rt-thread/bsp/imxrt/Libraries/imxrt1050/drivers/drv_flexspi_nor.c

388 lines
12 KiB
C

/*
* File : code_run.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2017, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERsrcANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* srcange Logs:
* Date Author Notes
* 2018-07-05 ZYH the first version
*/
#include <rtthread.h>
#define PRINTF rt_kprintf
#include "board.h"
#include <rthw.h>
#include "drv_flexspi.h"
#define DBG_ENABLE
#define DBG_SECTION_NAME "[FLEXSPI]"
#define DBG_LEVEL DBG_LOG
#define DBG_COLOR
#include <rtdbg.h>
#define FLEXSPI_CLOCK kCLOCK_FlexSpi
#define NOR_CMD_LUT_SEQ_IDX_READ_NORMAL 0
#define NOR_CMD_LUT_SEQ_IDX_READ_FAST 1
#define NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD 2
#define NOR_CMD_LUT_SEQ_IDX_READSTATUS 3
#define NOR_CMD_LUT_SEQ_IDX_WRITEENABLE 4
#define NOR_CMD_LUT_SEQ_IDX_ERASESECTOR 5
#define NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_SINGLE 6
#define NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_QUAD 7
#define NOR_CMD_LUT_SEQ_IDX_READID 8
#define NOR_CMD_LUT_SEQ_IDX_WRITESTATUSREG 9
#define NOR_CMD_LUT_SEQ_IDX_ENTERQPI 10
#define NOR_CMD_LUT_SEQ_IDX_EXITQPI 11
#define NOR_CMD_LUT_SEQ_IDX_READSTATUSREG 12
#define NOR_CMD_LUT_SEQ_IDX_ERASECHIP 13
#define CUSTOM_LUT_LENGTH 60
#define FLASH_BUSY_STATUS_POL 1
#define FLASH_BUSY_STATUS_OFFSET 0
static flexspi_device_config_t deviceconfig =
{
.flexspiRootClk = 100000000,
.flashSize = FLASH_SIZE,
.CSIntervalUnit = kFLEXSPI_CsIntervalUnit1SckCycle,
.CSInterval = 2,
.CSHoldTime = 3,
.CSSetupTime = 3,
.dataValidTime = 0,
.columnspace = 0,
.enableWordAddress = 0,
.AWRSeqIndex = 0,
.AWRSeqNumber = 0,
.ARDSeqIndex = NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD,
.ARDSeqNumber = 1,
.AHBWriteWaitUnit = kFLEXSPI_AhbWriteWaitUnit2AhbCycle,
.AHBWriteWaitInterval = 0,
};
static uint32_t customLUT[CUSTOM_LUT_LENGTH] =
{
/* Normal read mode -SDR */
[4 * NOR_CMD_LUT_SEQ_IDX_READ_NORMAL] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x03, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
[4 * NOR_CMD_LUT_SEQ_IDX_READ_NORMAL + 1] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
/* Fast read mode - SDR */
[4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x0B, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
[4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST + 1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_1PAD, 0x08, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
/* Fast read quad mode - SDR */
[4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x6B, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
[4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD + 1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, 0x08, kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04),
/* Read extend parameters */
[4 * NOR_CMD_LUT_SEQ_IDX_READSTATUS] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x05, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
/* Write Enable */
[4 * NOR_CMD_LUT_SEQ_IDX_WRITEENABLE] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x06, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
/* Erase Sector */
[4 * NOR_CMD_LUT_SEQ_IDX_ERASESECTOR] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x20, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
/* Page Program - single mode */
[4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_SINGLE] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x02, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
[4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_SINGLE + 1] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
