2021-01-13 11:31:03 +08:00

767 lines
21 KiB
C

/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2017-10-10 Tanek the first version
* 2019-5-10 misonyo add DMA TX and RX function
*/
#include <rtthread.h>
#ifdef BSP_USING_LPUART
#include "rthw.h"
#include <rtdevice.h>
#include "drv_uart.h"
#include "board.h"
#include "fsl_lpuart.h"
#include "fsl_lpuart_edma.h"
#include "fsl_dmamux.h"
#define LOG_TAG "drv.usart"
#include <drv_log.h>
#if defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
#error "Please don't define 'FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL'!"
#endif
enum
{
#ifdef BSP_USING_LPUART1
LPUART1_INDEX,
#endif
#ifdef BSP_USING_LPUART2
LPUART2_INDEX,
#endif
#ifdef BSP_USING_LPUART3
LPUART3_INDEX,
#endif
#ifdef BSP_USING_LPUART4
LPUART4_INDEX,
#endif
#ifdef BSP_USING_LPUART5
LPUART5_INDEX,
#endif
#ifdef BSP_USING_LPUART6
LPUART6_INDEX,
#endif
#ifdef BSP_USING_LPUART7
LPUART7_INDEX,
#endif
#ifdef BSP_USING_LPUART8
LPUART8_INDEX,
#endif
};
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
struct dma_rx_config
{
edma_handle_t edma;
dma_request_source_t request;
rt_uint8_t channel;
rt_uint32_t last_index;
};
struct dma_tx_config
{
edma_handle_t edma;
lpuart_edma_handle_t uart_edma;
dma_request_source_t request;
rt_uint8_t channel;
};
#endif
struct imxrt_uart
{
char *name;
LPUART_Type *uart_base;
IRQn_Type irqn;
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
struct dma_rx_config *dma_rx;
struct dma_tx_config *dma_tx;
#endif
rt_uint16_t dma_flag;
struct rt_serial_device serial;
};
static struct imxrt_uart uarts[] =
{
#ifdef BSP_USING_LPUART1
{
.name = "uart1",
.uart_base = LPUART1,
.irqn = LPUART1_IRQn,
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
.dma_rx = RT_NULL,
.dma_tx = RT_NULL,
#endif
.dma_flag = 0,
},
#endif
#ifdef BSP_USING_LPUART2
{
.name = "uart2",
.uart_base = LPUART2,
.irqn = LPUART2_IRQn,
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
.dma_rx = RT_NULL,
.dma_tx = RT_NULL,
#endif
.dma_flag = 0,
},
#endif
#ifdef BSP_USING_LPUART3
{
.name = "uart3",
.uart_base = LPUART3,
.irqn = LPUART3_IRQn,
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
.dma_rx = RT_NULL,
.dma_tx = RT_NULL,
#endif
.dma_flag = 0,
},
#endif
#ifdef BSP_USING_LPUART4
{
.name = "uart4",
.uart_base = LPUART4,
.irqn = LPUART4_IRQn,
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
.dma_rx = RT_NULL,
.dma_tx = RT_NULL,
#endif
.dma_flag = 0,
},
#endif
#ifdef BSP_USING_LPUART5
{
.name = "uart5",
.uart_base = LPUART5,
.irqn = LPUART5_IRQn,
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
.dma_rx = RT_NULL,
.dma_tx = RT_NULL,
#endif
.dma_flag = 0,
},
#endif
#ifdef BSP_USING_LPUART6
{
.name = "uart6",
.uart_base = LPUART6,
.irqn = LPUART6_IRQn,
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
.dma_rx = RT_NULL,
.dma_tx = RT_NULL,
#endif
.dma_flag = 0,
},
#endif
#ifdef BSP_USING_LPUART7
{
.name = "uart7",
.uart_base = LPUART7,
.irqn = LPUART7_IRQn,
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
.dma_rx = RT_NULL,
