1386 lines
50 KiB
C

/*
* Copyright 2017-2022 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_semc.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.semc"
#endif
/*! @brief Define macros for SEMC driver. */
#define SEMC_IPCOMMANDDATASIZEBYTEMAX (4U)
#define SEMC_IPCOMMANDMAGICKEY (0xA55A)
#if defined(FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT) && (FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT > 0x01U)
#define SEMC_IOCR_PINMUXBITWIDTH (0x4UL)
#else
#define SEMC_IOCR_PINMUXBITWIDTH (0x3UL)
#endif /* FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT */
#define SEMC_IOCR_NAND_CE (4UL)
#define SEMC_IOCR_NOR_CE (5UL)
#define SEMC_IOCR_NOR_CE_A8 (2UL)
#define SEMC_IOCR_PSRAM_CE (6UL)
#if defined(SEMC_IOCR_PINMUXBITWIDTH) && (SEMC_IOCR_PINMUXBITWIDTH == 0x4UL)
#define SEMC_IOCR_PSRAM_CE_A8 (6UL)
#else
#define SEMC_IOCR_PSRAM_CE_A8 (3UL)
#endif /* SEMC_IOCR_PINMUXBITWIDTH */
#define SEMC_IOCR_DBI_CSX (7UL)
#define SEMC_IOCR_DBI_CSX_A8 (4UL)
#define SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE (24U)
#define SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHMAX (28U)
#define SEMC_BMCR0_TYPICAL_WQOS (5U)
#define SEMC_BMCR0_TYPICAL_WAGE (8U)
#define SEMC_BMCR0_TYPICAL_WSH (0x40U)
#define SEMC_BMCR0_TYPICAL_WRWS (0x10U)
#define SEMC_BMCR1_TYPICAL_WQOS (5U)
#define SEMC_BMCR1_TYPICAL_WAGE (8U)
#define SEMC_BMCR1_TYPICAL_WPH (0x60U)
#define SEMC_BMCR1_TYPICAL_WBR (0x40U)
#define SEMC_BMCR1_TYPICAL_WRWS (0x24U)
#define SEMC_STARTADDRESS (0x80000000UL)
#define SEMC_ENDADDRESS (0xDFFFFFFFUL)
#define SEMC_BR_MEMSIZE_MIN (4U)
#define SEMC_BR_MEMSIZE_OFFSET (2U)
#define SEMC_BR_MEMSIZE_MAX (4UL * 1024UL * 1024UL)
#define SEMC_SDRAM_MODESETCAL_OFFSET (4U)
#define SEMC_BR_REG_NUM (9U)
#define SEMC_BYTE_NUMBIT (8U)
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get instance number for SEMC module.
*
* @param base SEMC peripheral base address
*/
static uint32_t SEMC_GetInstance(SEMC_Type *base);
/*!
* @brief Covert the input memory size to internal register set value.
*
* @param size_kbytes SEMC memory size in unit of kbytes.
* @param sizeConverted SEMC converted memory size to 0 ~ 0x1F.
* @return Execution status.
*/
static status_t SEMC_CovertMemorySize(uint32_t size_kbytes, uint8_t *sizeConverted);
/*!
* @brief Covert the external timing nanosecond to internal clock cycle.
*
* @param time_ns SEMC external time interval in unit of nanosecond.
* @param clkSrc_Hz SEMC clock source frequency.
* @return The changed internal clock cycle.
*/
static uint8_t SEMC_ConvertTiming(uint32_t time_ns, uint32_t clkSrc_Hz);
/*!
* @brief Configure IP command.
*
* @param base SEMC peripheral base address.
* @param size_bytes SEMC IP command data size.
* @return Execution status.
*/
static status_t SEMC_ConfigureIPCommand(SEMC_Type *base, uint8_t size_bytes);
/*!
* @brief Check if the IP command has finished.
*
* @param base SEMC peripheral base address.
* @return Execution status.
*/
static status_t SEMC_IsIPCommandDone(SEMC_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to SEMC clocks for each instance. */
static const clock_ip_name_t s_semcClock[FSL_FEATURE_SOC_SEMC_COUNT] = SEMC_CLOCKS;
#if (defined(SEMC_EXSC_CLOCKS))
static const clock_ip_name_t s_semcExtClock[FSL_FEATURE_SOC_SEMC_COUNT] = SEMC_EXSC_CLOCKS;
#endif /* SEMC_EXSC_CLOCKS */
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*! @brief Pointers to SEMC bases for each instance. */
static SEMC_Type *const s_semcBases[] = SEMC_BASE_PTRS;
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t SEMC_GetInstance(SEMC_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_semcBases); instance++)
{
if (s_semcBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_semcBases));
return instance;
}
static status_t SEMC_CovertMemorySize(uint32_t size_kbytes, uint8_t *sizeConverted)
{
assert(sizeConverted != NULL);
uint32_t memsize;
status_t status = kStatus_Success;
if ((size_kbytes < SEMC_BR_MEMSIZE_MIN) || (size_kbytes > SEMC_BR_MEMSIZE_MAX))
{
status = kStatus_SEMC_InvalidMemorySize;
}
else
{
*sizeConverted = 0U;
memsize = size_kbytes / 8U;
while (memsize != 0x00U)
{
memsize >>= 1U;
(*sizeConverted)++;
}
}
return status;
}
static uint8_t SEMC_ConvertTiming(uint32_t time_ns, uint32_t clkSrc_Hz)
{
assert(clkSrc_Hz != 0x00U);
uint8_t clockCycles = 0;
uint32_t tClk_ps;
clkSrc_Hz /= 1000000U;
/* Using ps for high resolution */
tClk_ps = 1000000U / clkSrc_Hz;
while (tClk_ps * clockCycles < time_ns * 1000U)
{
clockCycles++;
}
return (clockCycles == 0x00U) ? clockCycles : (clockCycles - 0x01U);
}
static status_t SEMC_ConfigureIPCommand(SEMC_Type *base, uint8_t size_bytes)
{
status_t status = kStatus_Success;
if ((size_bytes > SEMC_IPCOMMANDDATASIZEBYTEMAX) || (size_bytes == 0x00U))
{
status = kStatus_SEMC_InvalidIpcmdDataSize;
}
else
{
/* Set data size. */
/* Note: It is better to set data size as the device data port width when transferring
* device command data. But for device memory data transfer, it can be set freely.
* Note: If the data size is greater than data port width, for example, datsz = 4, data port = 16bit,
* then the 4-byte data transfer will be split into two 2-byte transfers, the slave address
* will be switched automatically according to connected device type*/
base->IPCR1 = SEMC_IPCR1_DATSZ(size_bytes);
/* Clear data size. */
base->IPCR2 = 0;
/* Set data size. */
if (size_bytes < 4U)
{
base->IPCR2 |= SEMC_IPCR2_BM3_MASK;
}
if (size_bytes < 3U)
{
base->IPCR2 |= SEMC_IPCR2_BM2_MASK;
}
if (size_bytes < 2U)
{
base->IPCR2 |= SEMC_IPCR2_BM1_MASK;
}
}
return status;
}
static status_t SEMC_IsIPCommandDone(SEMC_Type *base)
{
status_t status = kStatus_Success;
/* Poll status bit till command is done*/
while ((base->INTR & (uint32_t)SEMC_INTR_IPCMDDONE_MASK) == 0x00U)
{
};
/* Clear status bit */
base->INTR |= SEMC_INTR_IPCMDDONE_MASK;
/* Check error status */
if ((base->INTR & (uint32_t)SEMC_INTR_IPCMDERR_MASK) != 0x00U)
{
base->INTR |= SEMC_INTR_IPCMDERR_MASK;
status = kStatus_SEMC_IpCommandExecutionError;
}
return status;
}
/*!