/* Page Program - quad mode */
[4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_QUAD] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x32, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
[4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_QUAD + 1] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
/* Read ID */
[4 * NOR_CMD_LUT_SEQ_IDX_READID] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xAB, kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_1PAD, 0x18),
[4 * NOR_CMD_LUT_SEQ_IDX_READID + 1] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
/* Enable Quad mode */
[4 * NOR_CMD_LUT_SEQ_IDX_WRITESTATUSREG] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x01, kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04),
/* Enter QPI mode */
[4 * NOR_CMD_LUT_SEQ_IDX_ENTERQPI] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x38, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
/* Exit QPI mode */
[4 * NOR_CMD_LUT_SEQ_IDX_EXITQPI] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_4PAD, 0xFF, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
/* Read status register */
[4 * NOR_CMD_LUT_SEQ_IDX_READSTATUSREG] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x05, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
/* Erase Chip */
[4 * NOR_CMD_LUT_SEQ_IDX_ERASECHIP] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xC7, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
};
SECTION("itcm") static status_t flexspi_nor_write_enable(FLEXSPI_Type *base, uint32_t baseAddr)
{
flexspi_transfer_t flashXfer;
status_t status;
/* Write neable */
flashXfer.deviceAddress = baseAddr;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Command;
flashXfer.SeqNumber = 1;
flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_WRITEENABLE;
status = FLEXSPI_TransferBlocking(base, &flashXfer);
return status;
}
SECTION("itcm") static status_t flexspi_nor_wait_bus_busy(FLEXSPI_Type *base)
{
/* Wait status ready. */
bool isBusy;
uint32_t readValue;
status_t status;
flexspi_transfer_t flashXfer;
flashXfer.deviceAddress = 0;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Read;
flashXfer.SeqNumber = 1;
flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_READSTATUSREG;
flashXfer.data = &readValue;
flashXfer.dataSize = 1;
do
{
status = FLEXSPI_TransferBlocking(base, &flashXfer);
if (status != kStatus_Success)
{
return status;
}
if (FLASH_BUSY_STATUS_POL)
{
if (readValue & (1U << FLASH_BUSY_STATUS_OFFSET))
{
isBusy = true;
}
else
{
isBusy = false;
}
}
else
{
if (readValue & (1U << FLASH_BUSY_STATUS_OFFSET))
{
isBusy = false;
}
else
{
isBusy = true;
}
}
}
while (isBusy);
return status;
}
SECTION("itcm") static status_t flexspi_nor_enable_quad_mode(FLEXSPI_Type *base)
{
flexspi_transfer_t flashXfer;
status_t status;
uint32_t writeValue = 0x40;
/* Write neable */
status = flexspi_nor_write_enable(base, 0);
if (status != kStatus_Success)
{
return status;
}
/* Enable quad mode. */
flashXfer.deviceAddress = 0;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Write;
flashXfer.SeqNumber = 1;
flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_WRITESTATUSREG;
flashXfer.data = &writeValue;
flashXfer.dataSize = 1;
status = FLEXSPI_TransferBlocking(base, &flashXfer);
if (status != kStatus_Success)
{
dbg_log(DBG_ERROR, "flexspi tranfer error\n");
dbg_here
return status;
}
status = flexspi_nor_wait_bus_busy(base);
return status;
}
SECTION("itcm") status_t flexspi_nor_flash_erase_sector(FLEXSPI_Type *base, uint32_t address)
{
status_t status;
flexspi_transfer_t flashXfer;