.dma_tx = RT_NULL,
#endif
.dma_flag = 0,
},
#endif
#ifdef BSP_USING_LPUART8
{
.name = "uart8",
.uart_base = LPUART8,
.irqn = LPUART8_IRQn,
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
.dma_rx = RT_NULL,
.dma_tx = RT_NULL,
#endif
.dma_flag = 0,
},
#endif
};
static void uart_get_dma_config(void)
{
#ifdef BSP_LPUART1_RX_USING_DMA
static struct dma_rx_config uart1_dma_rx = {.request = kDmaRequestMuxLPUART1Rx, .channel = BSP_LPUART1_RX_DMA_CHANNEL, .last_index = 0};
uarts[LPUART1_INDEX].dma_rx = &uart1_dma_rx;
uarts[LPUART1_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif
#ifdef BSP_LPUART1_TX_USING_DMA
static struct dma_tx_config uart1_dma_tx = {.request = kDmaRequestMuxLPUART1Tx, .channel = BSP_LPUART1_TX_DMA_CHANNEL};
uarts[LPUART1_INDEX].dma_tx = &uart1_dma_tx;
uarts[LPUART1_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif
#ifdef BSP_LPUART2_RX_USING_DMA
static struct dma_rx_config uart2_dma_rx = {.request = kDmaRequestMuxLPUART2Rx, .channel = BSP_LPUART2_RX_DMA_CHANNEL, .last_index = 0};
uarts[LPUART2_INDEX].dma_rx = &uart2_dma_rx;
uarts[LPUART2_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif
#ifdef BSP_LPUART2_TX_USING_DMA
static struct dma_tx_config uart2_dma_tx = {.request = kDmaRequestMuxLPUART2Tx, .channel = BSP_LPUART2_TX_DMA_CHANNEL};
uarts[LPUART2_INDEX].dma_tx = &uart2_dma_tx;
uarts[LPUART2_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif
#ifdef BSP_LPUART3_RX_USING_DMA
static struct dma_rx_config uart3_dma_rx = {.request = kDmaRequestMuxLPUART3Rx, .channel = BSP_LPUART3_RX_DMA_CHANNEL, .last_index = 0};
uarts[LPUART3_INDEX].dma_rx = &uart3_dma_rx;
uarts[LPUART3_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif
#ifdef BSP_LPUART3_TX_USING_DMA
static struct dma_tx_config uart3_dma_tx = {.request = kDmaRequestMuxLPUART3Tx, .channel = BSP_LPUART3_TX_DMA_CHANNEL};
uarts[LPUART3_INDEX].dma_tx = &uart3_dma_tx;
uarts[LPUART3_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif
#ifdef BSP_LPUART4_RX_USING_DMA
static struct dma_rx_config uart4_dma_rx = {.request = kDmaRequestMuxLPUART4Rx, .channel = BSP_LPUART4_RX_DMA_CHANNEL, .last_index = 0};
uarts[LPUART4_INDEX].dma_rx = &uart4_dma_rx;
uarts[LPUART4_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif
#ifdef BSP_LPUART4_TX_USING_DMA
static struct dma_tx_config uart4_dma_tx = {.request = kDmaRequestMuxLPUART4Tx, .channel = BSP_LPUART4_TX_DMA_CHANNEL};
uarts[LPUART4_INDEX].dma_tx = &uart4_dma_tx;
uarts[LPUART4_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif
#ifdef BSP_LPUART5_RX_USING_DMA
static struct dma_rx_config uart5_dma_rx = {.request = kDmaRequestMuxLPUART5Rx, .channel = BSP_LPUART5_RX_DMA_CHANNEL, .last_index = 0};
uarts[LPUART5_INDEX].dma_rx = &uart5_dma_rx;
uarts[LPUART5_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif
#ifdef BSP_LPUART5_TX_USING_DMA
static struct dma_tx_config uart5_dma_tx = {.request = kDmaRequestMuxLPUART5Tx, .channel = BSP_LPUART5_TX_DMA_CHANNEL};
uarts[LPUART5_INDEX].dma_tx = &uart5_dma_tx;
