rt-thread/bsp/nxp/lpc/lpc408x/Libraries/Drivers/source/lpc_emc.c

1399 lines
48 KiB
C

/**********************************************************************
* $Id$ lpc_emc.c 2011-06-02
*//**
* @file lpc_emc.c
* @brief Contains all functions support for EMC firmware library
* on LPC
* @version 1.0
* @date 02. June. 2011
* @author NXP MCU SW Application Team
*
* Copyright(C) 2011, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc_libcfg.h"
#else
#include "lpc_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _EMC
#include "lpc_emc.h"
#include "lpc_clkpwr.h"
#include "lpc_pinsel.h"
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup EMC
* @{
*/
/** @defgroup EMC_Public_Functions
* @{
*/
/*********************************************************************
* @brief Calculate refresh timer (the multiple of 16 CCLKs)
* @param[in] freq - frequency of EMC Clk
* @param[in] time - micro second
* @return None
**********************************************************************/
uint32_t EMC_SDRAM_REFRESH(uint32_t time)
{
uint32_t emc_freq = CLKPWR_GetCLK(CLKPWR_CLKTYPE_EMC);
return (((uint64_t)((uint64_t)time * emc_freq)/16000000ull)+1);
}
/*********************************************************************
* @brief Calculate EMC Clock from nano second
* @param[in] time - nano second
* @return None
**********************************************************************/
uint32_t EMC_NS2CLK(uint32_t time){
uint32_t emc_freq = CLKPWR_GetCLK(CLKPWR_CLKTYPE_EMC);
return (((uint64_t)time*emc_freq/1000000000ull));
}
/*********************************************************************
* @brief Power on EMC Block
* @param[in] None
* @return None
**********************************************************************/
EMC_FUNC_CODE EMC_PwrOn(void)
{
// If CPU clock is > 80 MHz, then divide it by two to create the EMC clock
if(CLKPWR_GetCLK(CLKPWR_CLKTYPE_CPU) > 80000000) {
CLKPWR_SetCLKDiv(CLKPWR_CLKTYPE_EMC, 1); // CPU clock / 2
} else {
CLKPWR_SetCLKDiv(CLKPWR_CLKTYPE_EMC, 0); // Same clock as CPU
}
// Power on
CLKPWR_ConfigPPWR(CLKPWR_PCONP_PCEMC, ENABLE);
// Enable
LPC_EMC->Control = EMC_Control_E;
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Initialize external dynamic memory
* @param[in] pConfig Configuration
* @return EMC_FUNC_OK/EMC_FUNC_INVALID_PARAM/EMC_FUNC_ERR
**********************************************************************/
EMC_FUNC_CODE DynMem_Init(EMC_DYN_MEM_Config_Type* pConfig)
{
uint32_t i = 0;
EMC_FUNC_CODE ret = EMC_FUNC_OK;
/* Pin configuration:
* P2.16 - /EMC_CAS
* P2.17 - /EMC_RAS
* P2.18 - EMC_CLK[0]
* P2.19 - EMC_CLK[1]
*
* P2.20 - EMC_DYCS0
* P2.21 - EMC_DYCS1
* P2.22 - EMC_DYCS2
* P2.23 - EMC_DYCS3
*
* P2.24 - EMC_CKE0
* P2.25 - EMC_CKE1
* P2.26 - EMC_CKE2
* P2.27 - EMC_CKE3
*
* P2.28 - EMC_DQM0
* P2.29 - EMC_DQM1
* P2.30 - EMC_DQM2
* P2.31 - EMC_DQM3
*
* P3.0-P3.31 - EMC_D[0-31]
* P4.0-P4.23 - EMC_A[0-23]
* P5.0-P5.1 - EMC_A[24-25]
*
* P4.25 - EMC_WE
*/
