rt-thread/bsp/imxrt/libraries/MIMXRT1020/MIMXRT1021/drivers/fsl_adc.c

396 lines
13 KiB
C

/*
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright 2016-2020 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_adc.h"
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.adc_12b1msps_sar"
#endif
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get instance number for ADC module.
*
* @param base ADC peripheral base address
*/
static uint32_t ADC_GetInstance(ADC_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to ADC bases for each instance. */
static ADC_Type *const s_adcBases[] = ADC_BASE_PTRS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to ADC clocks for each instance. */
static const clock_ip_name_t s_adcClocks[] = ADC_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t ADC_GetInstance(ADC_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_adcBases); instance++)
{
if (s_adcBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_adcBases));
return instance;
}
/*!
* brief Initialize the ADC module.
*
* param base ADC peripheral base address.
* param config Pointer to "adc_config_t" structure.
*/
void ADC_Init(ADC_Type *base, const adc_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Enable the clock. */
CLOCK_EnableClock(s_adcClocks[ADC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* ADCx_CFG */
tmp32 = base->CFG & (ADC_CFG_AVGS_MASK | ADC_CFG_ADTRG_MASK); /* Reserve AVGS and ADTRG bits. */
tmp32 |= ADC_CFG_REFSEL(config->referenceVoltageSource) | ADC_CFG_ADSTS(config->samplePeriodMode) |
ADC_CFG_ADICLK(config->clockSource) | ADC_CFG_ADIV(config->clockDriver) | ADC_CFG_MODE(config->resolution);
if (config->enableOverWrite)
{
tmp32 |= ADC_CFG_OVWREN_MASK;
}
if (config->enableLongSample)
{
tmp32 |= ADC_CFG_ADLSMP_MASK;
}
if (config->enableLowPower)
{
tmp32 |= ADC_CFG_ADLPC_MASK;
}
if (config->enableHighSpeed)
{
tmp32 |= ADC_CFG_ADHSC_MASK;
}
base->CFG = tmp32;
/* ADCx_GC */
tmp32 = base->GC & ~(ADC_GC_ADCO_MASK | ADC_GC_ADACKEN_MASK);
if (config->enableContinuousConversion)
{
tmp32 |= ADC_GC_ADCO_MASK;
}
if (config->enableAsynchronousClockOutput)
{
tmp32 |= ADC_GC_ADACKEN_MASK;
}
base->GC = tmp32;
}
/*!
* brief De-initializes the ADC module.
*
* param base ADC peripheral base address.
*/
void ADC_Deinit(ADC_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Disable the clock. */
CLOCK_DisableClock(s_adcClocks[ADC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
/*!
* brief Gets an available pre-defined settings for the converter's configuration.
*
* This function initializes the converter configuration structure with available settings. The default values are:
* code
* config->enableAsynchronousClockOutput = true;
* config->enableOverWrite = false;
* config->enableContinuousConversion = false;
* config->enableHighSpeed = false;
* config->enableLowPower = false;
* config->enableLongSample = false;
* config->referenceVoltageSource = kADC_ReferenceVoltageSourceAlt0;
* config->samplePeriodMode = kADC_SamplePeriod2or12Clocks;
* config->clockSource = kADC_ClockSourceAD;
* config->clockDriver = kADC_ClockDriver1;
* config->resolution = kADC_Resolution12Bit;
* endcode
* param base ADC peripheral base address.
* param config Pointer to the configuration structure.
*/
void ADC_GetDefaultConfig(adc_config_t *config)
{
assert(NULL != config);
/* Initializes the configure structure to zero. */
(void)memset(config, 0, sizeof(*config));
config->enableAsynchronousClockOutput = true;
config->enableOverWrite = false;
config->enableContinuousConversion = false;
config->enableHighSpeed = false;
config->enableLowPower = false;
config->enableLongSample = false;
config->referenceVoltageSource = kADC_ReferenceVoltageSourceAlt0;
config->samplePeriodMode = kADC_SamplePeriod2or12Clocks;
config->clockSource = kADC_ClockSourceAD;
config->clockDriver = kADC_ClockDriver1;
config->resolution = kADC_Resolution12Bit;
}
/*!
* brief Configures the conversion channel.