* brief Gets the SEMC default basic configuration structure.
*
* The purpose of this API is to get the default SEMC
* configure structure for SEMC_Init(). User may use the initialized
* structure unchanged in SEMC_Init(), or modify some fields of the
* structure before calling SEMC_Init().
* Example:
code
semc_config_t config;
SEMC_GetDefaultConfig(&config);
endcode
* param config The SEMC configuration structure pointer.
*/
void SEMC_GetDefaultConfig(semc_config_t *config)
{
assert(config != NULL);
/* Initializes the configure structure to zero. */
(void)memset(config, 0, sizeof(*config));
config->queueWeight.queueaEnable = true;
semc_queuea_weight_struct_t *queueaWeight = &(config->queueWeight.queueaWeight.queueaConfig);
config->queueWeight.queuebEnable = true;
semc_queueb_weight_struct_t *queuebWeight = &(config->queueWeight.queuebWeight.queuebConfig);
/* Get default settings. */
config->dqsMode = kSEMC_Loopbackinternal;
config->cmdTimeoutCycles = 0xFF;
config->busTimeoutCycles = 0x1F;
queueaWeight->qos = SEMC_BMCR0_TYPICAL_WQOS;
queueaWeight->aging = SEMC_BMCR0_TYPICAL_WAGE;
queueaWeight->slaveHitSwith = SEMC_BMCR0_TYPICAL_WSH;
queueaWeight->slaveHitNoswitch = SEMC_BMCR0_TYPICAL_WRWS;
queuebWeight->qos = SEMC_BMCR1_TYPICAL_WQOS;
queuebWeight->aging = SEMC_BMCR1_TYPICAL_WAGE;
queuebWeight->slaveHitSwith = SEMC_BMCR1_TYPICAL_WRWS;
queuebWeight->weightPagehit = SEMC_BMCR1_TYPICAL_WPH;
queuebWeight->bankRotation = SEMC_BMCR1_TYPICAL_WBR;
}
/*!
* brief Initializes SEMC.
* This function ungates the SEMC clock and initializes SEMC.
* This function must be called before calling any other SEMC driver functions.
*
* param base SEMC peripheral base address.
* param configure The SEMC configuration structure pointer.
*/
void SEMC_Init(SEMC_Type *base, semc_config_t *configure)
{
assert(configure != NULL);
uint8_t index = 0;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Un-gate sdram controller clock. */
CLOCK_EnableClock(s_semcClock[SEMC_GetInstance(base)]);
#if (defined(SEMC_EXSC_CLOCKS))
CLOCK_EnableClock(s_semcExtClock[SEMC_GetInstance(base)]);
#endif /* SEMC_EXSC_CLOCKS */
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Initialize all BR to zero due to the default base address set. */
for (index = 0; index < SEMC_BR_REG_NUM; index++)
{
base->BR[index] = 0;
}
/* Software reset for SEMC internal logical . */
base->MCR = SEMC_MCR_SWRST_MASK;
while ((base->MCR & (uint32_t)SEMC_MCR_SWRST_MASK) != 0x00U)
{
}
/* Configure, disable module first. */
base->MCR |= SEMC_MCR_MDIS_MASK | SEMC_MCR_BTO(configure->busTimeoutCycles) |
SEMC_MCR_CTO(configure->cmdTimeoutCycles) | SEMC_MCR_DQSMD(configure->dqsMode);
if (configure->queueWeight.queueaEnable == true)
{
/* Configure Queue A for AXI bus access to SDRAM, NAND, NOR, SRAM and DBI slaves.*/
base->BMCR0 = (uint32_t)(configure->queueWeight.queueaWeight.queueaValue);
}
else
{
base->BMCR0 = 0x00U;
}
if (configure->queueWeight.queuebEnable == true)
{
/* Configure Queue B for AXI bus access to SDRAM slave. */
base->BMCR1 = (uint32_t)(configure->queueWeight.queuebWeight.queuebValue);
}
else
{
base->BMCR1 = 0x00U;
}
/* Enable SEMC. */
base->MCR &= ~SEMC_MCR_MDIS_MASK;
}
/*!
* brief Deinitializes the SEMC module and gates the clock.
* This function gates the SEMC clock. As a result, the SEMC
* module doesn't work after calling this function.
*
* param base SEMC peripheral base address.
*/
void SEMC_Deinit(SEMC_Type *base)
{
/* Disable module. Check there is no pending command before disable module. */
while ((base->STS0 & (uint32_t)SEMC_STS0_IDLE_MASK) == 0x00U)
{
;
}
base->MCR |= SEMC_MCR_MDIS_MASK | SEMC_MCR_SWRST_MASK;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Disable SDRAM clock. */
CLOCK_DisableClock(s_semcClock[SEMC_GetInstance(base)]);
#if (defined(SEMC_EXSC_CLOCKS))
CLOCK_DisableClock(s_semcExtClock[SEMC_GetInstance(base)]);
#endif /* SEMC_EXSC_CLOCKS */
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
/*!
* brief Configures SDRAM controller in SEMC.
*
* param base SEMC peripheral base address.
* param cs The chip selection.
* param config The sdram configuration.
* param clkSrc_Hz The SEMC clock frequency.
*/
status_t SEMC_ConfigureSDRAM(SEMC_Type *base, semc_sdram_cs_t cs, semc_sdram_config_t *config, uint32_t clkSrc_Hz)
{
assert(config != NULL);
assert(clkSrc_Hz > 0x00U);
assert(config->refreshBurstLen > 0x00U);
uint8_t memsize;
status_t result = kStatus_Success;
uint16_t prescale = (uint16_t)(config->tPrescalePeriod_Ns / 16U / (1000000000U / clkSrc_Hz));
uint32_t refresh;
uint32_t urgentRef;
uint32_t idle;
uint32_t mode;
uint32_t timing;
if ((config->address < SEMC_STARTADDRESS) || (config->address > SEMC_ENDADDRESS))
{
return kStatus_SEMC_InvalidBaseAddress;
}
if (config->csxPinMux == kSEMC_MUXA8)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
if (prescale > 256U)
{
return kStatus_SEMC_InvalidTimerSetting;
}
refresh = config->refreshPeriod_nsPerRow / config->tPrescalePeriod_Ns;
urgentRef = config->refreshUrgThreshold / config->tPrescalePeriod_Ns;
idle = config->tIdleTimeout_Ns / config->tPrescalePeriod_Ns;
uint32_t iocReg = base->IOCR & (~(SEMC_IOCR_PINMUXBITWIDTH << (uint32_t)config->csxPinMux));
/* Base control. */
result = SEMC_CovertMemorySize(config->memsize_kbytes, &memsize);
if (result != kStatus_Success)
{
return result;
}
base->BR[cs] = (config->address & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
#if defined(FSL_FEATURE_SEMC_SDRAM_SUPPORT_COLUMN_ADDRESS_8BIT) && (FSL_FEATURE_SEMC_SDRAM_SUPPORT_COLUMN_ADDRESS_8BIT)
if (kSEMC_SdramColunm_8bit == config->columnAddrBitNum)
{
base->SDRAMCR0 = SEMC_SDRAMCR0_PS(config->portSize) | SEMC_SDRAMCR0_BL(config->burstLen) |
SEMC_SDRAMCR0_COL8(true) | SEMC_SDRAMCR0_CL(config->casLatency);
}
else
#endif /* FSL_FEATURE_SEMC_SDRAM_SUPPORT_COLUMN_ADDRESS_8BIT */
{
base->SDRAMCR0 = SEMC_SDRAMCR0_PS(config->portSize) | SEMC_SDRAMCR0_BL(config->burstLen) |
SEMC_SDRAMCR0_COL(config->columnAddrBitNum) | SEMC_SDRAMCR0_CL(config->casLatency);
}
/* IOMUX setting. */
if (cs != kSEMC_SDRAM_CS0)
{