PINSEL_ConfigPin(2,16,1);
PINSEL_ConfigPin(2,17,1);
PINSEL_ConfigPin(2,18,1);
PINSEL_ConfigPin(2,19,1);
PINSEL_ConfigPin(2,20,1);
PINSEL_ConfigPin(2,21,1);
PINSEL_ConfigPin(2,22,1);
PINSEL_ConfigPin(2,23,1);
PINSEL_ConfigPin(2,24,1);
PINSEL_ConfigPin(2,25,1);
PINSEL_ConfigPin(2,26,1);
PINSEL_ConfigPin(2,27,1);
PINSEL_ConfigPin(2,28,1);
PINSEL_ConfigPin(2,29,1);
PINSEL_ConfigPin(2,30,1);
PINSEL_ConfigPin(2,31,1);
for(i = 0; i < 32; i++)
{
PINSEL_ConfigPin(3,i,1);
PINSEL_ConfigPin(4,i,1);
}
PINSEL_ConfigPin(5,0,1);
PINSEL_ConfigPin(5,1,1);
// Power On
ret |= EMC_PwrOn();
/*Init SDRAM controller*/
LPC_SC->EMCDLYCTL |= (8<<0);
/*Set data read delay*/
LPC_SC->EMCDLYCTL |=(8<<8);
LPC_SC->EMCDLYCTL |= (0x08 <<16);
ret |= EMC_ConfigEndianMode(EMC_Config_Little_Endian_Mode);
/* Dynamic memory setting */
ret |= EMC_DynCtrlSelfRefresh(EMC_DYNAMIC_CTRL_SR_NORMALMODE);
ret |= EMC_DynCtrlPowerDownMode(EMC_DYNAMIC_CTRL_DP_NORMAL);
ret |= EMC_DynCtrlClockEnable(EMC_DYNAMIC_CTRL_CE_ALLCLK_HI);
ret |= EMC_DynCtrlMMC(EMC_DYNAMIC_CTRL_MMC_CLKOUT_ENABLED);
ret |= EMC_DynCtrlClockControl(EMC_DYNAMIC_CTRL_CE_CLKOUT_CONT);
/* Timing */
ret |= EMC_SetDynMemoryParameter(EMC_DYN_MEM_REFRESH_TIMER, pConfig->RefreshTime);
ret |= EMC_SetDynMemoryParameter(EMC_DYN_MEM_READ_CONFIG, pConfig->ReadConfig);
ret |= EMC_SetDynMemoryParameter(EMC_DYN_MEM_TRP, pConfig->PrechargeCmdPeriod);
ret |= EMC_SetDynMemoryParameter(EMC_DYN_MEM_TRAS, pConfig->Active2PreChargeTime);
ret |= EMC_SetDynMemoryParameter(EMC_DYN_MEM_TSREX, pConfig->SeftRefreshExitTime);
ret |= EMC_SetDynMemoryParameter(EMC_DYN_MEM_TAPR, pConfig->DataOut2ActiveTime);
ret |= EMC_SetDynMemoryParameter(EMC_DYN_MEM_TDAL, pConfig->DataIn2ActiveTime);
ret |= EMC_SetDynMemoryParameter(EMC_DYN_MEM_TWR, pConfig->WriteRecoveryTime);
ret |= EMC_SetDynMemoryParameter(EMC_DYN_MEM_TRC, pConfig->Active2ActivePeriod);
ret |= EMC_SetDynMemoryParameter(EMC_DYN_MEM_TRFC, pConfig->AutoRefrehPeriod);
ret |= EMC_SetDynMemoryParameter(EMC_DYN_MEM_TXSR, pConfig->ExitSelfRefreshTime);
ret |= EMC_SetDynMemoryParameter(EMC_DYN_MEM_TRRD, pConfig->ActiveBankLatency);
ret |= EMC_SetDynMemoryParameter(EMC_DYN_MEM_TMRD, pConfig->LoadModeReg2Active);
ret |= EMC_DynMemRAS(pConfig->CSn,pConfig->RASLatency);
ret |= EMC_DynMemCAS(pConfig->CSn,pConfig->CASLatency);
ret |= EMC_DynMemConfigMD(pConfig->CSn,EMC_DYNAMIC_CFG_MEMDEV_SDRAM);
ret |= EMC_DynMemConfigAM(pConfig->CSn, pConfig->AddrBusWidth, pConfig->AddrMap, pConfig->DataWidth, pConfig->ChipSize);
return ret;
}
/*********************************************************************//**
* @brief Initialize external static memory
* @param[in] pConfig Configuration
* @return EMC_FUNC_OK/EMC_FUNC_INVALID_PARAM/EMC_FUNC_ERR
**********************************************************************/
EMC_FUNC_CODE StaticMem_Init(EMC_STATIC_MEM_Config_Type* pConfig)
{
uint32_t i;
EMC_FUNC_CODE ret = EMC_FUNC_OK;
/* Pin configuration:
* P4.30 - /EMC_CS0
* P4.31 - /EMC_CS1
* P2.14 - /EMC_CS2
