rt-thread/components/drivers/spi/enc28j60.c

877 lines
28 KiB
C

#include "enc28j60.h"
#define NET_TRACE
#define ETH_RX_DUMP
#define ETH_TX_DUMP
#ifdef NET_TRACE
#define NET_DEBUG rt_kprintf
#else
#define NET_DEBUG(...)
#endif /* #ifdef NET_TRACE */
struct enc28j60_tx_list_typedef
{
struct enc28j60_tx_list_typedef *prev;
struct enc28j60_tx_list_typedef *next;
rt_uint32_t addr; /* pkt addr in buffer */
rt_uint32_t len; /* pkt len */
volatile rt_bool_t free; /* 0:busy, 1:free */
};
static struct enc28j60_tx_list_typedef enc28j60_tx_list[2];
static volatile struct enc28j60_tx_list_typedef *tx_current;
static volatile struct enc28j60_tx_list_typedef *tx_ack;
static struct rt_event tx_event;
/* private enc28j60 define */
/* enc28j60 spi interface function */
static uint8_t spi_read_op(struct rt_spi_device *spi_device, uint8_t op, uint8_t address);
static void spi_write_op(struct rt_spi_device *spi_device, uint8_t op, uint8_t address, uint8_t data);
static uint8_t spi_read(struct rt_spi_device *spi_device, uint8_t address);
static void spi_write(struct rt_spi_device *spi_device, rt_uint8_t address, rt_uint8_t data);
static void enc28j60_clkout(struct rt_spi_device *spi_device, rt_uint8_t clk);
static void enc28j60_set_bank(struct rt_spi_device *spi_device, uint8_t address);
static uint32_t enc28j60_interrupt_disable(struct rt_spi_device *spi_device);
static void enc28j60_interrupt_enable(struct rt_spi_device *spi_device, uint32_t level);
static uint16_t enc28j60_phy_read(struct rt_spi_device *spi_device, rt_uint8_t address);
static void enc28j60_phy_write(struct rt_spi_device *spi_device, rt_uint8_t address, uint16_t data);
static rt_bool_t enc28j60_check_link_status(struct rt_spi_device *spi_device);
#define enc28j60_lock(dev) rt_mutex_take(&((struct net_device*)dev)->lock, RT_WAITING_FOREVER);
#define enc28j60_unlock(dev) rt_mutex_release(&((struct net_device*)dev)->lock);
static struct net_device enc28j60_dev;
static uint8_t Enc28j60Bank;
//struct rt_spi_device * spi_device;
static uint16_t NextPacketPtr;
static void _delay_us(uint32_t us)
{
volatile uint32_t len;
for (; us > 0; us --)
for (len = 0; len < 20; len++);
}
/* enc28j60 spi interface function */
static uint8_t spi_read_op(struct rt_spi_device *spi_device, uint8_t op, uint8_t address)
{
uint8_t send_buffer[2];
uint8_t recv_buffer[1];
uint32_t send_size = 1;
send_buffer[0] = op | (address & ADDR_MASK);
send_buffer[1] = 0xFF;
/* do dummy read if needed (for mac and mii, see datasheet page 29). */
if (address & 0x80)
{
send_size = 2;
}
rt_spi_send_then_recv(spi_device, send_buffer, send_size, recv_buffer, 1);
return (recv_buffer[0]);
}
static void spi_write_op(struct rt_spi_device *spi_device, uint8_t op, uint8_t address, uint8_t data)
{
uint32_t level;
uint8_t buffer[2];
level = rt_hw_interrupt_disable();
buffer[0] = op | (address & ADDR_MASK);
buffer[1] = data;
rt_spi_send(spi_device, buffer, 2);
rt_hw_interrupt_enable(level);
}
/* enc28j60 function */
static void enc28j60_clkout(struct rt_spi_device *spi_device, rt_uint8_t clk)
{
/* setup clkout: 2 is 12.5MHz: */
spi_write(spi_device, ECOCON, clk & 0x7);
}
static void enc28j60_set_bank(struct rt_spi_device *spi_device, uint8_t address)
{
/* set the bank (if needed) .*/
if ((address & BANK_MASK) != Enc28j60Bank)
{
/* set the bank. */
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, (ECON1_BSEL1 | ECON1_BSEL0));
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, (address & BANK_MASK) >> 5);
Enc28j60Bank = (address & BANK_MASK);
}
}
static uint8_t spi_read(struct rt_spi_device *spi_device, uint8_t address)
{
/* set the bank. */