uarts[LPUART5_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif
#ifdef BSP_LPUART6_RX_USING_DMA
static struct dma_rx_config uart6_dma_rx = {.request = kDmaRequestMuxLPUART6Rx, .channel = BSP_LPUART6_RX_DMA_CHANNEL, .last_index = 0};
uarts[LPUART6_INDEX].dma_rx = &uart6_dma_rx;
uarts[LPUART6_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif
#ifdef BSP_LPUART6_TX_USING_DMA
static struct dma_tx_config uart6_dma_tx = {.request = kDmaRequestMuxLPUART6Tx, .channel = BSP_LPUART6_TX_DMA_CHANNEL};
uarts[LPUART6_INDEX].dma_tx = &uart6_dma_tx;
uarts[LPUART6_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif
#ifdef BSP_LPUART7_RX_USING_DMA
static struct dma_rx_config uart7_dma_rx = {.request = kDmaRequestMuxLPUART7Rx, .channel = BSP_LPUART7_RX_DMA_CHANNEL, .last_index = 0};
uarts[LPUART7_INDEX].dma_rx = &uart7_dma_rx;
uarts[LPUART7_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif
#ifdef BSP_LPUART7_TX_USING_DMA
static struct dma_tx_config uart7_dma_tx = {.request = kDmaRequestMuxLPUART7Tx, .channel = BSP_LPUART7_TX_DMA_CHANNEL};
uarts[LPUART7_INDEX].dma_tx = &uart7_dma_tx;
uarts[LPUART7_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif
#ifdef BSP_LPUART8_RX_USING_DMA
static struct dma_rx_config uart8_dma_rx = {.request = kDmaRequestMuxLPUART8Rx, .channel = BSP_LPUART8_RX_DMA_CHANNEL, .last_index = 0};
uarts[LPUART8_INDEX].dma_rx = &uart8_dma_rx;
uarts[LPUART8_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif
#ifdef BSP_LPUART8_TX_USING_DMA
static struct dma_tx_config uart8_dma_tx = {.request = kDmaRequestMuxLPUART8Tx, .channel = BSP_LPUART8_TX_DMA_CHANNEL};
uarts[LPUART8_INDEX].dma_tx = &uart8_dma_tx;
uarts[LPUART8_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif
}
static void uart_isr(struct imxrt_uart *uart);
#if defined(BSP_USING_LPUART1)
void LPUART1_IRQHandler(void)
{
rt_interrupt_enter();
uart_isr(&uarts[LPUART1_INDEX]);
rt_interrupt_leave();
}
#endif /* BSP_USING_LPUART1 */
#if defined(BSP_USING_LPUART2)
struct rt_serial_device serial2;
void LPUART2_IRQHandler(void)
{
rt_interrupt_enter();
uart_isr(&uarts[LPUART2_INDEX]);
rt_interrupt_leave();
}
#endif /* BSP_USING_LPUART2 */
#if defined(BSP_USING_LPUART3)
struct rt_serial_device serial3;
void LPUART3_IRQHandler(void)
{
rt_interrupt_enter();
uart_isr(&uarts[LPUART3_INDEX]);
rt_interrupt_leave();
}
#endif /* BSP_USING_LPUART3 */
#if defined(BSP_USING_LPUART4)
void LPUART4_IRQHandler(void)
{
rt_interrupt_enter();
uart_isr(&uarts[LPUART4_INDEX]);
rt_interrupt_leave();
}
#endif /* BSP_USING_LPUART4 */
#if defined(BSP_USING_LPUART5)
struct rt_serial_device serial5;
void LPUART5_IRQHandler(void)
{
rt_interrupt_enter();
uart_isr(&uarts[LPUART5_INDEX]);
rt_interrupt_leave();
}
#endif /* BSP_USING_LPUART5 */
#if defined(BSP_USING_LPUART6)
struct rt_serial_device serial6;
void LPUART6_IRQHandler(void)
{
rt_interrupt_enter();
uart_isr(&uarts[LPUART6_INDEX]);
rt_interrupt_leave();
}
#endif /* BSP_USING_LPUART6 */
#if defined(BSP_USING_LPUART7)
struct rt_serial_device serial7;
void LPUART7_IRQHandler(void)