/* Write enable */
flashXfer.deviceAddress = address;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Command;
flashXfer.SeqNumber = 1;
flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_WRITEENABLE;
status = FLEXSPI_TransferBlocking(base, &flashXfer);
if (status != kStatus_Success)
{
dbg_log(DBG_ERROR, "flexspi tranfer error\n");
dbg_here
return status;
}
flashXfer.deviceAddress = address;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Command;
flashXfer.SeqNumber = 1;
flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_ERASESECTOR;
status = FLEXSPI_TransferBlocking(base, &flashXfer);
if (status != kStatus_Success)
{
dbg_log(DBG_ERROR, "flexspi tranfer error\n");
dbg_here
return status;
}
status = flexspi_nor_wait_bus_busy(base);
rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE, (void *)(FLEXSPI_AMBA_BASE + address), FLEXSPI_NOR_SECTOR_SIZE);
rt_hw_cpu_icache_ops(RT_HW_CACHE_INVALIDATE, (void *)(FLEXSPI_AMBA_BASE + address), FLEXSPI_NOR_SECTOR_SIZE);
return status;
}
SECTION("itcm") status_t flexspi_nor_flash_page_program(FLEXSPI_Type *base, uint32_t address, const uint32_t *src)
{
status_t status;
flexspi_transfer_t flashXfer;
/* Write neable */
status = flexspi_nor_write_enable(base, address);
if (status != kStatus_Success)
{
return status;
}
/* Prepare page program command */
flashXfer.deviceAddress = address;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Write;
flashXfer.SeqNumber = 1;
flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_QUAD;
flashXfer.data = (uint32_t *)src;
flashXfer.dataSize = FLASH_PAGE_SIZE;
status = FLEXSPI_TransferBlocking(base, &flashXfer);
if (status != kStatus_Success)
{
return status;
}
status = flexspi_nor_wait_bus_busy(base);
rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE, (void *)(FLEXSPI_AMBA_BASE + address), FLEXSPI_NOR_SECTOR_SIZE);
rt_hw_cpu_icache_ops(RT_HW_CACHE_INVALIDATE, (void *)(FLEXSPI_AMBA_BASE + address), FLEXSPI_NOR_SECTOR_SIZE);
return status;
}
SECTION("itcm") static status_t flexspi_nor_get_vendor_id(FLEXSPI_Type *base, uint8_t *vendorId)
{
uint32_t temp;
flexspi_transfer_t flashXfer;
flashXfer.deviceAddress = 0;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Read;
flashXfer.SeqNumber = 1;
flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_READID;
flashXfer.data = &temp;
flashXfer.dataSize = 1;
status_t status = FLEXSPI_TransferBlocking(base, &flashXfer);
*vendorId = temp;
return status;
}
SECTION("itcm") int rt_hw_flexspi_init(void)
{
flexspi_config_t config;
status_t status;
uint8_t vendorID = 0;
const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U};
rt_uint32_t level;
level = rt_hw_interrupt_disable();
CLOCK_InitUsb1Pll(&g_ccmConfigUsbPll);
CLOCK_InitUsb1Pfd(kCLOCK_Pfd0, 24); /* Set PLL3 PFD0 clock 360MHZ. */
CLOCK_SetMux(kCLOCK_FlexspiMux, 0x3); /* Choose PLL3 PFD0 clock as flexspi source clock. */
CLOCK_SetDiv(kCLOCK_FlexspiDiv, 2); /* flexspi clock 120M. */
dbg_log(DBG_INFO, "NorFlash Init\r\n");
FLEXSPI_GetDefaultConfig(&config);
config.ahbConfig.enableAHBPrefetch = true;
FLEXSPI_Init(FLEXSPI, &config);
FLEXSPI_SetFlashConfig(FLEXSPI, &deviceconfig, kFLEXSPI_PortA1);
FLEXSPI_UpdateLUT(FLEXSPI, 0, customLUT, CUSTOM_LUT_LENGTH);
status = flexspi_nor_get_vendor_id(FLEXSPI, &vendorID);
if (status != kStatus_Success)
{
return status;
}
dbg_log(DBG_INFO, "Vendor ID: 0x%x\r\n", vendorID);
status = flexspi_nor_enable_quad_mode(FLEXSPI);
if (status != kStatus_Success)
{
dbg_log(DBG_ERROR, "Entry Quad mode failed\r\n");
return status;
}
dbg_log(DBG_INFO, "NorFlash Init Done\r\n");
rt_hw_interrupt_enable(level);
return 0;
}