enc28j60_set_bank(spi_device, address);
/* do the read. */
return spi_read_op(spi_device, ENC28J60_READ_CTRL_REG, address);
}
static void spi_write(struct rt_spi_device *spi_device, rt_uint8_t address, rt_uint8_t data)
{
/* set the bank. */
enc28j60_set_bank(spi_device, address);
/* do the write. */
spi_write_op(spi_device, ENC28J60_WRITE_CTRL_REG, address, data);
}
static uint16_t enc28j60_phy_read(struct rt_spi_device *spi_device, rt_uint8_t address)
{
uint16_t value;
/* Set the right address and start the register read operation. */
spi_write(spi_device, MIREGADR, address);
spi_write(spi_device, MICMD, MICMD_MIIRD);
_delay_us(15);
/* wait until the PHY read completes. */
while (spi_read(spi_device, MISTAT) & MISTAT_BUSY);
/* reset reading bit */
spi_write(spi_device, MICMD, 0x00);
value = spi_read(spi_device, MIRDL) | spi_read(spi_device, MIRDH) << 8;
return (value);
}
static void enc28j60_phy_write(struct rt_spi_device *spi_device, rt_uint8_t address, uint16_t data)
{
/* set the PHY register address. */
spi_write(spi_device, MIREGADR, address);
/* write the PHY data. */
spi_write(spi_device, MIWRL, data);
spi_write(spi_device, MIWRH, data >> 8);
/* wait until the PHY write completes. */
while (spi_read(spi_device, MISTAT) & MISTAT_BUSY)
{
_delay_us(15);
}
}
static uint32_t enc28j60_interrupt_disable(struct rt_spi_device *spi_device)
{
uint32_t level;
/* switch to bank 0 */
enc28j60_set_bank(spi_device, EIE);
/* get last interrupt level */
level = spi_read(spi_device, EIE);
/* disable interrutps */
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIE, level);
return level;
}
static void enc28j60_interrupt_enable(struct rt_spi_device *spi_device, uint32_t level)
{
/* switch to bank 0 */
enc28j60_set_bank(spi_device, EIE);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, EIE, level);
}
/*
* Access the PHY to determine link status
*/
static rt_bool_t enc28j60_check_link_status(struct rt_spi_device *spi_device)
{
uint16_t reg;
int duplex;
reg = enc28j60_phy_read(spi_device, PHSTAT2);
duplex = reg & PHSTAT2_DPXSTAT;
if (reg & PHSTAT2_LSTAT)
{
/* on */
return RT_TRUE;
}
else
{
/* off */
return RT_FALSE;
}
}
/************************* RT-Thread Device Interface *************************/
void enc28j60_isr(void)
{
eth_device_ready(&enc28j60_dev.parent);
NET_DEBUG("enc28j60_isr\r\n");
}
static void _tx_chain_init(void)
{
enc28j60_tx_list[0].next = &enc28j60_tx_list[1];
enc28j60_tx_list[1].next = &enc28j60_tx_list[0];
enc28j60_tx_list[0].prev = &enc28j60_tx_list[1];
enc28j60_tx_list[1].prev = &enc28j60_tx_list[0];
enc28j60_tx_list[0].addr = TXSTART_INIT;
enc28j60_tx_list[1].addr = TXSTART_INIT + MAX_TX_PACKAGE_SIZE;
enc28j60_tx_list[0].free = RT_TRUE;
enc28j60_tx_list[1].free = RT_TRUE;
tx_current = &enc28j60_tx_list[0];
tx_ack = tx_current;
}
/* initialize the interface */
static rt_err_t enc28j60_init(rt_device_t dev)
{
struct net_device *enc28j60 = (struct net_device *)dev;
struct rt_spi_device *spi_device = enc28j60->spi_device;
enc28j60_lock(dev);
_tx_chain_init();
// perform system reset
spi_write_op(spi_device, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
rt_thread_delay(RT_TICK_PER_SECOND / 50); /* delay 20ms */
NextPacketPtr = RXSTART_INIT;
// Rx start
spi_write(spi_device, ERXSTL, RXSTART_INIT & 0xFF);
spi_write(spi_device, ERXSTH, RXSTART_INIT >> 8);
// set receive pointer address
spi_write(spi_device, ERXRDPTL, RXSTOP_INIT & 0xFF);
spi_write(spi_device, ERXRDPTH, RXSTOP_INIT >> 8);
// RX end
spi_write(spi_device, ERXNDL, RXSTOP_INIT & 0xFF);
spi_write(spi_device, ERXNDH, RXSTOP_INIT >> 8);
// TX start
