geniusgogo 3ea1ce9e46
Fix nfs (#7194)
* fixed nfs 64bit arch fault

* change mount cmd support nfs.
2023-04-08 12:22:19 +08:00

785 lines
18 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
*/
/* @(#)xdr.c 2.1 88/07/29 4.0 RPCSRC */
/*
* Sun RPC is a product of Sun Microsystems, Inc. and is provided for
* unrestricted use provided that this legend is included on all tape
* media and as a part of the software program in whole or part. Users
* may copy or modify Sun RPC without charge, but are not authorized
* to license or distribute it to anyone else except as part of a product or
* program developed by the user.
*
* SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
* WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun RPC is provided with no support and without any obligation on the
* part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
#if !defined(lint) && defined(SCCSIDS)
static char sccsid[] = "@(#)xdr.c 1.35 87/08/12";
#endif
/*
* xdr.c, Generic XDR routines implementation.
*
* Copyright (C) 1986, Sun Microsystems, Inc.
*
* These are the "generic" xdr routines used to serialize and de-serialize
* most common data items. See xdr.h for more info on the interface to
* xdr.
*/
#include <stdio.h>
#include <stdlib.h>
#include <rpc/types.h>
#include <rpc/xdr.h>
#include <string.h>
/*
* constants specific to the xdr "protocol"
*/
#define XDR_FALSE ((long) 0)
#define XDR_TRUE ((long) 1)
#define LASTUNSIGNED ((unsigned int) 0-1)
/*
* for unit alignment
*/
static char xdr_zero[BYTES_PER_XDR_UNIT] = { 0, 0, 0, 0 };
/*
* Free a data structure using XDR
* Not a filter, but a convenient utility nonetheless
*/
void xdr_free(xdrproc_t proc, char* objp)
{
XDR x;
x.x_op = XDR_FREE;
(*proc) (&x, objp);
}
/*
* XDR nothing
*/
bool_t xdr_void( /* xdrs, addr */ )
/* XDR *xdrs; */
/* char* addr; */
{
return (TRUE);
}
/*
* XDR integers
*/
bool_t xdr_int(XDR* xdrs, int* ip)
{
if (sizeof(int) == sizeof(long)) {
return (xdr_long(xdrs, (long *) ip));
} else if (sizeof(int) < sizeof(long)) {
long l;
switch (xdrs->x_op) {
case XDR_ENCODE:
l = (long) *ip;
return XDR_PUTLONG(xdrs, &l);
case XDR_DECODE:
if (!XDR_GETLONG(xdrs, &l))
return FALSE;
*ip = (int) l;
case XDR_FREE:
return TRUE;
}
return FALSE;
} else {
return (xdr_short(xdrs, (short *) ip));
}
}
/*
* XDR unsigned integers
*/
bool_t xdr_u_int(XDR* xdrs, unsigned int* up)
{
if (sizeof(unsigned int) == sizeof(unsigned long)) {
return (xdr_u_long(xdrs, (unsigned long *) up));
} else if (sizeof(unsigned int) < sizeof(unsigned long)) {
unsigned long l;
switch (xdrs->x_op) {
case XDR_ENCODE:
l = (unsigned long) *up;
return XDR_PUTLONG(xdrs, (long*)&l);
case XDR_DECODE:
if (!XDR_GETLONG(xdrs, (long*)&l))
return FALSE;
*up = (unsigned int) l;
case XDR_FREE:
return TRUE;
}
return FALSE;
} else {
return (xdr_short(xdrs, (short *) up));
}
}
/*
* XDR long integers
* same as xdr_u_long - open coded to save a proc call!
*/
bool_t xdr_long(XDR* xdrs, long* lp)
{
if (xdrs->x_op == XDR_ENCODE
&& (sizeof(int32_t) == sizeof(long)
|| (int32_t) *lp == *lp))
return (XDR_PUTLONG(xdrs, lp));
if (xdrs->x_op == XDR_DECODE)
return (XDR_GETLONG(xdrs, lp));
if (xdrs->x_op == XDR_FREE)
return (TRUE);
return (FALSE);
}
/*
* XDR unsigned long integers
* same as xdr_long - open coded to save a proc call!