{
rt_interrupt_enter();
uart_isr(&uarts[LPUART7_INDEX]);
rt_interrupt_leave();
}
#endif /* BSP_USING_LPUART7 */
#if defined(BSP_USING_LPUART8)
struct rt_serial_device serial8;
void LPUART8_IRQHandler(void)
{
rt_interrupt_enter();
uart_isr(&uarts[LPUART8_INDEX]);
rt_interrupt_leave();
}
#endif /* BSP_USING_LPUART8 */
static void uart_isr(struct imxrt_uart *uart)
{
RT_ASSERT(uart != RT_NULL);
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
rt_size_t total_index, recv_len;
rt_base_t level;
#endif
/* kLPUART_RxDataRegFullFlag can only cleared or set by hardware */
if (LPUART_GetStatusFlags(uart->uart_base) & kLPUART_RxDataRegFullFlag)
{
rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_RX_IND);
}
if (LPUART_GetStatusFlags(uart->uart_base) & kLPUART_RxOverrunFlag)
{
/* Clear overrun flag, otherwise the RX does not work. */
LPUART_ClearStatusFlags(uart->uart_base, kLPUART_RxOverrunFlag);
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
if ((LPUART_GetStatusFlags(uart->uart_base) & kLPUART_IdleLineFlag) && (uart->dma_rx != RT_NULL))
{
LPUART_ClearStatusFlags(uart->uart_base, kLPUART_IdleLineFlag);
level = rt_hw_interrupt_disable();
total_index = uart->serial.config.bufsz - EDMA_GetRemainingMajorLoopCount(DMA0, uart->dma_rx->channel);
if (total_index > uart->dma_rx->last_index)
{
recv_len = total_index - uart->dma_rx->last_index;
}
else
{
recv_len = total_index + (uart->serial.config.bufsz - uart->dma_rx->last_index);
}
if ((recv_len > 0) && (recv_len < uart->serial.config.bufsz))
{
uart->dma_rx->last_index = total_index;
rt_hw_interrupt_enable(level);
rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
}
else
{
rt_hw_interrupt_enable(level);
}
}
#endif
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
void edma_rx_callback(struct _edma_handle *handle, void *userData, bool transferDone, uint32_t tcds)
{
rt_size_t total_index, recv_len;
rt_base_t level;
struct imxrt_uart *uart = (struct imxrt_uart *)userData;
RT_ASSERT(uart != RT_NULL);
if (transferDone)
{
level = rt_hw_interrupt_disable();
if ((EDMA_GetChannelStatusFlags(DMA0, uart->dma_rx->channel) & kEDMA_DoneFlag) != 0U)
{
/* clear full interrupt */
EDMA_ClearChannelStatusFlags(DMA0, uart->dma_rx->channel,kEDMA_DoneFlag);
recv_len = uart->serial.config.bufsz - uart->dma_rx->last_index;
uart->dma_rx->last_index = 0;
}
else
{
/* clear half interrupt */
EDMA_ClearChannelStatusFlags(DMA0, uart->dma_rx->channel,kEDMA_InterruptFlag);
total_index = uart->serial.config.bufsz - EDMA_GetRemainingMajorLoopCount(DMA0, uart->dma_rx->channel);
if (total_index > uart->dma_rx->last_index)
{
recv_len = total_index - uart->dma_rx->last_index;
}
else
{
recv_len = total_index + (uart->serial.config.bufsz - uart->dma_rx->last_index);
}
uart->dma_rx->last_index = total_index;
}
rt_hw_interrupt_enable(level);
if (recv_len)
{
rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
}
}
}
void edma_tx_callback(LPUART_Type *base, lpuart_edma_handle_t *handle, status_t status, void *userData)
{