*
* This operation triggers the conversion when in software trigger mode. When in hardware trigger mode, this API
* configures the channel while the external trigger source helps to trigger the conversion.
*
* Note that the "Channel Group" has a detailed description.
* To allow sequential conversions of the ADC to be triggered by internal peripherals, the ADC has more than one
* group of status and control registers, one for each conversion. The channel group parameter indicates which group of
* registers are used, for example channel group 0 is for Group A registers and channel group 1 is for Group B
* registers. The
* channel groups are used in a "ping-pong" approach to control the ADC operation. At any point, only one of
* the channel groups is actively controlling ADC conversions. The channel group 0 is used for both software and
* hardware
* trigger modes. Channel groups 1 and greater indicate potentially multiple channel group registers for
* use only in hardware trigger mode. See the chip configuration information in the appropriate MCU reference manual
* about the
* number of SC1n registers (channel groups) specific to this device. None of the channel groups 1 or greater are used
* for software trigger operation. Therefore, writing to these channel groups does not initiate a new conversion.
* Updating the channel group 0 while a different channel group is actively controlling a conversion is allowed and
* vice versa. Writing any of the channel group registers while that specific channel group is actively controlling a
* conversion aborts the current conversion.
*
* param base ADC peripheral base address.
* param channelGroup Channel group index.
* param config Pointer to the "adc_channel_config_t" structure for the conversion channel.
*/
void ADC_SetChannelConfig(ADC_Type *base, uint32_t channelGroup, const adc_channel_config_t *config)
{
assert(NULL != config);
assert(channelGroup < (uint32_t)FSL_FEATURE_ADC_CONVERSION_CONTROL_COUNT);
uint32_t tmp32;
tmp32 = ADC_HC_ADCH(config->channelNumber);
if (config->enableInterruptOnConversionCompleted)
{
tmp32 |= ADC_HC_AIEN_MASK;
}
base->HC[channelGroup] = tmp32;
}
/*
*To complete calibration, the user must follow the below procedure:
* 1. Configure ADC_CFG with actual operating values for maximum accuracy.
* 2. Configure the ADC_GC values along with CAL bit.
* 3. Check the status of CALF bit in ADC_GS and the CAL bit in ADC_GC.
* 4. When CAL bit becomes '0' then check the CALF status and COCO[0] bit status.
*/
/*!
* brief Automates the hardware calibration.
*
* This auto calibration helps to adjust the plus/minus side gain automatically.
* Execute the calibration before using the converter. Note that the software trigger should be used
* during calibration.
*
* param base ADC peripheral base address.
*
* return Execution status.
* retval kStatus_Success Calibration is done successfully.
* retval kStatus_Fail Calibration has failed.
*/
status_t ADC_DoAutoCalibration(ADC_Type *base)
{
status_t status = kStatus_Success;
#if !(defined(FSL_FEATURE_ADC_SUPPORT_HARDWARE_TRIGGER_REMOVE) && FSL_FEATURE_ADC_SUPPORT_HARDWARE_TRIGGER_REMOVE)
bool bHWTrigger = false;
/* The calibration would be failed when in hardwar mode.
* Remember the hardware trigger state here and restore it later if the hardware trigger is enabled.*/
if (0U != (ADC_CFG_ADTRG_MASK & base->CFG))
{
bHWTrigger = true;
ADC_EnableHardwareTrigger(base, false);
}
#endif
/* Clear the CALF and launch the calibration. */
base->GS = ADC_GS_CALF_MASK; /* Clear the CALF. */
base->GC |= ADC_GC_CAL_MASK; /* Launch the calibration. */
/* Check the status of CALF bit in ADC_GS and the CAL bit in ADC_GC. */
while (0U != (base->GC & ADC_GC_CAL_MASK))
{
/* Check the CALF when the calibration is active. */
if (0U != (ADC_GetStatusFlags(base) & (uint32_t)kADC_CalibrationFailedFlag))
{
status = kStatus_Fail;
break;
}
}
/* When CAL bit becomes '0' then check the CALF status and COCO[0] bit status. */
if (0U == ADC_GetChannelStatusFlags(base, 0U)) /* Check the COCO[0] bit status. */
{
status = kStatus_Fail;
}
if (0U != (ADC_GetStatusFlags(base) & (uint32_t)kADC_CalibrationFailedFlag)) /* Check the CALF status. */
{
status = kStatus_Fail;
}
/* Clear conversion done flag. */
(void)ADC_GetChannelConversionValue(base, 0U);
#if !(defined(FSL_FEATURE_ADC_SUPPORT_HARDWARE_TRIGGER_REMOVE) && FSL_FEATURE_ADC_SUPPORT_HARDWARE_TRIGGER_REMOVE)
/* Restore original trigger mode. */
if (true == bHWTrigger)
{
ADC_EnableHardwareTrigger(base, true);
}
#endif
return status;
}
/*!