*/
bool_t xdr_u_long(XDR* xdrs, unsigned long* ulp)
{
if (xdrs->x_op == XDR_DECODE) {
long l;
if (XDR_GETLONG(xdrs, &l) == FALSE)
return FALSE;
*ulp = (uint32_t) l;
return TRUE;
}
if (xdrs->x_op == XDR_ENCODE) {
if (sizeof(uint32_t) != sizeof(unsigned long)
&& (uint32_t) *ulp != *ulp)
return FALSE;
return (XDR_PUTLONG(xdrs, (long *) ulp));
}
if (xdrs->x_op == XDR_FREE)
return (TRUE);
return (FALSE);
}
/*
* XDR long long integers
*/
bool_t xdr_longlong_t (XDR * xdrs, int64_t* llp)
{
int32_t t1, t2;
switch (xdrs->x_op)
{
case XDR_ENCODE:
t1 = (int32_t) ((*llp) >> 32);
t2 = (int32_t) (*llp);
return (XDR_PUTLONG (xdrs, &t1) && XDR_PUTLONG (xdrs, &t2));
case XDR_DECODE:
if (!XDR_GETLONG (xdrs, &t1) || !XDR_GETLONG (xdrs, &t2))
return FALSE;
*llp = ((int64_t) t1) << 32;
*llp |= (uint32_t) t2;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR unsigned long long integers
*/
bool_t xdr_u_longlong_t (XDR * xdrs, uint64_t* ullp)
{
uint32_t t1, t2;
switch (xdrs->x_op)
{
case XDR_ENCODE:
t1 = (uint32_t) ((*ullp) >> 32);
t2 = (uint32_t) (*ullp);
return (XDR_PUTLONG (xdrs, (int32_t *)&t1) &&
XDR_PUTLONG (xdrs, (int32_t *)&t2));
case XDR_DECODE:
if (!XDR_GETLONG (xdrs, (int32_t *)&t1) ||
!XDR_GETLONG (xdrs, (int32_t *)&t2))
return FALSE;
*ullp = ((uint64_t) t1) << 32;
*ullp |= t2;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR short integers
*/
bool_t xdr_short(XDR* xdrs, short* sp)
{
long l;
switch (xdrs->x_op) {
case XDR_ENCODE:
l = (long) *sp;
return (XDR_PUTLONG(xdrs, &l));
case XDR_DECODE:
if (!XDR_GETLONG(xdrs, &l)) {
return (FALSE);
}
*sp = (short) l;
return (TRUE);
case XDR_FREE:
return (TRUE);
}
return (FALSE);
}
/*
* XDR unsigned short integers
*/
bool_t xdr_u_short(XDR* xdrs, unsigned short* usp)
{
unsigned long l;
switch (xdrs->x_op) {
case XDR_ENCODE:
l = (unsigned long) * usp;
return (XDR_PUTLONG(xdrs, (long*)&l));
case XDR_DECODE:
if (!XDR_GETLONG(xdrs, (long*)&l)) {
return (FALSE);
}
*usp = (unsigned short) l;
return (TRUE);
case XDR_FREE:
return (TRUE);
}
return (FALSE);
}
/*
* XDR a char
*/
bool_t xdr_char(XDR* xdrs, char* cp)
{
int i;
i = (*cp);
if (!xdr_int(xdrs, &i)) {
return (FALSE);
}
*cp = i;
return (TRUE);
}
/*
* XDR an unsigned char
*/
bool_t xdr_u_char(XDR* xdrs, unsigned char* cp)
{
unsigned int u;
u = (*cp);
if (!xdr_u_int(xdrs, &u)) {
return (FALSE);
}
*cp = u;
return (TRUE);
}
/*
* XDR booleans
*/
bool_t xdr_bool(XDR *xdrs, bool_t *bp)
{
long lb;
switch (xdrs->x_op) {
case XDR_ENCODE:
lb = *bp ? XDR_TRUE : XDR_FALSE;
return (XDR_PUTLONG(xdrs, &lb));
case XDR_DECODE:
if (!XDR_GETLONG(xdrs, &lb)) {
return (FALSE);
}
*bp = (lb == XDR_FALSE) ? FALSE : TRUE;
return (TRUE);