* P2.15 - /EMC_CS3
*
*
* P3.0-P3.31 - EMC_D[0-31]
* P4.0-P4.23 - EMC_A[0-23]
* P5.0-P5.1 - EMC_A[24-25]
*
* P4.24 - /EMC_OE
* P4.25 - /EMC_WE
*
*/
PINSEL_ConfigPin(2,14,1);
PINSEL_ConfigPin(2,15,1);
for(i = 0; i < 32; i++)
{
PINSEL_ConfigPin(3,i,1);
PINSEL_ConfigPin(4,i,1);
}
PINSEL_ConfigPin(5,0,1);
PINSEL_ConfigPin(5,1,1);
// Power On
ret |= EMC_PwrOn();
// Configuration
if(pConfig->AddressMirror)
{
LPC_EMC->Control |= EMC_Control_M;
}
ret |= EMC_StaMemConfigMW(pConfig->CSn,pConfig->DataWidth);
if(pConfig->PageMode)
ret |= EMC_StaMemConfigPM(pConfig->CSn,EMC_CFG_PM_ASYNC_ENABLE);
else
ret |= EMC_StaMemConfigPM(pConfig->CSn,EMC_CFG_PM_DISABLE);
if(pConfig->ByteLane)
ret |= EMC_StaMemConfigPB(pConfig->CSn, EMC_CFG_BYTELAND_READ_BITSLOW);
else
ret |= EMC_StaMemConfigPB(pConfig->CSn, EMC_CFG_BYTELAND_READ_BITSHIGH);
if(pConfig->ExtendedWait)
ret |= EMC_StaMemConfigEW(pConfig->CSn,EMC_CFG_EW_ENABLED);
else
ret |= EMC_StaMemConfigEW(pConfig->CSn,EMC_CFG_EW_DISABLED);
// Timing
ret |= EMC_SetStaMemoryParameter(pConfig->CSn,EMC_STA_MEM_WAITWEN, pConfig->WaitWEn);
ret |= EMC_SetStaMemoryParameter(pConfig->CSn,EMC_STA_MEM_WAITOEN, pConfig->WaitOEn);
ret |= EMC_SetStaMemoryParameter(pConfig->CSn,EMC_STA_MEM_WAITRD, pConfig->WaitRd);
ret |= EMC_SetStaMemoryParameter(pConfig->CSn,EMC_STA_MEM_WAITPAGE, pConfig->WaitPage);
ret |= EMC_SetStaMemoryParameter(pConfig->CSn,EMC_STA_MEM_WAITWR, pConfig->WaitWr);
ret |= EMC_SetStaMemoryParameter(pConfig->CSn,EMC_STA_MEM_WAITTURN, pConfig->WaitTurn);
return ret;
}
/*********************************************************************//**
* @brief EMC initialize (power on block, config EMC pins).
* @param[in] None
* @return None
**********************************************************************/
EMC_FUNC_CODE EMC_Init(void)
{
uint8_t i;
// If CPU clock is > 80 MHz, then divide it by two to create the EMC clock
if(CLKPWR_GetCLK(CLKPWR_CLKTYPE_CPU) > 80000000) {
CLKPWR_SetCLKDiv(CLKPWR_CLKTYPE_EMC, 1); // CPU clock / 2
} else {
CLKPWR_SetCLKDiv(CLKPWR_CLKTYPE_EMC, 0); // Same clock as CPU
}
LPC_SC->PCONP |= 0x00000800;
LPC_SC->EMCDLYCTL = 0x00001010;
LPC_EMC->Control = 0x00000001;
LPC_EMC->Config = 0x00000000;
/* Pin configuration:
* P2.14 - /EMC_CS2
* P2.15 - /EMC_CS3
*
* P2.16 - /EMC_CAS
* P2.17 - /EMC_RAS
* P2.18 - EMC_CLK[0]
* P2.19 - EMC_CLK[1]
*
* P2.20 - EMC_DYCS0
* P2.21 - EMC_DYCS1
* P2.22 - EMC_DYCS2
* P2.23 - EMC_DYCS3
*
* P2.24 - EMC_CKE0
* P2.25 - EMC_CKE1
* P2.26 - EMC_CKE2
* P2.27 - EMC_CKE3
*
* P2.28 - EMC_DQM0
* P2.29 - EMC_DQM1
* P2.30 - EMC_DQM2
* P2.31 - EMC_DQM3
*
* P3.0-P3.31 - EMC_D[0-31]
* P4.0-P4.23 - EMC_A[0-23]
* P5.0-P5.1 - EMC_A[24-25]
*
* P4.24 - /EMC_OE
* P4.25 - /EMC_WE
*
* P4.30 - /EMC_CS0
* P4.31 - /EMC_CS1
*/
PINSEL_ConfigPin(2,14,1);
PINSEL_ConfigPin(2,15,1);
PINSEL_ConfigPin(2,16,1);
PINSEL_ConfigPin(2,17,1);
PINSEL_ConfigPin(2,18,1);
PINSEL_ConfigPin(2,19,1);
PINSEL_ConfigPin(2,20,1);
PINSEL_ConfigPin(2,21,1);
PINSEL_ConfigPin(2,22,1);