base->IOCR = iocReg | ((uint32_t)cs << (uint32_t)config->csxPinMux);
}
base->IOCR &= ~SEMC_IOCR_MUX_A8_MASK;
#if defined(FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL) && (FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL)
uint32_t tempDelayChain = base->DCCR;
tempDelayChain &= ~(SEMC_DCCR_SDRAMVAL_MASK | SEMC_DCCR_SDRAMEN_MASK);
/* Configure delay chain. */
base->DCCR = tempDelayChain | SEMC_DCCR_SDRAMVAL((uint32_t)config->delayChain - 0x01U) | SEMC_DCCR_SDRAMEN_MASK;
#endif /* FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL */
timing = SEMC_SDRAMCR1_PRE2ACT(SEMC_ConvertTiming(config->tPrecharge2Act_Ns, clkSrc_Hz));
timing |= SEMC_SDRAMCR1_ACT2RW(SEMC_ConvertTiming(config->tAct2ReadWrite_Ns, clkSrc_Hz));
timing |= SEMC_SDRAMCR1_RFRC(SEMC_ConvertTiming(config->tRefreshRecovery_Ns, clkSrc_Hz));
timing |= SEMC_SDRAMCR1_WRC(SEMC_ConvertTiming(config->tWriteRecovery_Ns, clkSrc_Hz));
timing |= SEMC_SDRAMCR1_CKEOFF(SEMC_ConvertTiming(config->tCkeOff_Ns, clkSrc_Hz));
timing |= SEMC_SDRAMCR1_ACT2PRE(SEMC_ConvertTiming(config->tAct2Prechage_Ns, clkSrc_Hz));
/* SDRAMCR1 timing setting. */
base->SDRAMCR1 = timing;
timing = SEMC_SDRAMCR2_SRRC(SEMC_ConvertTiming(config->tSelfRefRecovery_Ns, clkSrc_Hz));
timing |= SEMC_SDRAMCR2_REF2REF(SEMC_ConvertTiming(config->tRefresh2Refresh_Ns, clkSrc_Hz));
timing |= SEMC_SDRAMCR2_ACT2ACT(SEMC_ConvertTiming(config->tAct2Act_Ns, clkSrc_Hz)) | SEMC_SDRAMCR2_ITO(idle);
/* SDRAMCR2 timing setting. */
base->SDRAMCR2 = timing;
/* SDRAMCR3 timing setting. */
base->SDRAMCR3 = SEMC_SDRAMCR3_REBL((uint32_t)config->refreshBurstLen - 1UL) |
/* N * 16 * 1s / clkSrc_Hz = config->tPrescalePeriod_Ns */
SEMC_SDRAMCR3_PRESCALE(prescale) | SEMC_SDRAMCR3_RT(refresh - 1UL) | SEMC_SDRAMCR3_UT(urgentRef);
SEMC->IPCR1 = 0x2U;
SEMC->IPCR2 = 0U;
result =
SEMC_SendIPCommand(base, kSEMC_MemType_SDRAM, config->address, (uint32_t)kSEMC_SDRAMCM_Prechargeall, 0, NULL);
if (result != kStatus_Success)
{
return result;
}
result =
SEMC_SendIPCommand(base, kSEMC_MemType_SDRAM, config->address, (uint32_t)kSEMC_SDRAMCM_AutoRefresh, 0, NULL);
if (result != kStatus_Success)
{
return result;
}
result =
SEMC_SendIPCommand(base, kSEMC_MemType_SDRAM, config->address, (uint32_t)kSEMC_SDRAMCM_AutoRefresh, 0, NULL);
if (result != kStatus_Success)
{
return result;
}
/* Mode setting value. */
mode = (uint32_t)config->burstLen | (((uint32_t)config->casLatency) << SEMC_SDRAM_MODESETCAL_OFFSET);
result =
SEMC_SendIPCommand(base, kSEMC_MemType_SDRAM, config->address, (uint32_t)kSEMC_SDRAMCM_Modeset, mode, NULL);
if (result != kStatus_Success)
{
return result;
}
/* Enables refresh */
base->SDRAMCR3 |= SEMC_SDRAMCR3_REN_MASK;
return kStatus_Success;
}
/*!
* brief Configures NAND controller in SEMC.
*
* param base SEMC peripheral base address.
* param config The nand configuration.
* param clkSrc_Hz The SEMC clock frequency.
*/
status_t SEMC_ConfigureNAND(SEMC_Type *base, semc_nand_config_t *config, uint32_t clkSrc_Hz)
{
assert(config != NULL);
assert(config->timingConfig != NULL);
uint8_t memsize;
status_t result;
uint32_t timing;
if ((config->axiAddress < SEMC_STARTADDRESS) || (config->axiAddress > SEMC_ENDADDRESS))
{
return kStatus_SEMC_InvalidBaseAddress;
}
if (config->cePinMux == kSEMC_MUXRDY)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
/* Disable SEMC module during configuring control registers. */
base->MCR |= SEMC_MCR_MDIS_MASK;
uint32_t iocReg =
base->IOCR & (~((SEMC_IOCR_PINMUXBITWIDTH << (uint32_t)config->cePinMux) | SEMC_IOCR_MUX_RDY_MASK));
/* Base control. */
if (config->rdyactivePolarity == kSEMC_RdyActivehigh)
{
base->MCR |= SEMC_MCR_WPOL1_MASK;
}
else
{
base->MCR &= ~SEMC_MCR_WPOL1_MASK;
}
result = SEMC_CovertMemorySize(config->axiMemsize_kbytes, &memsize);
if (result != kStatus_Success)
{
return result;
}
base->BR[4] = (config->axiAddress & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
result = SEMC_CovertMemorySize(config->ipgMemsize_kbytes, &memsize);
if (result != kStatus_Success)
{
return result;
}
base->BR[8] = (config->ipgAddress & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
/* IOMUX setting. */
if ((uint32_t)config->cePinMux != 0x00U)
{
base->IOCR = iocReg | (SEMC_IOCR_NAND_CE << (uint32_t)config->cePinMux);
}
else
{
base->IOCR = iocReg | (1UL << (uint32_t)config->cePinMux);
}
base->NANDCR0 = SEMC_NANDCR0_PS(config->portSize) | SEMC_NANDCR0_BL(config->burstLen) |
SEMC_NANDCR0_EDO(config->edoModeEnabled) | SEMC_NANDCR0_COL(config->columnAddrBitNum);
timing = SEMC_NANDCR1_CES(SEMC_ConvertTiming(config->timingConfig->tCeSetup_Ns, clkSrc_Hz));
timing |= SEMC_NANDCR1_CEH(SEMC_ConvertTiming(config->timingConfig->tCeHold_Ns, clkSrc_Hz));
timing |= SEMC_NANDCR1_WEL(SEMC_ConvertTiming(config->timingConfig->tWeLow_Ns, clkSrc_Hz));
timing |= SEMC_NANDCR1_WEH(SEMC_ConvertTiming(config->timingConfig->tWeHigh_Ns, clkSrc_Hz));
timing |= SEMC_NANDCR1_REL(SEMC_ConvertTiming(config->timingConfig->tReLow_Ns, clkSrc_Hz));
timing |= SEMC_NANDCR1_REH(SEMC_ConvertTiming(config->timingConfig->tReHigh_Ns, clkSrc_Hz));
timing |= SEMC_NANDCR1_TA(SEMC_ConvertTiming(config->timingConfig->tTurnAround_Ns, clkSrc_Hz));
timing |= SEMC_NANDCR1_CEITV(SEMC_ConvertTiming(config->timingConfig->tCeInterval_Ns, clkSrc_Hz));
/* NANDCR1 timing setting. */
base->NANDCR1 = timing;
timing = SEMC_NANDCR2_TWHR(SEMC_ConvertTiming(config->timingConfig->tWehigh2Relow_Ns, clkSrc_Hz));
timing |= SEMC_NANDCR2_TRHW(SEMC_ConvertTiming(config->timingConfig->tRehigh2Welow_Ns, clkSrc_Hz));
timing |= SEMC_NANDCR2_TADL(SEMC_ConvertTiming(config->timingConfig->tAle2WriteStart_Ns, clkSrc_Hz));
timing |= SEMC_NANDCR2_TRR(SEMC_ConvertTiming(config->timingConfig->tReady2Relow_Ns, clkSrc_Hz));
timing |= SEMC_NANDCR2_TWB(SEMC_ConvertTiming(config->timingConfig->tWehigh2Busy_Ns, clkSrc_Hz));
/* NANDCR2 timing setting. */
base->NANDCR2 = timing;
/* NANDCR3 timing setting. */
base->NANDCR3 = (uint32_t)config->arrayAddrOption;
/* Enables SEMC module after configuring control registers completely. */
base->MCR &= ~SEMC_MCR_MDIS_MASK;
return kStatus_Success;
}
/*!