case XDR_FREE:
return (TRUE);
}
return (FALSE);
}
/*
* XDR enumerations
*/
bool_t xdr_enum(XDR *xdrs, enum_t *ep)
{
enum sizecheck { SIZEVAL }; /* used to find the size of an enum */
/*
* enums are treated as ints
*/
/* LINTED */ if (sizeof (enum sizecheck) == sizeof (long)) {
return (xdr_long(xdrs, (long *)(void *)ep));
} else /* LINTED */ if (sizeof (enum sizecheck) == sizeof (int)) {
return (xdr_int(xdrs, (int *)(void *)ep));
} else /* LINTED */ if (sizeof (enum sizecheck) == sizeof (short)) {
return (xdr_short(xdrs, (short *)(void *)ep));
} else {
return (FALSE);
}
}
/*
* XDR opaque data
* Allows the specification of a fixed size sequence of opaque bytes.
* cp points to the opaque object and cnt gives the byte length.
*/
bool_t xdr_opaque(XDR *xdrs, char* cp, unsigned int cnt)
{
register unsigned int rndup;
static char crud[BYTES_PER_XDR_UNIT];
/*
* if no data we are done
*/
if (cnt == 0)
return (TRUE);
/*
* round byte count to full xdr units
*/
rndup = cnt % BYTES_PER_XDR_UNIT;
if (rndup > 0)
rndup = BYTES_PER_XDR_UNIT - rndup;
if (xdrs->x_op == XDR_DECODE) {
if (!XDR_GETBYTES(xdrs, cp, cnt)) {
return (FALSE);
}
if (rndup == 0)
return (TRUE);
return (XDR_GETBYTES(xdrs, crud, rndup));
}
if (xdrs->x_op == XDR_ENCODE) {
if (!XDR_PUTBYTES(xdrs, cp, cnt)) {
return (FALSE);
}
if (rndup == 0)
return (TRUE);
return (XDR_PUTBYTES(xdrs, xdr_zero, rndup));
}
if (xdrs->x_op == XDR_FREE) {
return (TRUE);
}
return (FALSE);
}
/*
* XDR counted bytes
* *cpp is a pointer to the bytes, *sizep is the count.
* If *cpp is NULL maxsize bytes are allocated
*/
bool_t xdr_bytes(XDR *xdrs, char** cpp, unsigned int *sizep, unsigned int maxsize)
{
register char *sp = *cpp; /* sp is the actual string pointer */
register unsigned int nodesize;
/*
* first deal with the length since xdr bytes are counted
*/
if (!xdr_u_int(xdrs, sizep)) {
return (FALSE);
}
nodesize = *sizep;
if ((nodesize > maxsize) && (xdrs->x_op != XDR_FREE)) {
return (FALSE);
}
/*
* now deal with the actual bytes
*/
switch (xdrs->x_op) {
case XDR_DECODE:
if (nodesize == 0) {
return (TRUE);
}
if (sp == NULL) {
*cpp = sp = (char *) rt_malloc(nodesize);
}
if (sp == NULL) {
rt_kprintf("xdr_bytes: out of memory\n");
return (FALSE);
}
/* fall into ... */
case XDR_ENCODE:
return (xdr_opaque(xdrs, sp, nodesize));
case XDR_FREE:
if (sp != NULL) {
rt_free(sp);
*cpp = NULL;
}
return (TRUE);
}
return (FALSE);
}
/*
* Implemented here due to commonality of the object.
*/
bool_t xdr_netobj(XDR *xdrs, struct netobj *np)
{
return (xdr_bytes(xdrs, &np->n_bytes, &np->n_len, MAX_NETOBJ_SZ));
}
/*
* XDR a descriminated union
* Support routine for discriminated unions.
