSize is correct for given keySize */
if (keyCodeSize < PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(keySize))
{
return kStatus_InvalidArgument;
}
keyIndex = (0x0Fu & (uint32_t)keyCode[1]);
/* check the Key Code header byte 1. index must be non-zero for the register key. */
if (kPUF_KeyIndex_00 == (puf_key_index_register_t)keyIndex)
{
return kStatus_Fail;
}
keyCodeAligned = (uint32_t *)(uintptr_t)keyCode;
keyAligned = (uint32_t *)(uintptr_t)key;
/* begin */
base->CTRL = PUF_CTRL_GETKEY_MASK;
/* wait till command is accepted */
while (0U == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK)))
{
}
/* while busy send KC, read key */
while (0U != (base->STAT & PUF_STAT_BUSY_MASK))
{
if (0U != (PUF_STAT_CODEINREQ_MASK & base->STAT))
{
temp32 = 0;
if (keyCodeSize >= sizeof(uint32_t))
{
temp32 = *keyCodeAligned;
keyCodeAligned++;
keyCodeSize -= sizeof(uint32_t);
}
base->CODEINPUT = temp32;
}
if (0U != (PUF_STAT_KEYOUTAVAIL_MASK & base->STAT))
{
keyIndex = base->KEYOUTINDEX;
temp32 = base->KEYOUTPUT;
if (keySize >= sizeof(uint32_t))
{
*keyAligned = temp32;
keyAligned++;
keySize -= sizeof(uint32_t);
}
}
}
/* get status */
if ((keyIndex != 0U) && (0U != (base->STAT & PUF_STAT_SUCCESS_MASK)))
{
status = kStatus_Success;
}
return status;
}
/*!
* brief Zeroize PUF
*
* This function clears all PUF internal logic and puts the PUF to error state.
*
* param base PUF peripheral base address
* return Status of the zeroize operation.
*/
status_t PUF_Zeroize(PUF_Type *base)
{
status_t status = kStatus_Fail;
/* zeroize command is always allowed */
base->CTRL = PUF_CTRL_ZEROIZE_MASK;
/* check that command is accepted */
if ((0U != (base->STAT & PUF_STAT_ERROR_MASK)) && (0U == base->ALLOW))
{
status = kStatus_Success;
}
return status;
}