spi_write(spi_device, ETXSTL, TXSTART_INIT & 0xFF);
spi_write(spi_device, ETXSTH, TXSTART_INIT >> 8);
// set transmission pointer address
spi_write(spi_device, EWRPTL, TXSTART_INIT & 0xFF);
spi_write(spi_device, EWRPTH, TXSTART_INIT >> 8);
// TX end
spi_write(spi_device, ETXNDL, TXSTOP_INIT & 0xFF);
spi_write(spi_device, ETXNDH, TXSTOP_INIT >> 8);
// do bank 1 stuff, packet filter:
// For broadcast packets we allow only ARP packtets
// All other packets should be unicast only for our mac (MAADR)
//
// The pattern to match on is therefore
// Type ETH.DST
// ARP BROADCAST
// 06 08 -- ff ff ff ff ff ff -> ip checksum for theses bytes=f7f9
// in binary these poitions are:11 0000 0011 1111
// This is hex 303F->EPMM0=0x3f,EPMM1=0x30
spi_write(spi_device, ERXFCON, ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN);
// do bank 2 stuff
// enable MAC receive
spi_write(spi_device, MACON1, MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS);
// enable automatic padding to 60bytes and CRC operations
// spi_write_op(ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0|MACON3_TXCRCEN|MACON3_FRMLNEN);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0 | MACON3_TXCRCEN | MACON3_FRMLNEN | MACON3_FULDPX);
// bring MAC out of reset
// set inter-frame gap (back-to-back)
// spi_write(MABBIPG, 0x12);
spi_write(spi_device, MABBIPG, 0x15);
spi_write(spi_device, MACON4, MACON4_DEFER);
spi_write(spi_device, MACLCON2, 63);
// set inter-frame gap (non-back-to-back)
spi_write(spi_device, MAIPGL, 0x12);
spi_write(spi_device, MAIPGH, 0x0C);
// Set the maximum packet size which the controller will accept
// Do not send packets longer than MAX_FRAMELEN:
spi_write(spi_device, MAMXFLL, MAX_FRAMELEN & 0xFF);
spi_write(spi_device, MAMXFLH, MAX_FRAMELEN >> 8);
// do bank 3 stuff
// write MAC address
// NOTE: MAC address in ENC28J60 is byte-backward
spi_write(spi_device, MAADR0, enc28j60->dev_addr[5]);
spi_write(spi_device, MAADR1, enc28j60->dev_addr[4]);
spi_write(spi_device, MAADR2, enc28j60->dev_addr[3]);
spi_write(spi_device, MAADR3, enc28j60->dev_addr[2]);
spi_write(spi_device, MAADR4, enc28j60->dev_addr[1]);
spi_write(spi_device, MAADR5, enc28j60->dev_addr[0]);
/* output off */
spi_write(spi_device, ECOCON, 0x00);
// enc28j60_phy_write(PHCON1, 0x00);
enc28j60_phy_write(spi_device, PHCON1, PHCON1_PDPXMD); // full duplex
// no loopback of transmitted frames
enc28j60_phy_write(spi_device, PHCON2, PHCON2_HDLDIS);
enc28j60_set_bank(spi_device, ECON2);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON2, ECON2_AUTOINC);
// switch to bank 0
enc28j60_set_bank(spi_device, ECON1);
// enable all interrutps
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, EIE, 0xFF);
// enable packet reception
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN);
/* clock out */
enc28j60_clkout(spi_device, 2);
enc28j60_phy_write(spi_device, PHLCON, 0xD76); //0x476
rt_thread_delay(RT_TICK_PER_SECOND / 50); /* delay 20ms */
enc28j60_unlock(dev);
return RT_EOK;
}
/* control the interface */
static rt_err_t enc28j60_control(rt_device_t dev, int cmd, void *args)
{
struct net_device *enc28j60 = (struct net_device *)dev;
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args) rt_memcpy(args, enc28j60->dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* Open the ethernet interface */
static rt_err_t enc28j60_open(rt_device_t dev, uint16_t oflag)
{
return RT_EOK;
}
/* Close the interface */
static rt_err_t enc28j60_close(rt_device_t dev)
{
return RT_EOK;
}
/* Read */
static rt_size_t enc28j60_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return RT_EOK;
}
/* Write */