PINSEL_ConfigPin(2,23,1);
PINSEL_ConfigPin(2,24,1);
PINSEL_ConfigPin(2,25,1);
PINSEL_ConfigPin(2,26,1);
PINSEL_ConfigPin(2,27,1);
PINSEL_ConfigPin(2,28,1);
PINSEL_ConfigPin(2,29,1);
PINSEL_ConfigPin(2,30,1);
PINSEL_ConfigPin(2,31,1);
for(i = 0; i < 32; i++)
{
PINSEL_ConfigPin(3,i,1);
PINSEL_ConfigPin(4,i,1);
}
PINSEL_ConfigPin(5,0,1);
PINSEL_ConfigPin(5,1,1);
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Configure Little Endian/Big Endian mode for EMC
*
* @param[in] endia_mode Endian mode, should be:
*
* - EMC_Config_Little_Endian_Mode: Little-endian mode
*
* - EMC_Config_Big_Endian_Mode : Big-endian mode
*
* @return EMC_FUNC_OK
**********************************************************************/
EMC_FUNC_CODE EMC_ConfigEndianMode(uint32_t endian_mode)
{
LPC_EMC->Config &= ~(EMC_Config_Endian_Mask);
LPC_EMC->Config |= (endian_mode&EMC_Config_Endian_Mask);
return EMC_FUNC_OK;
}
/****************** Group of Dynamic control functions************************/
/*********************************************************************//**
* @brief Set the dsvalue for dynamic clock enable bit
*
* @param[in] clock_enable clock enable mode, should be:
*
* - EMC_DYNAMIC_CTRL_CE_SAVEPWR: Clock enable of idle devices
* are deasserted to save power
*
* - EMC_DYNAMIC_CTRL_CE_ALLCLK_HI: All clock enables are driven
* HIGH continuously
*
* @return EMC_FUNC_CODE
**********************************************************************/
EMC_FUNC_CODE EMC_DynCtrlClockEnable(uint32_t clock_enable)
{
LPC_EMC->DynamicControl &= ~(EMC_DYNAMIC_CTRL_MEMCLK_EN_BMASK);
LPC_EMC->DynamicControl |= clock_enable & EMC_DYNAMIC_CTRL_MEMCLK_EN_BMASK;
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Set the value for dynamic memory clock control: stops or
* runs continuously
*
* @param[in] clock_control clock control mode, should be:
*
* - EMC_DYNAMIC_CTRL_CS_CLKOUT_STOP: CLKOUT stops when all
* SDRAMs are idle and during self-refresh mode
*
* - EMC_DYNAMIC_CTRL_CS_CLKOUT_CONT: CLKOUT runs continuously
*
* @return EMC_FUNC_OK
**********************************************************************/
EMC_FUNC_CODE EMC_DynCtrlClockControl(int32_t clock_control)
{
LPC_EMC->DynamicControl &= ~EMC_DYNAMIC_CTRL_CLKCTRL_BMASK;
LPC_EMC->DynamicControl |= clock_control & EMC_DYNAMIC_CTRL_CLKCTRL_BMASK;
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Switch the Self-refresh mode between normal and self-refresh mode
*
* @param[in] self_refresh_mode self refresh mode, should be:
*
* - EMC_DYNAMIC_CTRL_SR_NORMALMODE: Normal mode
*
* - EMC_DYNAMIC_CTRL_SR_SELFREFRESH: Enter self-refresh mode
*
* @return EMC_FUNC_OK
**********************************************************************/
EMC_FUNC_CODE EMC_DynCtrlSelfRefresh(uint32_t self_refresh_mode)
{
LPC_EMC->DynamicControl &= ~EMC_DYNAMIC_CTRL_SELFREFRESH_REQ_BMASK;
LPC_EMC->DynamicControl =self_refresh_mode & EMC_DYNAMIC_CTRL_SELFREFRESH_REQ_BMASK;