struct imxrt_uart *uart = (struct imxrt_uart *)userData;
RT_ASSERT(uart != RT_NULL);
if (kStatus_LPUART_TxIdle == status)
{
rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_TX_DMADONE);
}
}
static void imxrt_dma_rx_config(struct imxrt_uart *uart)
{
RT_ASSERT(uart != RT_NULL);
edma_transfer_config_t xferConfig;
struct rt_serial_rx_fifo *rx_fifo;
DMAMUX_SetSource(DMAMUX, uart->dma_rx->channel, uart->dma_rx->request);
DMAMUX_EnableChannel(DMAMUX, uart->dma_rx->channel);
EDMA_CreateHandle(&uart->dma_rx->edma, DMA0, uart->dma_rx->channel);
EDMA_SetCallback(&uart->dma_rx->edma, edma_rx_callback, uart);
rx_fifo = (struct rt_serial_rx_fifo *)uart->serial.serial_rx;
EDMA_PrepareTransfer(&xferConfig,
(void *)LPUART_GetDataRegisterAddress(uart->uart_base),
sizeof(uint8_t),
rx_fifo->buffer,
sizeof(uint8_t),
sizeof(uint8_t),
uart->serial.config.bufsz,
kEDMA_PeripheralToMemory);
EDMA_SubmitTransfer(&uart->dma_rx->edma, &xferConfig);
EDMA_EnableChannelInterrupts(DMA0, uart->dma_rx->channel, kEDMA_MajorInterruptEnable | kEDMA_HalfInterruptEnable);
EDMA_EnableAutoStopRequest(DMA0, uart->dma_rx->channel, false);
/* complement to adjust final destination address */
uart->dma_rx->edma.base->TCD[uart->dma_rx->channel].DLAST_SGA = -(uart->serial.config.bufsz);
EDMA_StartTransfer(&uart->dma_rx->edma);
LPUART_EnableRxDMA(uart->uart_base, true);
LPUART_EnableInterrupts(uart->uart_base, kLPUART_IdleLineInterruptEnable);
NVIC_SetPriority(uart->irqn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 4, 0));
EnableIRQ(uart->irqn);
LOG_D("%s dma rx config done\n", uart->name);
}
static void imxrt_dma_tx_config(struct imxrt_uart *uart)
{
RT_ASSERT(uart != RT_NULL);
DMAMUX_SetSource(DMAMUX, uart->dma_tx->channel, uart->dma_tx->request);
DMAMUX_EnableChannel(DMAMUX, uart->dma_tx->channel);
EDMA_CreateHandle(&uart->dma_tx->edma, DMA0, uart->dma_tx->channel);
LPUART_TransferCreateHandleEDMA(uart->uart_base,
&uart->dma_tx->uart_edma,
edma_tx_callback,
uart,
&uart->dma_tx->edma,
RT_NULL);
LOG_D("%s dma tx config done\n", uart->name);
}
#endif
uint32_t GetUartSrcFreq(void)
{
uint32_t freq;
/* To make it simple, we assume default PLL and divider settings, and the only variable
from application is use PLL3 source or OSC source */
if (CLOCK_GetMux(kCLOCK_UartMux) == 0) /* PLL3 div6 80M */
{
freq = (CLOCK_GetPllFreq(kCLOCK_PllUsb1) / 6U) / (CLOCK_GetDiv(kCLOCK_UartDiv) + 1U);
}
else
{
freq = CLOCK_GetOscFreq() / (CLOCK_GetDiv(kCLOCK_UartDiv) + 1U);
}
return freq;
}
static rt_err_t imxrt_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
struct imxrt_uart *uart;
lpuart_config_t config;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
uart = rt_container_of(serial, struct imxrt_uart, serial);
LPUART_GetDefaultConfig(&config);
config.baudRate_Bps = cfg->baud_rate;
switch (cfg->data_bits)
{
case DATA_BITS_7:
config.dataBitsCount = kLPUART_SevenDataBits;
break;
default:
config.dataBitsCount = kLPUART_EightDataBits;
break;
}
switch (cfg->stop_bits)
{
case STOP_BITS_2:
config.stopBitCount = kLPUART_TwoStopBit;
break;