static rt_size_t enc28j60_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
/* ethernet device interface */
/* Transmit packet. */
static rt_err_t enc28j60_tx(rt_device_t dev, struct pbuf *p)
{
struct net_device *enc28j60 = (struct net_device *)dev;
struct rt_spi_device *spi_device = enc28j60->spi_device;
struct pbuf *q;
rt_uint32_t level;
#ifdef ETH_TX_DUMP
rt_size_t dump_count = 0;
rt_uint8_t *dump_ptr;
rt_size_t dump_i;
#endif
if (tx_current->free == RT_FALSE)
{
NET_DEBUG("[Tx] no empty buffer!\r\n");
while (tx_current->free == RT_FALSE)
{
rt_err_t result;
rt_uint32_t recved;
/* there is no block yet, wait a flag */
result = rt_event_recv(&tx_event, 0x01,
RT_EVENT_FLAG_AND | RT_EVENT_FLAG_CLEAR, RT_WAITING_FOREVER, &recved);
RT_ASSERT(result == RT_EOK);
}
NET_DEBUG("[Tx] wait empty buffer done!\r\n");
}
enc28j60_lock(dev);
/* disable enc28j60 interrupt */
level = enc28j60_interrupt_disable(spi_device);
// Set the write pointer to start of transmit buffer area
// spi_write(EWRPTL, TXSTART_INIT&0xFF);
// spi_write(EWRPTH, TXSTART_INIT>>8);
spi_write(spi_device, EWRPTL, (tx_current->addr) & 0xFF);
spi_write(spi_device, EWRPTH, (tx_current->addr) >> 8);
// Set the TXND pointer to correspond to the packet size given
tx_current->len = p->tot_len;
// spi_write(ETXNDL, (TXSTART_INIT+ p->tot_len + 1)&0xFF);
// spi_write(ETXNDH, (TXSTART_INIT+ p->tot_len + 1)>>8);
// write per-packet control byte (0x00 means use macon3 settings)
spi_write_op(spi_device, ENC28J60_WRITE_BUF_MEM, 0, 0x00);
#ifdef ETH_TX_DUMP
NET_DEBUG("tx_dump, size:%d\r\n", p->tot_len);
#endif
for (q = p; q != NULL; q = q->next)
{
uint8_t cmd = ENC28J60_WRITE_BUF_MEM;
rt_spi_send_then_send(enc28j60->spi_device, &cmd, 1, q->payload, q->len);
#ifdef ETH_RX_DUMP
dump_ptr = q->payload;
for (dump_i = 0; dump_i < q->len; dump_i++)
{
NET_DEBUG("%02x ", *dump_ptr);
if (((dump_count + 1) % 8) == 0)
{
NET_DEBUG(" ");
}
if (((dump_count + 1) % 16) == 0)
{
NET_DEBUG("\r\n");
}
dump_count++;
dump_ptr++;
}
#endif
}
#ifdef ETH_RX_DUMP
NET_DEBUG("\r\n");
#endif
// send the contents of the transmit buffer onto the network
if (tx_current == tx_ack)
{
NET_DEBUG("[Tx] stop, restart!\r\n");
// TX start
spi_write(spi_device, ETXSTL, (tx_current->addr) & 0xFF);
spi_write(spi_device, ETXSTH, (tx_current->addr) >> 8);
// TX end
spi_write(spi_device, ETXNDL, (tx_current->addr + tx_current->len) & 0xFF);
spi_write(spi_device, ETXNDH, (tx_current->addr + tx_current->len) >> 8);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS);
}
else
{
NET_DEBUG("[Tx] busy, add to chain!\r\n");
}
tx_current->free = RT_FALSE;
tx_current = tx_current->next;
/* Reset the transmit logic problem. See Rev. B4 Silicon Errata point 12. */
if ((spi_read(spi_device, EIR) & EIR_TXERIF))
{
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRST);
}
/* enable enc28j60 interrupt */
enc28j60_interrupt_enable(spi_device, level);
enc28j60_unlock(dev);
return RT_EOK;
}
/* recv packet. */
static struct pbuf *enc28j60_rx(rt_device_t dev)
{
struct net_device *enc28j60 = (struct net_device *)dev;
struct rt_spi_device *spi_device = enc28j60->spi_device;
struct pbuf *p = RT_NULL;
uint8_t eir, eir_clr;
uint32_t pk_counter;
rt_uint32_t level;
rt_uint32_t len;
rt_uint16_t rxstat;
enc28j60_lock(dev);
/* disable enc28j60 interrupt */
level = enc28j60_interrupt_disable(spi_device);
/* get EIR */
eir = spi_read(spi_device, EIR);
while (eir & ~EIR_PKTIF)
{
eir_clr = 0;
/* clear PKTIF */
if (eir & EIR_PKTIF)
{
NET_DEBUG("EIR_PKTIF\r\n");
/* switch to bank 0. */
enc28j60_set_bank(spi_device, EIE);
/* disable rx interrutps. */