* brief Configures NOR controller in SEMC.
*
* param base SEMC peripheral base address.
* param config The nor configuration.
* param clkSrc_Hz The SEMC clock frequency.
*/
status_t SEMC_ConfigureNOR(SEMC_Type *base, semc_nor_config_t *config, uint32_t clkSrc_Hz)
{
assert(config != NULL);
uint8_t memsize;
status_t result;
uint32_t timing;
if ((config->address < SEMC_STARTADDRESS) || (config->address > SEMC_ENDADDRESS))
{
return kStatus_SEMC_InvalidBaseAddress;
}
uint32_t iocReg = base->IOCR & (~(SEMC_IOCR_PINMUXBITWIDTH << (uint32_t)config->cePinMux));
uint32_t muxCe = (config->cePinMux == kSEMC_MUXRDY) ?
(SEMC_IOCR_NOR_CE - 1U) :
((config->cePinMux == kSEMC_MUXA8) ? SEMC_IOCR_NOR_CE_A8 : SEMC_IOCR_NOR_CE);
/* IOMUX setting. */
base->IOCR = iocReg | (muxCe << (uint32_t)config->cePinMux);
/* Address bit setting. */
if (config->addrPortWidth > SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE)
{
if (config->addrPortWidth >= (SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 1U))
{
/* Address bit 24 (A24) */
base->IOCR &= ~(uint32_t)SEMC_IOCR_MUX_CSX0_MASK;
if (config->cePinMux == kSEMC_MUXCSX0)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
}
if (config->addrPortWidth >= (SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 2U))
{
/* Address bit 25 (A25) */
base->IOCR &= ~(uint32_t)SEMC_IOCR_MUX_CSX1_MASK;
if (config->cePinMux == kSEMC_MUXCSX1)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
}
if (config->addrPortWidth >= (SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 3U))
{
/* Address bit 26 (A26) */
base->IOCR &= ~(uint32_t)SEMC_IOCR_MUX_CSX2_MASK;
if (config->cePinMux == kSEMC_MUXCSX2)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
}
if (config->addrPortWidth >= (SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 4U))
{
if (config->addr27 == kSEMC_NORA27_MUXCSX3)
{
/* Address bit 27 (A27) */
base->IOCR &= ~(uint32_t)SEMC_IOCR_MUX_CSX3_MASK;
}
else if (config->addr27 == kSEMC_NORA27_MUXRDY)
{
base->IOCR |= SEMC_IOCR_MUX_RDY_MASK;
}
else
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
if (config->cePinMux == kSEMC_MUXCSX3)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
}
if (config->addrPortWidth > SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHMAX)
{
return kStatus_SEMC_InvalidAddressPortWidth;
}
}
/* Base control. */
if (config->rdyactivePolarity == kSEMC_RdyActivehigh)
{
base->MCR |= SEMC_MCR_WPOL0_MASK;
}
else
{
base->MCR &= ~SEMC_MCR_WPOL0_MASK;
}
result = SEMC_CovertMemorySize(config->memsize_kbytes, &memsize);
if (result != kStatus_Success)
{
return result;
}
base->BR[5] = (config->address & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
base->NORCR0 = SEMC_NORCR0_PS(config->portSize) | SEMC_NORCR0_BL(config->burstLen) |
SEMC_NORCR0_AM(config->addrMode) | SEMC_NORCR0_ADVP(config->advActivePolarity) |
SEMC_NORCR0_COL(config->columnAddrBitNum);
#if defined(FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL) && (FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL)
uint32_t tempDelayChain = base->DCCR;
tempDelayChain &= ~(SEMC_DCCR_NORVAL_MASK | SEMC_DCCR_NOREN_MASK);
/* Configure delay chain. */
base->DCCR = tempDelayChain | SEMC_DCCR_NORVAL((uint32_t)config->delayChain - 0x01U) | SEMC_DCCR_NOREN_MASK;
#endif /* FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL */
timing = SEMC_NORCR1_CES(SEMC_ConvertTiming(config->tCeSetup_Ns, clkSrc_Hz));
timing |= SEMC_NORCR1_CEH(SEMC_ConvertTiming(config->tCeHold_Ns, clkSrc_Hz));
timing |= SEMC_NORCR1_AS(SEMC_ConvertTiming(config->tAddrSetup_Ns, clkSrc_Hz));
timing |= SEMC_NORCR1_AH(SEMC_ConvertTiming(config->tAddrHold_Ns, clkSrc_Hz));
timing |= SEMC_NORCR1_WEL(SEMC_ConvertTiming(config->tWeLow_Ns, clkSrc_Hz));
timing |= SEMC_NORCR1_WEH(SEMC_ConvertTiming(config->tWeHigh_Ns, clkSrc_Hz));
timing |= SEMC_NORCR1_REL(SEMC_ConvertTiming(config->tReLow_Ns, clkSrc_Hz));
timing |= SEMC_NORCR1_REH(SEMC_ConvertTiming(config->tReHigh_Ns, clkSrc_Hz));
/* NORCR1 timing setting. */
base->NORCR1 = timing;
timing = SEMC_NORCR2_CEITV(SEMC_ConvertTiming(config->tCeInterval_Ns, clkSrc_Hz));
#if defined(FSL_FEATURE_SEMC_HAS_NOR_WDS_TIME) && (FSL_FEATURE_SEMC_HAS_NOR_WDS_TIME)
timing |= SEMC_NORCR2_WDS(SEMC_ConvertTiming(config->tWriteSetup_Ns, clkSrc_Hz));
#endif /* FSL_FEATURE_SEMC_HAS_NOR_WDS_TIME */
#if defined(FSL_FEATURE_SEMC_HAS_NOR_WDH_TIME) && (FSL_FEATURE_SEMC_HAS_NOR_WDH_TIME)
timing |= SEMC_NORCR2_WDH(SEMC_ConvertTiming(config->tWriteHold_Ns, clkSrc_Hz));
#endif /* FSL_FEATURE_SEMC_HAS_NOR_WDH_TIME */
timing |= SEMC_NORCR2_TA(SEMC_ConvertTiming(config->tTurnAround_Ns, clkSrc_Hz));
timing |= SEMC_NORCR2_AWDH((uint32_t)SEMC_ConvertTiming(config->tAddr2WriteHold_Ns, clkSrc_Hz) + 0x01UL);
#if defined(FSL_FEATURE_SEMC_HAS_NOR_LC_TIME) && (FSL_FEATURE_SEMC_HAS_NOR_LC_TIME)
timing |= SEMC_NORCR2_LC(config->latencyCount);
#endif
#if defined(FSL_FEATURE_SEMC_HAS_NOR_RD_TIME) && (FSL_FEATURE_SEMC_HAS_NOR_RD_TIME)
timing |= SEMC_NORCR2_RD((uint32_t)config->readCycle - 0x01UL);
#endif
/* NORCR2 timing setting. */
base->NORCR2 = timing;
return SEMC_ConfigureIPCommand(base, ((uint8_t)config->portSize + 1U));
}
/*!
