362 lines
12 KiB
C
362 lines
12 KiB
C
/*
|
|
* Copyright (c) 2015, Freescale Semiconductor, Inc.
|
|
* Copyright 2016-2017 NXP
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* o Redistributions of source code must retain the above copyright notice, this list
|
|
* of conditions and the following disclaimer.
|
|
*
|
|
* o Redistributions in binary form must reproduce the above copyright notice, this
|
|
* list of conditions and the following disclaimer in the documentation and/or
|
|
* other materials provided with the distribution.
|
|
*
|
|
* o Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "fsl_phy.h"
|
|
#include <rtthread.h>
|
|
/*******************************************************************************
|
|
* Definitions
|
|
******************************************************************************/
|
|
|
|
/*! @brief Defines the timeout macro. */
|
|
#define PHY_TIMEOUT_COUNT 0xFFFFU
|
|
|
|
/*******************************************************************************
|
|
* Prototypes
|
|
******************************************************************************/
|
|
|
|
/*!
|
|
* @brief Get the ENET instance from peripheral base address.
|
|
*
|
|
* @param base ENET peripheral base address.
|
|
* @return ENET instance.
|
|
*/
|
|
extern uint32_t ENET_GetInstance(ENET_Type *base);
|
|
|
|
/*******************************************************************************
|
|
* Variables
|
|
******************************************************************************/
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
/*! @brief Pointers to enet clocks for each instance. */
|
|
extern clock_ip_name_t s_enetClock[FSL_FEATURE_SOC_ENET_COUNT];
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
|
|
/*******************************************************************************
|
|
* Code
|
|
******************************************************************************/
|
|
|
|
status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz)
|
|
{
|
|
uint32_t bssReg;
|
|
uint32_t counter = PHY_TIMEOUT_COUNT;
|
|
uint32_t idReg = 0;
|
|
status_t result = kStatus_Success;
|
|
uint32_t instance = ENET_GetInstance(base);
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
/* Set SMI first. */
|
|
CLOCK_EnableClock(s_enetClock[instance]);
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
ENET_SetSMI(base, srcClock_Hz, false);
|
|
|
|
/* Initialization after PHY stars to work. */
|
|
while ((idReg != PHY_CONTROL_ID1) && (counter != 0))
|
|
{
|
|
PHY_Read(base, phyAddr, PHY_ID1_REG, &idReg);
|
|
counter --;
|
|
}
|
|
|
|
if (!counter)
|
|
{
|
|
return kStatus_Fail;
|
|
}
|
|
|
|
/* Reset PHY. */
|
|
counter = 6;
|
|
result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
|
|
if (result == kStatus_Success)
|
|
{
|
|
#if defined(BOARD_RT1050_FIRE)
|
|
for (uint32_t i = 0x10000; i > 0; i--)
|
|
{
|
|
result = PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, &bssReg);
|
|
if (!(bssReg & PHY_BCTL_POWER_DOWN_MASK))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
#if defined(BOARD_RT1050_ATK)
|
|
rt_thread_delay(RT_TICK_PER_SECOND);
|
|
#endif
|
|
#if defined(FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE)
|
|
uint32_t data = 0;
|
|
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
|
|
if ( result != kStatus_Success)
|
|
{
|
|
return result;
|
|
}
|
|
result = PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data | PHY_CTL2_REFCLK_SELECT_MASK));
|
|
if (result != kStatus_Success)
|
|
{
|
|
return result;
|
|
}
|
|
#endif /* FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE */
|
|
|
|
/* Set the negotiation. */
|
|
result = PHY_Write(base, phyAddr, PHY_AUTONEG_ADVERTISE_REG,
|
|
(PHY_100BASETX_FULLDUPLEX_MASK | PHY_100BASETX_HALFDUPLEX_MASK |
|
|
PHY_10BASETX_FULLDUPLEX_MASK | PHY_10BASETX_HALFDUPLEX_MASK | 0x1U));
|
|
if (result == kStatus_Success)
|
|
{
|
|
result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG,
|
|
(PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
|
|
if (result == kStatus_Success)
|
|
{
|
|
/* Check auto negotiation complete. */
|
|
while (counter --)
|
|
{
|
|
result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &bssReg);
|
|
if ( result == kStatus_Success)
|
|
{
|
|
#if defined(BOARD_RT1050_FIRE) || defined(BOARD_RT1050_ATK)
|
|
if (((bssReg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0))
|
|
#else
|
|
uint32_t ctlReg = 0;
|
|
PHY_Read(base, phyAddr, PHY_CONTROL1_REG, &ctlReg);
|
|
if (((bssReg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0) && (ctlReg & PHY_LINK_READY_MASK))
|
|
#endif
|
|
{
|
|
rt_kprintf("auto negotiation complete success\n");
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* Wait a moment for Phy status stable. */
|
|
__ASM("nop");
|
|
}
|
|
}
|
|
|
|
rt_kprintf("[PHY] wait autonegotiation complete...\n");
|
|
rt_thread_delay(RT_TICK_PER_SECOND);
|
|
|
|
if (!counter)
|
|
{
|
|