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIE, EIE_PKTIE);
eir_clr |= EIR_PKTIF;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_PKTIF);
}
/* clear DMAIF */
if (eir & EIR_DMAIF)
{
NET_DEBUG("EIR_DMAIF\r\n");
eir_clr |= EIR_DMAIF;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_DMAIF);
}
/* LINK changed handler */
if (eir & EIR_LINKIF)
{
rt_bool_t link_status;
NET_DEBUG("EIR_LINKIF\r\n");
link_status = enc28j60_check_link_status(spi_device);
/* read PHIR to clear the flag */
enc28j60_phy_read(spi_device, PHIR);
eir_clr |= EIR_LINKIF;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_LINKIF);
eth_device_linkchange(&(enc28j60->parent), link_status);
}
if (eir & EIR_TXIF)
{
/* A frame has been transmitted. */
enc28j60_set_bank(spi_device, EIR);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_TXIF);
tx_ack->free = RT_TRUE;
tx_ack = tx_ack->next;
if (tx_ack->free == RT_FALSE)
{
NET_DEBUG("[tx isr] Tx chain not empty, continue send the next pkt!\r\n");
// TX start
spi_write(spi_device, ETXSTL, (tx_ack->addr) & 0xFF);
spi_write(spi_device, ETXSTH, (tx_ack->addr) >> 8);
// TX end
spi_write(spi_device, ETXNDL, (tx_ack->addr + tx_ack->len) & 0xFF);
spi_write(spi_device, ETXNDH, (tx_ack->addr + tx_ack->len) >> 8);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS);
}
else
{
NET_DEBUG("[tx isr] Tx chain empty, stop!\r\n");
}
/* set event */
rt_event_send(&tx_event, 0x01);
}
/* wake up handler */
if (eir & EIR_WOLIF)
{
NET_DEBUG("EIR_WOLIF\r\n");
eir_clr |= EIR_WOLIF;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_WOLIF);
}
/* TX Error handler */
if ((eir & EIR_TXERIF) != 0)
{
NET_DEBUG("EIR_TXERIF re-start tx chain!\r\n");
enc28j60_set_bank(spi_device, ECON1);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRST);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRST);
eir_clr |= EIR_TXERIF;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_TXERIF);
/* re-init tx chain */
_tx_chain_init();
}
/* RX Error handler */
if ((eir & EIR_RXERIF) != 0)
{
NET_DEBUG("EIR_RXERIF re-start rx!\r\n");
NextPacketPtr = RXSTART_INIT;
enc28j60_set_bank(spi_device, ECON1);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXRST);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_RXRST);
/* switch to bank 0. */
enc28j60_set_bank(spi_device, ECON1);
/* enable packet reception. */
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN);
eir_clr |= EIR_RXERIF;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_RXERIF);
}
enc28j60_set_bank(spi_device, EIR);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, eir_clr);
eir = spi_read(spi_device, EIR);
}
/* read pkt */
pk_counter = spi_read(spi_device, EPKTCNT);
if (pk_counter)
{
/* Set the read pointer to the start of the received packet. */
spi_write(spi_device, ERDPTL, (NextPacketPtr));
spi_write(spi_device, ERDPTH, (NextPacketPtr) >> 8);
/* read the next packet pointer. */
NextPacketPtr = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0);
NextPacketPtr |= spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0) << 8;
/* read the packet length (see datasheet page 43). */
len = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0); //0x54
len |= spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0) << 8; //5554
len -= 4; //remove the CRC count
// read the receive status (see datasheet page 43)
rxstat = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0);
rxstat |= ((rt_uint16_t)spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0)) << 8;
// check CRC and symbol errors (see datasheet page 44, table 7-3):
// The ERXFCON.CRCEN is set by default. Normally we should not
// need to check this.