* brief Configures SRAM controller in SEMC, which can be used only for specific chip selection CS0.
*
* param base SEMC peripheral base address.
* param config The sram configuration.
* param clkSrc_Hz The SEMC clock frequency.
*/
status_t SEMC_ConfigureSRAM(SEMC_Type *base, semc_sram_config_t *config, uint32_t clkSrc_Hz)
{
return SEMC_ConfigureSRAMWithChipSelection(base, kSEMC_SRAM_CS0, config, clkSrc_Hz);
}
/*!
* brief Configures SRAM controller in SEMC, which can be used up to four chip selections CS0/CS1/CS2/CS3..
*
* param base SEMC peripheral base address.
* param cs The chip selection.
* param config The sram configuration.
* param clkSrc_Hz The SEMC clock frequency.
*/
status_t SEMC_ConfigureSRAMWithChipSelection(SEMC_Type *base,
semc_sram_cs_t cs,
semc_sram_config_t *config,
uint32_t clkSrc_Hz)
{
assert(config != NULL);
uint32_t tempBRVal;
uint32_t timing;
uint8_t memsize;
status_t result = kStatus_Success;
if ((config->address < SEMC_STARTADDRESS) || (config->address > SEMC_ENDADDRESS))
{
return kStatus_SEMC_InvalidBaseAddress;
}
uint32_t iocReg = base->IOCR & (~(SEMC_IOCR_PINMUXBITWIDTH << (uint32_t)config->cePinMux));
uint32_t muxCe = (config->cePinMux == kSEMC_MUXRDY) ?
(SEMC_IOCR_PSRAM_CE - 1U) :
((config->cePinMux == kSEMC_MUXA8) ? SEMC_IOCR_PSRAM_CE_A8 : SEMC_IOCR_PSRAM_CE);
/* IOMUX setting. */
base->IOCR = iocReg | (muxCe << (uint32_t)config->cePinMux);
/* Address bit setting. */
if (config->addrPortWidth > SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE)
{
if (config->addrPortWidth >= (SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 1U))
{
/* Address bit 24 (A24) */
base->IOCR &= ~(uint32_t)SEMC_IOCR_MUX_CSX0_MASK;
if (config->cePinMux == kSEMC_MUXCSX0)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
}
if (config->addrPortWidth >= (SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 2U))
{
/* Address bit 25 (A25) */
base->IOCR &= ~(uint32_t)SEMC_IOCR_MUX_CSX1_MASK;
if (config->cePinMux == kSEMC_MUXCSX1)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
}
if (config->addrPortWidth >= (SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 3U))
{
/* Address bit 26 (A26) */
base->IOCR &= ~(uint32_t)SEMC_IOCR_MUX_CSX2_MASK;
if (config->cePinMux == kSEMC_MUXCSX2)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
}
if (config->addrPortWidth >= (SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 4U))
{
if (config->addr27 == kSEMC_NORA27_MUXCSX3)
{
/* Address bit 27 (A27) */
base->IOCR &= ~(uint32_t)SEMC_IOCR_MUX_CSX3_MASK;
}
else if (config->addr27 == kSEMC_NORA27_MUXRDY)
{
base->IOCR |= SEMC_IOCR_MUX_RDY_MASK;
}
else
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
if (config->cePinMux == kSEMC_MUXCSX3)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
}
if (config->addrPortWidth > SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHMAX)
{
return kStatus_SEMC_InvalidAddressPortWidth;
}
}
/* Base control. */
result = SEMC_CovertMemorySize(config->memsize_kbytes, &memsize);
if (result != kStatus_Success)
{
return result;
}
tempBRVal = (config->address & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
uint32_t tempCtrlVal;
switch (cs)
{
case kSEMC_SRAM_CS0:
base->BR[6] = tempBRVal;
break;
#if defined(FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT) && (FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT > 0x01U)
case kSEMC_SRAM_CS1:
base->BR9 = tempBRVal;
break;
case kSEMC_SRAM_CS2:
base->BR10 = tempBRVal;
break;
case kSEMC_SRAM_CS3:
base->BR11 = tempBRVal;
break;
#endif /* FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT */
default:
assert(NULL);
break;
}
/* PSRAM0 SRAMCRx timing setting. */
if (kSEMC_SRAM_CS0 == cs)
{
#if defined(FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT) && (FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT > 0x01U)
/* Ready/wait(WAITEN and WAITSP) feature is only for async mode. */
if (kSEMC_AsyncMode == config->syncMode)
{
tempCtrlVal = SEMC_SRAMCR0_PS(config->portSize) |
#if defined(SEMC_SRAMCR4_SYNCEN_MASK) && (SEMC_SRAMCR4_SYNCEN_MASK)
SEMC_SRAMCR4_SYNCEN(config->syncMode) |
#endif /* SEMC_SRAMCR4_SYNCEN_MASK */
#if defined(SEMC_SRAMCR0_WAITEN_MASK) && (SEMC_SRAMCR0_WAITEN_MASK)
SEMC_SRAMCR0_WAITEN(config->waitEnable) |
#endif /* SEMC_SRAMCR0_WAITEN_MASK */
#if defined(SEMC_SRAMCR0_WAITSP_MASK) && (SEMC_SRAMCR0_WAITSP_MASK)
SEMC_SRAMCR0_WAITSP(config->waitSample) |
#endif /* SEMC_SRAMCR0_WAITSP_MASK */
SEMC_SRAMCR0_BL(config->burstLen) | SEMC_SRAMCR0_AM(config->addrMode) |
SEMC_SRAMCR0_ADVP(config->advActivePolarity) |
#if defined(SEMC_SRAMCR4_ADVH_MASK) && (SEMC_SRAMCR4_ADVH_MASK)
SEMC_SRAMCR4_ADVH(config->advLevelCtrl) |
#endif /* SEMC_SRAMCR4_ADVH_MASK */
SEMC_SRAMCR0_COL_MASK;
}
else
#endif /* FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT */
{
tempCtrlVal = SEMC_SRAMCR0_PS(config->portSize) |
#if defined(SEMC_SRAMCR4_SYNCEN_MASK) && (SEMC_SRAMCR4_SYNCEN_MASK)
SEMC_SRAMCR4_SYNCEN(config->syncMode) |
#endif /* SEMC_SRAMCR4_SYNCEN_MASK */
SEMC_SRAMCR0_BL(config->burstLen) | SEMC_SRAMCR0_AM(config->addrMode) |
SEMC_SRAMCR0_ADVP(config->advActivePolarity) |
#if defined(SEMC_SRAMCR4_ADVH_MASK) && (SEMC_SRAMCR4_ADVH_MASK)
SEMC_SRAMCR4_ADVH(config->advLevelCtrl) |
#endif /* SEMC_SRAMCR4_ADVH_MASK */
SEMC_SRAMCR0_COL_MASK;
}
base->SRAMCR0 = tempCtrlVal;
}
#if defined(FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT) && (FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT > 0x01U)
/* PSRAM1~PSRAM3 SRAMCRx timing setting. */
else
{
/* Ready/wait(WAITEN and WAITSP) feature is only for async mode. */
if (kSEMC_AsyncMode == config->syncMode)
{
tempCtrlVal = SEMC_SRAMCR4_PS(config->portSize) | SEMC_SRAMCR4_SYNCEN(config->syncMode) |
SEMC_SRAMCR4_WAITEN(config->waitEnable) | SEMC_SRAMCR4_WAITSP(config->waitSample) |