* You create an array of xdrdiscrim structures, terminated with
* an entry with a null procedure pointer. The routine gets
* the discriminant value and then searches the array of xdrdiscrims
* looking for that value. It calls the procedure given in the xdrdiscrim
* to handle the discriminant. If there is no specific routine a default
* routine may be called.
* If there is no specific or default routine an error is returned.
*/
bool_t xdr_union(XDR* xdrs, enum_t* dscmp, char* unp, const struct xdr_discrim* choices, xdrproc_t dfault)
{
register enum_t dscm;
/*
* we deal with the discriminator; it's an enum
*/
if (!xdr_enum(xdrs, dscmp)) {
return (FALSE);
}
dscm = *dscmp;
/*
* search choices for a value that matches the discriminator.
* if we find one, execute the xdr routine for that value.
*/
for (; choices->proc != NULL_xdrproc_t; choices++) {
if (choices->value == dscm)
return ((*(choices->proc)) (xdrs, unp, LASTUNSIGNED));
}
/*
* no match - execute the default xdr routine if there is one
*/
return ((dfault == NULL_xdrproc_t) ? FALSE :
(*dfault) (xdrs, unp, LASTUNSIGNED));
}
/*
* Non-portable xdr primitives.
* Care should be taken when moving these routines to new architectures.
*/
/*
* XDR null terminated ASCII strings
* xdr_string deals with "C strings" - arrays of bytes that are
* terminated by a NULL character. The parameter cpp references a
* pointer to storage; If the pointer is null, then the necessary
* storage is allocated. The last parameter is the max allowed length
* of the string as specified by a protocol.
*/
bool_t xdr_string(XDR *xdrs, char **cpp, unsigned int maxsize)
{
register char *sp = *cpp; /* sp is the actual string pointer */
unsigned int size;
unsigned int nodesize;
/*
* first deal with the length since xdr strings are counted-strings
*/
switch (xdrs->x_op) {
case XDR_FREE:
if (sp == NULL) {
return (TRUE); /* already free */
}
/* fall through... */
case XDR_ENCODE:
size = strlen(sp);
break;
}
if (!xdr_u_int(xdrs, &size)) {
return (FALSE);
}
if (size > maxsize) {
return (FALSE);
}
nodesize = size + 1;
/*
* now deal with the actual bytes
*/
switch (xdrs->x_op) {
case XDR_DECODE:
if (nodesize == 0) {
return (TRUE);
}
if (sp == NULL)
*cpp = sp = (char *) rt_malloc(nodesize);
if (sp == NULL) {
rt_kprintf("xdr_string: out of memory\n");
return (FALSE);
}
sp[size] = 0;
/* fall into ... */
case XDR_ENCODE:
return (xdr_opaque(xdrs, sp, size));
case XDR_FREE:
rt_free(sp);
*cpp = NULL;
return (TRUE);
}
return (FALSE);
}
/*
* Wrapper for xdr_string that can be called directly from
* routines like clnt_call
*/
bool_t xdr_wrapstring(XDR *xdrs, char **cpp)
{
if (xdr_string(xdrs, cpp, LASTUNSIGNED)) {
return (TRUE);
}
return (FALSE);
}
/*
* XDR an array of arbitrary elements
* *addrp is a pointer to the array, *sizep is the number of elements.
* If addrp is NULL (*sizep * elsize) bytes are allocated.
* elsize is the size (in bytes) of each element, and elproc is the
* xdr procedure to call to handle each element of the array.