return kStatus_PHY_AutoNegotiateFail;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
status_t PHY_Write(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data)
|
|
{
|
|
uint32_t counter;
|
|
|
|
/* Clear the SMI interrupt event. */
|
|
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
|
|
|
|
/* Starts a SMI write command. */
|
|
ENET_StartSMIWrite(base, phyAddr, phyReg, kENET_MiiWriteValidFrame, data);
|
|
|
|
/* Wait for SMI complete. */
|
|
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
|
|
{
|
|
if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check for timeout. */
|
|
if (!counter)
|
|
{
|
|
return kStatus_PHY_SMIVisitTimeout;
|
|
}
|
|
|
|
/* Clear MII interrupt event. */
|
|
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
|
|
|
|
return kStatus_Success;
|
|
}
|
|
|
|
status_t PHY_Read(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t *dataPtr)
|
|
{
|
|
assert(dataPtr);
|
|
|
|
uint32_t counter;
|
|
|
|
/* Clear the MII interrupt event. */
|
|
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
|
|
|
|
/* Starts a SMI read command operation. */
|
|
ENET_StartSMIRead(base, phyAddr, phyReg, kENET_MiiReadValidFrame);
|
|
|
|
/* Wait for MII complete. */
|
|
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
|
|
{
|
|
if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check for timeout. */
|
|
if (!counter)
|
|
{
|
|
return kStatus_PHY_SMIVisitTimeout;
|
|
}
|
|
|
|
/* Get data from MII register. */
|
|
*dataPtr = ENET_ReadSMIData(base);
|
|
|
|
/* Clear MII interrupt event. */
|
|
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
|
|
|
|
return kStatus_Success;
|
|
}
|
|
|
|
status_t PHY_EnableLoopback(ENET_Type *base, uint32_t phyAddr, phy_loop_t mode, phy_speed_t speed, bool enable)
|
|
{
|
|
status_t result;
|
|
uint32_t data = 0;
|
|
|
|
/* Set the loop mode. */
|
|
if (enable)
|
|
{
|
|
if (mode == kPHY_LocalLoop)
|
|
{
|
|
if (speed == kPHY_Speed100M)
|
|
{
|
|
data = PHY_BCTL_SPEED_100M_MASK | PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
|
|
}
|
|
else
|
|
{
|
|
data = PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
|
|
}
|
|
return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, data);
|
|
}
|
|
else
|
|
{
|
|
/* First read the current status in control register. */
|
|
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
|
|
if (result == kStatus_Success)
|
|
{
|
|
return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data | PHY_CTL2_REMOTELOOP_MASK));
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Disable the loop mode. */
|
|
if (mode == kPHY_LocalLoop)
|
|
{
|
|
/* First read the current status in control register. */
|
|
result = PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, &data);
|
|
if (result == kStatus_Success)
|
|
{
|
|
data &= ~PHY_BCTL_LOOP_MASK;
|
|
return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, (data | PHY_BCTL_RESTART_AUTONEG_MASK));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* First read the current status in control one register. */
|
|
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
|
|
if (result == kStatus_Success)
|
|
{
|
|
return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data & ~PHY_CTL2_REMOTELOOP_MASK));
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
status_t PHY_GetLinkStatus(ENET_Type *base, uint32_t phyAddr, bool *status)
|
|
{
|
|
assert(status);
|
|
|
|
status_t result = kStatus_Success;
|
|
uint32_t data;
|
|
|
|
/* Read the basic status register. */
|
|
result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &data);
|
|
if (result == kStatus_Success)
|
|
{
|
|
if (!(PHY_BSTATUS_LINKSTATUS_MASK & data))
|
|
{
|
|
/* link down. */
|
|
*status = false;
|
|
}
|
|
else
|
|
{
|
|
/* link up. */
|
|
*status = true;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
status_t PHY_GetLinkSpeedDuplex(ENET_Type *base, uint32_t phyAddr, phy_speed_t *speed, phy_duplex_t *duplex)
|
|
{
|
|
assert(duplex);
|
|
|
|
status_t result = kStatus_Success;
|
|
uint32_t data, ctlReg;
|
|
|
|
/* Read the control two register. */
|
|
#if defined(BOARD_RT1050_FIRE) || defined(BOARD_RT1050_ATK)
|
|
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &ctlReg);
|
|
#endif
|
|
#if defined(BOARD_RT1050_EVK)
|
|
result = PHY_Read(base, phyAddr, PHY_CONTROL1_REG, &ctlReg);
|
|
#endif
|
|
if (result == kStatus_Success)
|
|
{
|
|
data = ctlReg & PHY_CTL1_SPEEDUPLX_MASK;
|
|
if ((PHY_CTL1_10FULLDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
|
|
{
|
|
/* Full duplex. */
|
|
*duplex = kPHY_FullDuplex;
|
|
}
|
|
else
|
|
{
|
|
/* Half duplex. */
|
|
*duplex = kPHY_HalfDuplex;
|
|
}
|
|
|
|
data = ctlReg & PHY_CTL1_SPEEDUPLX_MASK;
|
|
if ((PHY_CTL1_100HALFDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
|
|
{
|
|
/* 100M speed. */
|
|
*speed = kPHY_Speed100M;
|
|
}
|
|
else
|
|
{ /* 10M speed. */
|
|
*speed = kPHY_Speed10M;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|