SEMC_SRAMCR4_BL(config->burstLen) | SEMC_SRAMCR4_AM(config->addrMode) |
SEMC_SRAMCR4_ADVP(config->advActivePolarity) | SEMC_SRAMCR4_ADVH(config->advLevelCtrl) |
SEMC_SRAMCR4_COL_MASK;
}
else
{
tempCtrlVal = SEMC_SRAMCR4_PS(config->portSize) | SEMC_SRAMCR4_SYNCEN(config->syncMode) |
SEMC_SRAMCR4_BL(config->burstLen) | SEMC_SRAMCR4_AM(config->addrMode) |
SEMC_SRAMCR4_ADVP(config->advActivePolarity) | SEMC_SRAMCR4_ADVH(config->advLevelCtrl) |
SEMC_SRAMCR4_COL_MASK;
}
base->SRAMCR4 = tempCtrlVal;
}
#endif /* FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT */
#if defined(FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL) && (FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL)
uint32_t tempDelayChain = base->DCCR;
/* Configure delay chain. */
switch (cs)
{
case kSEMC_SRAM_CS0:
tempDelayChain &= ~(SEMC_DCCR_SRAM0VAL_MASK | SEMC_DCCR_SRAM0EN_MASK);
base->DCCR =
tempDelayChain | SEMC_DCCR_SRAM0VAL((uint32_t)config->delayChain - 0x01U) | SEMC_DCCR_SRAM0EN_MASK;
break;
#if defined(FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT) && (FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT > 0x01U)
case kSEMC_SRAM_CS1:
SUPPRESS_FALL_THROUGH_WARNING();
case kSEMC_SRAM_CS2:
SUPPRESS_FALL_THROUGH_WARNING();
case kSEMC_SRAM_CS3:
tempDelayChain &= ~(SEMC_DCCR_SRAMXVAL_MASK | SEMC_DCCR_SRAMXEN_MASK);
base->DCCR =
tempDelayChain | SEMC_DCCR_SRAMXVAL((uint32_t)config->delayChain - 0x01U) | SEMC_DCCR_SRAMXEN_MASK;
break;
#endif /* FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT */
default:
assert(NULL);
break;
}
#endif /* FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL */
if (kSEMC_SRAM_CS0 == cs)
{
timing = SEMC_SRAMCR1_CES(SEMC_ConvertTiming(config->tCeSetup_Ns, clkSrc_Hz));
timing |= SEMC_SRAMCR1_CEH(SEMC_ConvertTiming(config->tCeHold_Ns, clkSrc_Hz));
timing |= SEMC_SRAMCR1_AS(SEMC_ConvertTiming(config->tAddrSetup_Ns, clkSrc_Hz));
timing |= SEMC_SRAMCR1_AH(SEMC_ConvertTiming(config->tAddrHold_Ns, clkSrc_Hz));
timing |= SEMC_SRAMCR1_WEL(SEMC_ConvertTiming(config->tWeLow_Ns, clkSrc_Hz));
timing |= SEMC_SRAMCR1_WEH(SEMC_ConvertTiming(config->tWeHigh_Ns, clkSrc_Hz));
timing |= SEMC_SRAMCR1_REL(SEMC_ConvertTiming(config->tReLow_Ns, clkSrc_Hz));
timing |= SEMC_SRAMCR1_REH(SEMC_ConvertTiming(config->tReHigh_Ns, clkSrc_Hz));
/* SRAMCR1 timing setting. */
base->SRAMCR1 = timing;
timing = 0x00U;
#if defined(FSL_FEATURE_SEMC_HAS_SRAM_WDS_TIME) && (FSL_FEATURE_SEMC_HAS_SRAM_WDS_TIME)
timing |= SEMC_SRAMCR2_WDS(SEMC_ConvertTiming(config->tWriteSetup_Ns, clkSrc_Hz));
#endif
#if defined(FSL_FEATURE_SEMC_HAS_SRAM_WDH_TIME) && (FSL_FEATURE_SEMC_HAS_SRAM_WDH_TIME)
timing |= SEMC_SRAMCR2_WDH((uint32_t)SEMC_ConvertTiming(config->tWriteHold_Ns, clkSrc_Hz) + 1UL);
#endif
timing |= SEMC_SRAMCR2_TA(SEMC_ConvertTiming(config->tTurnAround_Ns, clkSrc_Hz));
timing |= SEMC_SRAMCR2_AWDH(SEMC_ConvertTiming(config->tAddr2WriteHold_Ns, clkSrc_Hz));
#if defined(FSL_FEATURE_SEMC_HAS_SRAM_LC_TIME) && (FSL_FEATURE_SEMC_HAS_SRAM_LC_TIME)
timing |= SEMC_SRAMCR2_LC(config->latencyCount);
#endif
#if defined(FSL_FEATURE_SEMC_HAS_SRAM_RD_TIME) && (FSL_FEATURE_SEMC_HAS_SRAM_RD_TIME)
timing |= SEMC_SRAMCR2_RD((uint32_t)config->readCycle - 1UL);
#endif
timing |= SEMC_SRAMCR2_CEITV(SEMC_ConvertTiming(config->tCeInterval_Ns, clkSrc_Hz));
#if defined(FSL_FEATURE_SEMC_HAS_SRAM_RDH_TIME) && (FSL_FEATURE_SEMC_HAS_SRAM_RDH_TIME)
timing |= SEMC_SRAMCR2_RDH((uint32_t)SEMC_ConvertTiming(config->readHoldTime_Ns, clkSrc_Hz) + 0x01U);
#endif /* FSL_FEATURE_SEMC_HAS_SRAM_RDH_TIME */
/* SRAMCR2 timing setting. */
base->SRAMCR2 = timing;
}
#if defined(FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT) && (FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT > 0x01U)
else
{
timing = SEMC_SRAMCR5_CES(SEMC_ConvertTiming(config->tCeSetup_Ns, clkSrc_Hz));
timing |= SEMC_SRAMCR5_CEH(SEMC_ConvertTiming(config->tCeHold_Ns, clkSrc_Hz));
timing |= SEMC_SRAMCR5_AS(SEMC_ConvertTiming(config->tAddrSetup_Ns, clkSrc_Hz));
timing |= SEMC_SRAMCR5_AH(SEMC_ConvertTiming(config->tAddrHold_Ns, clkSrc_Hz));
timing |= SEMC_SRAMCR5_WEL(SEMC_ConvertTiming(config->tWeLow_Ns, clkSrc_Hz));
timing |= SEMC_SRAMCR5_WEH(SEMC_ConvertTiming(config->tWeHigh_Ns, clkSrc_Hz));
timing |= SEMC_SRAMCR5_REL(SEMC_ConvertTiming(config->tReLow_Ns, clkSrc_Hz));
timing |= SEMC_SRAMCR5_REH(SEMC_ConvertTiming(config->tReHigh_Ns, clkSrc_Hz));
/* SRAMCR5 timing setting. */
base->SRAMCR5 = timing;
timing = 0x00U;
#if defined(FSL_FEATURE_SEMC_HAS_SRAM_WDS_TIME) && (FSL_FEATURE_SEMC_HAS_SRAM_WDS_TIME)
timing = SEMC_SRAMCR6_WDS(SEMC_ConvertTiming(config->tWriteSetup_Ns, clkSrc_Hz));
#endif
#if defined(FSL_FEATURE_SEMC_HAS_SRAM_WDH_TIME) && (FSL_FEATURE_SEMC_HAS_SRAM_WDH_TIME)
timing |= SEMC_SRAMCR6_WDH((uint32_t)SEMC_ConvertTiming(config->tWriteHold_Ns, clkSrc_Hz) + 1UL);
#endif
timing |= SEMC_SRAMCR6_TA(SEMC_ConvertTiming(config->tTurnAround_Ns, clkSrc_Hz));
timing |= SEMC_SRAMCR6_AWDH(SEMC_ConvertTiming(config->tAddr2WriteHold_Ns, clkSrc_Hz));
#if defined(FSL_FEATURE_SEMC_HAS_SRAM_LC_TIME) && (FSL_FEATURE_SEMC_HAS_SRAM_LC_TIME)
timing |= SEMC_SRAMCR6_LC(config->latencyCount);
#endif
#if defined(FSL_FEATURE_SEMC_HAS_SRAM_RD_TIME) && (FSL_FEATURE_SEMC_HAS_SRAM_RD_TIME)
timing |= SEMC_SRAMCR6_RD((uint32_t)config->readCycle - 1UL);
#endif
timing |= SEMC_SRAMCR6_CEITV(SEMC_ConvertTiming(config->tCeInterval_Ns, clkSrc_Hz));
#if defined(FSL_FEATURE_SEMC_HAS_SRAM_RDH_TIME) && (FSL_FEATURE_SEMC_HAS_SRAM_RDH_TIME)
timing |= SEMC_SRAMCR6_RDH((uint32_t)SEMC_ConvertTiming(config->readHoldTime_Ns, clkSrc_Hz) + 0x01U);
#endif /* FSL_FEATURE_SEMC_HAS_SRAM_RDH_TIME */
/* SRAMCR6 timing setting. */
base->SRAMCR6 = timing;
}
#endif /* FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT */
return result;
}
/*!