if ((rxstat & 0x80) == 0)
{
// invalid
len = 0;
}
else
{
/* allocation pbuf */
p = pbuf_alloc(PBUF_LINK, len, PBUF_POOL);
if (p != RT_NULL)
{
struct pbuf *q;
#ifdef ETH_RX_DUMP
rt_size_t dump_count = 0;
rt_uint8_t *dump_ptr;
rt_size_t dump_i;
NET_DEBUG("rx_dump, size:%d\r\n", len);
#endif
for (q = p; q != RT_NULL; q = q->next)
{
uint8_t cmd = ENC28J60_READ_BUF_MEM;
rt_spi_send_then_recv(spi_device, &cmd, 1, q->payload, q->len);
#ifdef ETH_RX_DUMP
dump_ptr = q->payload;
for (dump_i = 0; dump_i < q->len; dump_i++)
{
NET_DEBUG("%02x ", *dump_ptr);
if (((dump_count + 1) % 8) == 0)
{
NET_DEBUG(" ");
}
if (((dump_count + 1) % 16) == 0)
{
NET_DEBUG("\r\n");
}
dump_count++;
dump_ptr++;
}
#endif
}
#ifdef ETH_RX_DUMP
NET_DEBUG("\r\n");
#endif
}
}
/* Move the RX read pointer to the start of the next received packet. */
/* This frees the memory we just read out. */
spi_write(spi_device, ERXRDPTL, (NextPacketPtr));
spi_write(spi_device, ERXRDPTH, (NextPacketPtr) >> 8);
/* decrement the packet counter indicate we are done with this packet. */
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON2, ECON2_PKTDEC);
}
else
{
/* switch to bank 0. */
enc28j60_set_bank(spi_device, ECON1);
/* enable packet reception. */
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN);
level |= EIE_PKTIE;
}
/* enable enc28j60 interrupt */
enc28j60_interrupt_enable(spi_device, level);
enc28j60_unlock(dev);
return p;
}
rt_err_t enc28j60_attach(const char *spi_device_name)
{
struct rt_spi_device *spi_device;
spi_device = (struct rt_spi_device *)rt_device_find(spi_device_name);
if (spi_device == RT_NULL)
{
NET_DEBUG("spi device %s not found!\r\n", spi_device_name);
return -RT_ENOSYS;
}
/* config spi */
{
struct rt_spi_configuration cfg;
cfg.data_width = 8;
cfg.mode = RT_SPI_MODE_0 | RT_SPI_MSB; /* SPI Compatible Modes 0 */
cfg.max_hz = 20 * 1000 * 1000; /* SPI Interface with Clock Speeds Up to 20 MHz */
rt_spi_configure(spi_device, &cfg);
} /* config spi */
memset(&enc28j60_dev, 0, sizeof(enc28j60_dev));
rt_event_init(&tx_event, "eth_tx", RT_IPC_FLAG_FIFO);
enc28j60_dev.spi_device = spi_device;
/* detect device */
{
uint16_t value;
/* perform system reset. */
spi_write_op(spi_device, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
rt_thread_delay(1); /* delay 20ms */
enc28j60_dev.emac_rev = spi_read(spi_device, EREVID);
value = enc28j60_phy_read(spi_device, PHHID2);
enc28j60_dev.phy_rev = value & 0x0F;
enc28j60_dev.phy_pn = (value >> 4) & 0x3F;
enc28j60_dev.phy_id = (enc28j60_phy_read(spi_device, PHHID1) | ((value >> 10) << 16)) << 3;
if (enc28j60_dev.phy_id != 0x00280418)
{
NET_DEBUG("ENC28J60 PHY ID not correct!\r\n");
NET_DEBUG("emac_rev:%d\r\n", enc28j60_dev.emac_rev);
NET_DEBUG("phy_rev:%02X\r\n", enc28j60_dev.phy_rev);
NET_DEBUG("phy_pn:%02X\r\n", enc28j60_dev.phy_pn);
NET_DEBUG("phy_id:%08X\r\n", enc28j60_dev.phy_id);
return RT_EIO;
}
}