* brief Set user defined offset.
*
* param base ADC peripheral base address.
* param config Pointer to "adc_offest_config_t" structure.
*/
void ADC_SetOffsetConfig(ADC_Type *base, const adc_offest_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
tmp32 = ADC_OFS_OFS(config->offsetValue);
if (config->enableSigned)
{
tmp32 |= ADC_OFS_SIGN_MASK;
}
base->OFS = tmp32;
}
/*!
* brief Configures the hardware compare mode.
*
* The hardware compare mode provides a way to process the conversion result automatically by using hardware. Only the
* result
* in the compare range is available. To compare the range, see "adc_hardware_compare_mode_t" or the appopriate
* reference
* manual for more information.
*
* param base ADC peripheral base address.
* param Pointer to "adc_hardware_compare_config_t" structure.
*
*/
void ADC_SetHardwareCompareConfig(ADC_Type *base, const adc_hardware_compare_config_t *config)
{
uint32_t tmp32;
tmp32 = base->GC & ~(ADC_GC_ACFE_MASK | ADC_GC_ACFGT_MASK | ADC_GC_ACREN_MASK);
if (NULL == config) /* Pass "NULL" to disable the feature. */
{
base->GC = tmp32;
return;
}
/* Enable the feature. */
tmp32 |= ADC_GC_ACFE_MASK;
/* Select the hardware compare working mode. */
switch (config->hardwareCompareMode)
{
case kADC_HardwareCompareMode0:
break;
case kADC_HardwareCompareMode1:
tmp32 |= ADC_GC_ACFGT_MASK;
break;
case kADC_HardwareCompareMode2:
tmp32 |= ADC_GC_ACREN_MASK;
break;
case kADC_HardwareCompareMode3:
tmp32 |= ADC_GC_ACFGT_MASK | ADC_GC_ACREN_MASK;
break;
default:
assert(false);
break;
}
base->GC = tmp32;
/* Load the compare values. */
tmp32 = ADC_CV_CV1(config->value1) | ADC_CV_CV2(config->value2);
base->CV = tmp32;
}
/*!
* brief Configures the hardware average mode.
*
* The hardware average mode provides a way to process the conversion result automatically by using hardware. The
* multiple
* conversion results are accumulated and averaged internally making them easier to read.
*
* param base ADC peripheral base address.
* param mode Setting the hardware average mode. See "adc_hardware_average_mode_t".
*/
void ADC_SetHardwareAverageConfig(ADC_Type *base, adc_hardware_average_mode_t mode)
{
uint32_t tmp32;
if (mode == kADC_HardwareAverageDiasable)
{
base->GC &= ~ADC_GC_AVGE_MASK;
}
else
{
tmp32 = base->CFG & ~ADC_CFG_AVGS_MASK;
tmp32 |= ADC_CFG_AVGS(mode);
base->CFG = tmp32;
base->GC |= ADC_GC_AVGE_MASK; /* Enable the hardware compare. */
}
}
/*!
* brief Clears the converter's status falgs.
*
* param base ADC peripheral base address.
* param mask Mask value for the cleared flags. See "adc_status_flags_t".
*/
void ADC_ClearStatusFlags(ADC_Type *base, uint32_t mask)
{
uint32_t tmp32 = 0;
if (0U != (mask & (uint32_t)kADC_CalibrationFailedFlag))
{
tmp32 |= ADC_GS_CALF_MASK;
}
if (0U != (mask & (uint32_t)kADC_ConversionActiveFlag))
{
tmp32 |= ADC_GS_ADACT_MASK;
}
base->GS = tmp32;
}