* brief Configures DBI controller in SEMC.
*
* param base SEMC peripheral base address.
* param config The dbi configuration.
* param clkSrc_Hz The SEMC clock frequency.
*/
status_t SEMC_ConfigureDBI(SEMC_Type *base, semc_dbi_config_t *config, uint32_t clkSrc_Hz)
{
assert(config != NULL);
uint8_t memsize;
status_t result;
uint32_t timing;
if ((config->address < SEMC_STARTADDRESS) || (config->address > SEMC_ENDADDRESS))
{
return kStatus_SEMC_InvalidBaseAddress;
}
uint32_t iocReg = base->IOCR & (~(SEMC_IOCR_PINMUXBITWIDTH << (uint32_t)config->csxPinMux));
uint32_t muxCsx = (config->csxPinMux == kSEMC_MUXRDY) ?
(SEMC_IOCR_DBI_CSX - 1U) :
((config->csxPinMux == kSEMC_MUXA8) ? SEMC_IOCR_DBI_CSX_A8 : SEMC_IOCR_DBI_CSX);
/* IOMUX setting. */
base->IOCR = iocReg | (muxCsx << (uint32_t)config->csxPinMux);
/* Base control. */
result = SEMC_CovertMemorySize(config->memsize_kbytes, &memsize);
if (result != kStatus_Success)
{
return result;
}
base->BR[7] = (config->address & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
/* DBICR0 timing setting. */
base->DBICR0 =
SEMC_DBICR0_PS(config->portSize) | SEMC_DBICR0_BL(config->burstLen) | SEMC_DBICR0_COL(config->columnAddrBitNum);
timing = SEMC_DBICR1_CES(SEMC_ConvertTiming(config->tCsxSetup_Ns, clkSrc_Hz));
timing |= SEMC_DBICR1_CEH(SEMC_ConvertTiming(config->tCsxHold_Ns, clkSrc_Hz));
timing |= SEMC_DBICR1_WEL(SEMC_ConvertTiming(config->tWexLow_Ns, clkSrc_Hz));
timing |= SEMC_DBICR1_WEH(SEMC_ConvertTiming(config->tWexHigh_Ns, clkSrc_Hz));
timing |= SEMC_DBICR1_REL(SEMC_ConvertTiming(config->tRdxLow_Ns, clkSrc_Hz));
timing |= SEMC_DBICR1_REH(SEMC_ConvertTiming(config->tRdxHigh_Ns, clkSrc_Hz));
#if defined(SEMC_DBICR1_CEITV_MASK)
timing |= SEMC_DBICR1_CEITV(SEMC_ConvertTiming(config->tCsxInterval_Ns, clkSrc_Hz));
#endif /* SEMC_DBICR1_CEITV_MASK */
/* DBICR1 timing setting. */
base->DBICR1 = timing;
#if defined(SEMC_DBICR2_CEITV_MASK)
timing = SEMC_DBICR2_CEITV(SEMC_ConvertTiming(config->tCsxInterval_Ns, clkSrc_Hz));
/* DBICR2 timing setting. */
base->DBICR2 = timing;
#endif /* SEMC_DBICR2_CEITV_MASK */
return SEMC_ConfigureIPCommand(base, ((uint8_t)config->portSize + 1U));
}
/*!
* brief SEMC IP command access.
*
* param base SEMC peripheral base address.
* param memType SEMC memory type. refer to "semc_mem_type_t"
* param address SEMC device address.
* param command SEMC IP command.
* For NAND device, we should use the SEMC_BuildNandIPCommand to get the right nand command.
* For NOR/DBI device, take refer to "semc_ipcmd_nor_dbi_t".
* For SRAM device, take refer to "semc_ipcmd_sram_t".
* For SDRAM device, take refer to "semc_ipcmd_sdram_t".
* param write Data for write access.
* param read Data pointer for read data out.
*/
status_t SEMC_SendIPCommand(
SEMC_Type *base, semc_mem_type_t memType, uint32_t address, uint32_t command, uint32_t write, uint32_t *read)
{
uint32_t cmdMode;
bool readCmd = false;
bool writeCmd = false;
status_t result;
/* Clear status bit */
base->INTR |= SEMC_INTR_IPCMDDONE_MASK;
/* Set address. */
base->IPCR0 = address;
/* Check command mode. */
cmdMode = (uint32_t)command & 0x0FU;
switch (memType)
{
case kSEMC_MemType_NAND:
readCmd = (cmdMode == (uint32_t)kSEMC_NANDCM_CommandAddressRead) ||
(cmdMode == (uint32_t)kSEMC_NANDCM_CommandRead) || (cmdMode == (uint32_t)kSEMC_NANDCM_Read);
writeCmd = (cmdMode == (uint32_t)kSEMC_NANDCM_CommandAddressWrite) ||
(cmdMode == (uint32_t)kSEMC_NANDCM_CommandWrite) || (cmdMode == (uint32_t)kSEMC_NANDCM_Write);
break;
case kSEMC_MemType_NOR:
case kSEMC_MemType_8080:
readCmd = (cmdMode == (uint32_t)kSEMC_NORDBICM_Read);
writeCmd = (cmdMode == (uint32_t)kSEMC_NORDBICM_Write);
break;
case kSEMC_MemType_SRAM:
readCmd = (cmdMode == (uint32_t)kSEMC_SRAMCM_ArrayRead) || (cmdMode == (uint32_t)kSEMC_SRAMCM_RegRead);
writeCmd = (cmdMode == (uint32_t)kSEMC_SRAMCM_ArrayWrite) || (cmdMode == (uint32_t)kSEMC_SRAMCM_RegWrite);
break;
case kSEMC_MemType_SDRAM:
readCmd = (cmdMode == (uint32_t)kSEMC_SDRAMCM_Read);
writeCmd = (cmdMode == (uint32_t)kSEMC_SDRAMCM_Write) || (cmdMode == (uint32_t)kSEMC_SDRAMCM_Modeset);
break;
default:
assert(false);
break;
}
if (writeCmd)
{
/* Set data. */
base->IPTXDAT = write;
}
/* Set command code. */
base->IPCMD = command | SEMC_IPCMD_KEY(SEMC_IPCOMMANDMAGICKEY);
/* Wait for command done. */
result = SEMC_IsIPCommandDone(base);
if (result != kStatus_Success)
{
return result;
}
if (readCmd)
{
/* Get the read data */
*read = base->IPRXDAT;
}
return kStatus_Success;
}
/*!