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Enable/disable CLKOUT
*
* @param[in] MMC_val Memory clock control mode, should be:
*
* - EMC_DYNAMIC_CTRL_MMC_CLKOUT_ENABLED: CLKOUT enabled
*
* - EMC_DYNAMIC_CTRL_MMC_CLKOUT_DISABLED: CLKOUT disabled
*
* @return EMC_FUNC_OK
**********************************************************************/
EMC_FUNC_CODE EMC_DynCtrlMMC(uint32_t MMC_val)
{
LPC_EMC->DynamicControl &= ~EMC_DYNAMIC_CTRL_MMC_CLKOUTCTRL_BMASK;
LPC_EMC->DynamicControl |=MMC_val & EMC_DYNAMIC_CTRL_MMC_CLKOUTCTRL_BMASK;
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Issue SDRAM command
*
* @param[in] SDRAM_command Command mode, should be:
*
* - EMC_DYNAMIC_CTRL_SDRAM_NORMAL: Issue SDRAM NORMAL operation command
*
* - EMC_DYNAMIC_CTRL_SDRAM_MODE: Issue SDRAM MODE command
*
* - EMC_DYNAMIC_CTRL_SDRAM_PALL: Issue SDRAM PALL (precharge all) command
*
* - EMC_DYNAMIC_CTRL_SDRAM_NOP: Issue SRAM NOP (no operation) command
*
* @return EMC_FUNC_OK
**********************************************************************/
EMC_FUNC_CODE EMC_DynCtrlSDRAMInit(uint32_t SDRAM_command)
{
LPC_EMC->DynamicControl &= ~EMC_DYNAMIC_CTRL_SDRAM_INIT_BMASK;
LPC_EMC->DynamicControl |= SDRAM_command & EMC_DYNAMIC_CTRL_SDRAM_INIT_BMASK;
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Switch between Normal operation and deep sleep power mode
*
* @param[in] Power_command Low-power SDRAM deep-sleep mode, should be:
*
* - EMC_DYNAMIC_CTRL_DP_NORMAL: Normal operation
*
* - EMC_DYNAMIC_CTRL_DP_DEEPSLEEP: Enter deep-sleep mode
*
* @return EMC_FUNC_OK
**********************************************************************/
EMC_FUNC_CODE EMC_DynCtrlPowerDownMode(uint32_t Power_command)
{
LPC_EMC->DynamicControl &= ~EMC_DYNAMIC_CTRL_SDRAM_PWRMODE_BMASK;
LPC_EMC->DynamicControl |= Power_command & EMC_DYNAMIC_CTRL_SDRAM_PWRMODE_BMASK;
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Set the value of EMC dynamic memory registers
*
* @param[in] par EMC register that will set value, should be:
* - EMC_DYN_MEM_REFRESH_TIMER: Dynamic Refresh register
* - EMC_DYN_MEM_READ_CONFIG: Dynamic Read Config register
* - EMC_DYN_MEM_TRP: Dynamic RP register
* - EMC_DYN_MEM_TRAS: Dynamic RAS register
* - EMC_DYN_MEM_TSREX: Dynamic SREX register
* - EMC_DYN_MEM_TAPR: Dynamic APR register
* - EMC_DYN_MEM_TDAL: Dynamic DAL register
* - EMC_DYN_MEM_TWR: Dynamic WR register
* - EMC_DYN_MEM_TRC: Dynamic RC register
* - EMC_DYN_MEM_TRFC: Dynamic RFC register
* - EMC_DYN_MEM_TXSR: Dynamic XSR register
* - EMC_DYN_MEM_TRRD: Dynamic RRD register
* - EMC_DYN_MEM_TMRD: Dynamic MRD register
*
* @return EMC_FUNC_OK/EMC_FUNC_INVALID_PARAM
**********************************************************************/
EMC_FUNC_CODE EMC_SetDynMemoryParameter(EMC_DYN_MEM_PAR par, uint32_t val)
{
switch ( par)
{
case EMC_DYN_MEM_REFRESH_TIMER:
LPC_EMC->DynamicRefresh = EMC_DynamicRefresh_REFRESH(val);
break;
case EMC_DYN_MEM_READ_CONFIG:
LPC_EMC->DynamicReadConfig = EMC_DynamicReadConfig_RD(val);