*/
bool_t xdr_array(XDR *xdrs, char **addrp, unsigned int *sizep, unsigned int maxsize, unsigned int elsize, xdrproc_t elproc)
{
register unsigned int i;
register char* target = *addrp;
register unsigned int c; /* the actual element count */
register bool_t stat = TRUE;
register unsigned int nodesize;
/* like strings, arrays are really counted arrays */
if (!xdr_u_int(xdrs, sizep)) {
return (FALSE);
}
c = *sizep;
if ((c > maxsize) && (xdrs->x_op != XDR_FREE)) {
return (FALSE);
}
/* duh, look for integer overflow (fefe) */
{
unsigned int i;
nodesize = 0;
for (i=c; i; --i) {
unsigned int tmp=nodesize+elsize;
if (tmp<nodesize) /* overflow */
return FALSE;
nodesize=tmp;
}
}
/*
* if we are deserializing, we may need to allocate an array.
* We also save time by checking for a null array if we are freeing.
*/
if (target == NULL)
switch (xdrs->x_op) {
case XDR_DECODE:
if (c == 0)
return (TRUE);
*addrp = target = rt_malloc(nodesize);
if (target == NULL) {
rt_kprintf("xdr_array: out of memory\n");
return (FALSE);
}
memset(target, 0, nodesize);
break;
case XDR_FREE:
return (TRUE);
}
/*
* now we xdr each element of array
*/
for (i = 0; (i < c) && stat; i++) {
stat = (*elproc) (xdrs, target, LASTUNSIGNED);
target += elsize;
}
/*
* the array may need freeing
*/
if (xdrs->x_op == XDR_FREE) {
rt_free(*addrp);
*addrp = NULL;
}
return (stat);
}
/*
* xdr_vector():
*
* XDR a fixed length array. Unlike variable-length arrays,
* the storage of fixed length arrays is static and unfreeable.
* > basep: base of the array
* > size: size of the array
* > elemsize: size of each element
* > xdr_elem: routine to XDR each element
*/
bool_t xdr_vector(XDR *xdrs, char *basep, unsigned int nelem, unsigned int elemsize, xdrproc_t xdr_elem)
{
register unsigned int i;
register char *elptr;
elptr = basep;
for (i = 0; i < nelem; i++) {
if (!(*xdr_elem) (xdrs, elptr, LASTUNSIGNED)) {
return (FALSE);
}
elptr += elemsize;
}
return (TRUE);
}
/*
* XDR an indirect pointer
* xdr_reference is for recursively translating a structure that is
* referenced by a pointer inside the structure that is currently being
* translated. pp references a pointer to storage. If *pp is null
* the necessary storage is allocated.
* size is the sizeof the referneced structure.
* proc is the routine to handle the referenced structure.
*/
bool_t xdr_reference(XDR *xdrs, char **pp, unsigned int size, xdrproc_t proc)
{
register char* loc = *pp;
register bool_t stat;
if (loc == NULL)
switch (xdrs->x_op) {
case XDR_FREE:
return (TRUE);
case XDR_DECODE:
*pp = loc = (char*) rt_malloc(size);
if (loc == NULL) {
rt_kprintf("xdr_reference: out of memory\n");
return (FALSE);
}
memset(loc, 0, (int) size);
break;
}
stat = (*proc) (xdrs, loc, LASTUNSIGNED);
if (xdrs->x_op == XDR_FREE) {
rt_free(loc);
*pp = NULL;
}
return (stat);
}
/*
* xdr_pointer():
*
* XDR a pointer to a possibly recursive data structure. This
* differs with xdr_reference in that it can serialize/deserialiaze
* trees correctly.
*
* What's sent is actually a union:
*
* union object_pointer switch (boolean b) {
* case TRUE: object_data data;
* case FALSE: void nothing;
* }
*
* > objpp: Pointer to the pointer to the object.
* > obj_size: size of the object.
* > xdr_obj: routine to XDR an object.
*
*/
bool_t xdr_pointer(XDR *xdrs, char **objpp, unsigned int obj_size, xdrproc_t xdr_obj)
{
bool_t more_data;
more_data = (*objpp != NULL);
if (!xdr_bool(xdrs, &more_data)) {
return (FALSE);
}
if (!more_data) {
*objpp = NULL;
return (TRUE);
}
return (xdr_reference(xdrs, objpp, obj_size, xdr_obj));
}