* brief SEMC NAND device memory write through IP command.
*
* param base SEMC peripheral base address.
* param address SEMC NAND device address.
* param data Data for write access.
* param size_bytes Data length.
*/
status_t SEMC_IPCommandNandWrite(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t size_bytes)
{
assert(data != NULL);
status_t result = kStatus_Success;
uint16_t ipCmd;
uint32_t tempData = 0;
/* Write command built */
ipCmd = SEMC_BuildNandIPCommand(0, kSEMC_NANDAM_ColumnRow, kSEMC_NANDCM_Write);
while (size_bytes >= SEMC_IPCOMMANDDATASIZEBYTEMAX)
{
/* Configure IP command data size. */
(void)SEMC_ConfigureIPCommand(base, SEMC_IPCOMMANDDATASIZEBYTEMAX);
result = SEMC_SendIPCommand(base, kSEMC_MemType_NAND, address, ipCmd, *(uint32_t *)(void *)data, NULL);
if (result != kStatus_Success)
{
break;
}
data += SEMC_IPCOMMANDDATASIZEBYTEMAX;
size_bytes -= SEMC_IPCOMMANDDATASIZEBYTEMAX;
}
if ((result == kStatus_Success) && (size_bytes != 0x00U))
{
(void)SEMC_ConfigureIPCommand(base, (uint8_t)size_bytes);
while (size_bytes != 0x00U)
{
size_bytes--;
tempData <<= SEMC_BYTE_NUMBIT;
tempData |= data[size_bytes];
}
result = SEMC_SendIPCommand(base, kSEMC_MemType_NAND, address, ipCmd, tempData, NULL);
}
return result;
}
/*!
* brief SEMC NAND device memory read through IP command.
*
* param base SEMC peripheral base address.
* param address SEMC NAND device address.
* param data Data pointer for data read out.
* param size_bytes Data length.
*/
status_t SEMC_IPCommandNandRead(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t size_bytes)
{
assert(data != NULL);
status_t result = kStatus_Success;
uint16_t ipCmd;
uint32_t tempData = 0;
/* Configure IP command data size. */
(void)SEMC_ConfigureIPCommand(base, SEMC_IPCOMMANDDATASIZEBYTEMAX);
/* Read command built */
ipCmd = SEMC_BuildNandIPCommand(0, kSEMC_NANDAM_ColumnRow, kSEMC_NANDCM_Read);
while (size_bytes >= SEMC_IPCOMMANDDATASIZEBYTEMAX)
{
result = SEMC_SendIPCommand(base, kSEMC_MemType_NAND, address, ipCmd, 0, (uint32_t *)(void *)data);
if (result != kStatus_Success)
{
break;
}
data += SEMC_IPCOMMANDDATASIZEBYTEMAX;
size_bytes -= SEMC_IPCOMMANDDATASIZEBYTEMAX;
}
if ((result == kStatus_Success) && (size_bytes != 0x00U))
{
(void)SEMC_ConfigureIPCommand(base, (uint8_t)size_bytes);
result = SEMC_SendIPCommand(base, kSEMC_MemType_NAND, address, ipCmd, 0, &tempData);
while (size_bytes != 0x00U)
{
size_bytes--;
*(data + size_bytes) = (uint8_t)((tempData >> (SEMC_BYTE_NUMBIT * size_bytes)) & 0xFFU);
}
}
return result;
}
/*!
* brief SEMC NOR device memory read through IP command.
*
* param base SEMC peripheral base address.
* param address SEMC NOR device address.
* param data Data pointer for data read out.
* param size_bytes Data length.
*/
status_t SEMC_IPCommandNorRead(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t size_bytes)
{
assert(data != NULL);
uint32_t tempData = 0;
status_t result = kStatus_Success;
uint8_t dataSize = (uint8_t)base->NORCR0 & SEMC_NORCR0_PS_MASK;
/* Configure IP command data size. */
(void)SEMC_ConfigureIPCommand(base, SEMC_IPCOMMANDDATASIZEBYTEMAX);
while (size_bytes >= SEMC_IPCOMMANDDATASIZEBYTEMAX)
{
result = SEMC_SendIPCommand(base, kSEMC_MemType_NOR, address, (uint32_t)kSEMC_NORDBICM_Read, 0,
(uint32_t *)(void *)data);
if (result != kStatus_Success)
{
break;
}
data += SEMC_IPCOMMANDDATASIZEBYTEMAX;
size_bytes -= SEMC_IPCOMMANDDATASIZEBYTEMAX;
}
if ((result == kStatus_Success) && (size_bytes != 0x00U))
{
(void)SEMC_ConfigureIPCommand(base, (uint8_t)size_bytes);
result = SEMC_SendIPCommand(base, kSEMC_MemType_NOR, address, (uint16_t)kSEMC_NORDBICM_Read, 0, &tempData);
while (size_bytes != 0x00U)
{
size_bytes--;
*(data + size_bytes) = (uint8_t)((tempData >> (SEMC_BYTE_NUMBIT * size_bytes)) & 0xFFU);
}
}
(void)SEMC_ConfigureIPCommand(base, dataSize);
return result;
}
/*!
* brief SEMC NOR device memory write through IP command.
*
* param base SEMC peripheral base address.
* param address SEMC NOR device address.
* param data Data for write access.
* param size_bytes Data length.
*/
status_t SEMC_IPCommandNorWrite(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t size_bytes)
{
assert(data != NULL);
uint32_t tempData = 0;
status_t result = kStatus_Success;
uint8_t dataSize = (uint8_t)base->NORCR0 & SEMC_NORCR0_PS_MASK;
/* Write command built */
while (size_bytes >= SEMC_IPCOMMANDDATASIZEBYTEMAX)
{
/* Configure IP command data size. */
(void)SEMC_ConfigureIPCommand(base, SEMC_IPCOMMANDDATASIZEBYTEMAX);
result = SEMC_SendIPCommand(base, kSEMC_MemType_NOR, address, (uint16_t)kSEMC_NORDBICM_Write,
*(uint32_t *)(void *)data, NULL);
if (result != kStatus_Success)
{
break;
}
size_bytes -= SEMC_IPCOMMANDDATASIZEBYTEMAX;
data += SEMC_IPCOMMANDDATASIZEBYTEMAX;
}
if ((result == kStatus_Success) && (size_bytes != 0x00U))
{
(void)SEMC_ConfigureIPCommand(base, (uint8_t)size_bytes);
while (size_bytes != 0x00U)
{
tempData |= ((uint32_t) * (data + size_bytes - 1U) << ((size_bytes - 1U) * SEMC_BYTE_NUMBIT));
size_bytes--;
}
result = SEMC_SendIPCommand(base, kSEMC_MemType_NOR, address, (uint16_t)kSEMC_NORDBICM_Write, tempData, NULL);
}
(void)SEMC_ConfigureIPCommand(base, dataSize);
return result;
}