/* OUI 00-04-A3 (hex): Microchip Technology, Inc. */
enc28j60_dev.dev_addr[0] = 0x00;
enc28j60_dev.dev_addr[1] = 0x04;
enc28j60_dev.dev_addr[2] = 0xA3;
/* set MAC address, only for test */
enc28j60_dev.dev_addr[3] = 0x12;
enc28j60_dev.dev_addr[4] = 0x34;
enc28j60_dev.dev_addr[5] = 0x56;
/* init rt-thread device struct */
enc28j60_dev.parent.parent.type = RT_Device_Class_NetIf;
enc28j60_dev.parent.parent.init = enc28j60_init;
enc28j60_dev.parent.parent.open = enc28j60_open;
enc28j60_dev.parent.parent.close = enc28j60_close;
enc28j60_dev.parent.parent.read = enc28j60_read;
enc28j60_dev.parent.parent.write = enc28j60_write;
enc28j60_dev.parent.parent.control = enc28j60_control;
/* init rt-thread ethernet device struct */
enc28j60_dev.parent.eth_rx = enc28j60_rx;
enc28j60_dev.parent.eth_tx = enc28j60_tx;
rt_mutex_init(&enc28j60_dev.lock, "enc28j60", RT_IPC_FLAG_FIFO);
eth_device_init(&(enc28j60_dev.parent), "e0");
return RT_EOK;
}
#ifdef RT_USING_FINSH
#include <finsh.h>
/*
* Debug routine to dump useful register contents
*/
static void enc28j60(void)
{
struct rt_spi_device *spi_device = enc28j60_dev.spi_device;
enc28j60_lock(&enc28j60_dev);
rt_kprintf("-- enc28j60 registers:\n");
rt_kprintf("HwRevID: 0x%02X\n", spi_read(spi_device, EREVID));
rt_kprintf("Cntrl: ECON1 ECON2 ESTAT EIR EIE\n");
rt_kprintf(" 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X\n",
spi_read(spi_device, ECON1),
spi_read(spi_device, ECON2),
spi_read(spi_device, ESTAT),
spi_read(spi_device, EIR),
spi_read(spi_device, EIE));
rt_kprintf("MAC : MACON1 MACON3 MACON4\n");
rt_kprintf(" 0x%02X 0x%02X 0x%02X\n",
spi_read(spi_device, MACON1),
spi_read(spi_device, MACON3),
spi_read(spi_device, MACON4));
rt_kprintf("Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n");
rt_kprintf(" 0x%04X 0x%04X 0x%04X 0x%04X ",
(spi_read(spi_device, ERXSTH) << 8) | spi_read(spi_device, ERXSTL),
(spi_read(spi_device, ERXNDH) << 8) | spi_read(spi_device, ERXNDL),
(spi_read(spi_device, ERXWRPTH) << 8) | spi_read(spi_device, ERXWRPTL),
(spi_read(spi_device, ERXRDPTH) << 8) | spi_read(spi_device, ERXRDPTL));
rt_kprintf("0x%02X 0x%02X 0x%04X\n",
spi_read(spi_device, ERXFCON),
spi_read(spi_device, EPKTCNT),
(spi_read(spi_device, MAMXFLH) << 8) | spi_read(spi_device, MAMXFLL));
rt_kprintf("Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n");
rt_kprintf(" 0x%04X 0x%04X 0x%02X 0x%02X 0x%02X\n",
(spi_read(spi_device, ETXSTH) << 8) | spi_read(spi_device, ETXSTL),
(spi_read(spi_device, ETXNDH) << 8) | spi_read(spi_device, ETXNDL),
spi_read(spi_device, MACLCON1),
spi_read(spi_device, MACLCON2),
spi_read(spi_device, MAPHSUP));
rt_kprintf("PHY : PHCON1 PHSTAT1\r\n");
rt_kprintf(" 0x%04X 0x%04X\r\n",
enc28j60_phy_read(spi_device, PHCON1),
enc28j60_phy_read(spi_device, PHSTAT1));
enc28j60_unlock(&enc28j60_dev);
}
FINSH_FUNCTION_EXPORT(enc28j60, dump enc28j60 registers);
#endif