default:
config.stopBitCount = kLPUART_OneStopBit;
break;
}
switch (cfg->parity)
{
case PARITY_ODD:
config.parityMode = kLPUART_ParityOdd;
break;
case PARITY_EVEN:
config.parityMode = kLPUART_ParityEven;
break;
default:
config.parityMode = kLPUART_ParityDisabled;
break;
}
config.enableTx = true;
config.enableRx = true;
LPUART_Init(uart->uart_base, &config, GetUartSrcFreq());
return RT_EOK;
}
static rt_err_t imxrt_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct imxrt_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct imxrt_uart, serial);
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
#endif
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
DisableIRQ(uart->irqn);
break;
case RT_DEVICE_CTRL_SET_INT:
LPUART_EnableInterrupts(uart->uart_base, kLPUART_RxDataRegFullInterruptEnable);
NVIC_SetPriority(uart->irqn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 4, 0));
EnableIRQ(uart->irqn);
break;
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
case RT_DEVICE_CTRL_CONFIG:
if (RT_DEVICE_FLAG_DMA_RX == ctrl_arg)
{
imxrt_dma_rx_config(uart);
}
else if (RT_DEVICE_FLAG_DMA_TX == ctrl_arg)
{
imxrt_dma_tx_config(uart);
}
break;
#endif
}
return RT_EOK;
}
static int imxrt_putc(struct rt_serial_device *serial, char ch)
{
struct imxrt_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct imxrt_uart, serial);
LPUART_WriteByte(uart->uart_base, ch);
while (!(LPUART_GetStatusFlags(uart->uart_base) & kLPUART_TxDataRegEmptyFlag));
return 1;
}
static int imxrt_getc(struct rt_serial_device *serial)
{
int ch;
struct imxrt_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct imxrt_uart, serial);
ch = -1;
if (LPUART_GetStatusFlags(uart->uart_base) & kLPUART_RxDataRegFullFlag)
{
ch = LPUART_ReadByte(uart->uart_base);
}
return ch;
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
rt_size_t dma_tx_xfer(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction)
{
struct imxrt_uart *uart;
lpuart_transfer_t xfer;
rt_size_t xfer_size = 0;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct imxrt_uart, serial);
if (0 != size)
{
if (RT_SERIAL_DMA_TX == direction)
{
xfer.data = buf;
xfer.dataSize = size;
if (LPUART_SendEDMA(uart->uart_base, &uart->dma_tx->uart_edma, &xfer) == kStatus_Success)
{
xfer_size = size;
}
}
}
return xfer_size;
}
#endif
static const struct rt_uart_ops imxrt_uart_ops =
{
imxrt_configure,
imxrt_control,
imxrt_putc,
imxrt_getc,
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
dma_tx_xfer
#else
RT_NULL
#endif
};
int rt_hw_uart_init(void)
{
int i;
rt_uint32_t flag;
rt_err_t ret = RT_EOK;
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
flag = RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX;
uart_get_dma_config();
for (i = 0; i < sizeof(uarts) / sizeof(uarts[0]); i++)
{
uarts[i].serial.ops = &imxrt_uart_ops;
uarts[i].serial.config = config;
ret = rt_hw_serial_register(&uarts[i].serial, uarts[i].name, flag | uarts[i].dma_flag, NULL);
}
return ret;
}
INIT_BOARD_EXPORT(rt_hw_uart_init);
#endif /* BSP_USING_LPUART */