break;
case EMC_DYN_MEM_TRP:
LPC_EMC->DynamicRP = EMC_DynamictRP_tRP(val);
break;
case EMC_DYN_MEM_TRAS:
LPC_EMC->DynamicRAS = EMC_DynamictRP_tRAS(val);
break;
case EMC_DYN_MEM_TSREX:
LPC_EMC->DynamicSREX = EMC_DynamictRP_tSREX(val);
break;
case EMC_DYN_MEM_TAPR:
LPC_EMC->DynamicAPR = EMC_DynamictAPR_tAPR(val);
break;
case EMC_DYN_MEM_TDAL:
LPC_EMC->DynamicDAL =EMC_DynamictDAL_tDAL(val);
break;
case EMC_DYN_MEM_TWR:
LPC_EMC->DynamicWR = EMC_DynamictWR_tWR(val);
break;
case EMC_DYN_MEM_TRC:
LPC_EMC->DynamicRC = EMC_DynamictRC_tRC(val);
break;
case EMC_DYN_MEM_TRFC:
LPC_EMC->DynamicRFC = EMC_DynamictRFC_tRFC(val);
break;
case EMC_DYN_MEM_TXSR:
LPC_EMC->DynamicXSR = EMC_DynamictXSR_tXSR(val);
break;
case EMC_DYN_MEM_TRRD:
LPC_EMC->DynamicRRD = EMC_DynamictRRD_tRRD(val);
break;
case EMC_DYN_MEM_TMRD:
LPC_EMC->DynamicMRD = EMC_DynamictMRD_tMRD(val);
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Configure the memory device
*
* @param[in] index index number, should be from 0 to 3
*
* @param[in] mem_dev Memory device, should be:
*
* - EMC_DYNAMIC_CFG_MEMDEV_SDRAM: SDRAM
*
* - EMC_DYNAMIC_CFG_MEMDEV_LOWPWR_SDRAM: Low-power SDRAM
*
*
* @return EMC_FUNC_OK/EMC_FUNC_INVALID_PARAM
**********************************************************************/
EMC_FUNC_CODE EMC_DynMemConfigMD(uint32_t index , uint32_t mem_dev)
{
switch (index)
{
case 0:
LPC_EMC->DynamicConfig0 &= ~EMC_DYNAMIC_CFG_MEMDEV_BMASK;
LPC_EMC->DynamicConfig0 |= mem_dev & EMC_DYNAMIC_CFG_MEMDEV_BMASK;
break;
case 1:
LPC_EMC->DynamicConfig1 &= ~EMC_DYNAMIC_CFG_MEMDEV_BMASK;
LPC_EMC->DynamicConfig1 |= mem_dev & EMC_DYNAMIC_CFG_MEMDEV_BMASK;
break;
case 2:
LPC_EMC->DynamicConfig2 &= ~EMC_DYNAMIC_CFG_MEMDEV_BMASK;
LPC_EMC->DynamicConfig2 |= mem_dev & EMC_DYNAMIC_CFG_MEMDEV_BMASK;
break;
case 3:
LPC_EMC->DynamicConfig3 &= ~EMC_DYNAMIC_CFG_MEMDEV_BMASK;
LPC_EMC->DynamicConfig3 |= mem_dev & EMC_DYNAMIC_CFG_MEMDEV_BMASK;
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Map the address for the memory device
*
* @param[in] index index number, should be from 0 to 3
*
* @param[in] add_mapped address where the memory will be mapped
*
* @return EMC_FUNC_OK
**********************************************************************/
EMC_FUNC_CODE EMC_DynMemConfigAM(uint32_t index ,
uint8_t addr_bus_width, uint8_t addr_map,
uint8_t data_bus_width,
uint16_t chip_size)
{
const int chip_max_size = 512; // 512Mb
uint8_t data_bus_max_size = 0;
uint32_t add_mapped_p1 = 0x00, add_mapped_p2 = 0x00, add_mapped_p3 = 0x00;
uint32_t tmp = 16, i = 0, j = 0;
/* Get part 3 of address map */
switch(addr_bus_width)
{
case 16:
add_mapped_p3 = 0;
data_bus_max_size = 16;
break;
case 32:
add_mapped_p3 = 1;
data_bus_max_size = 32;
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
/* Get part 2 of address map */
add_mapped_p2 = EMC_DYNAMIC_CFG_ADD_MAP_P2(addr_map);
/* Get part 1 of address map */
if(chip_size == 16)
{
if(data_bus_width == 8)
add_mapped_p1 = 0;
else if(data_bus_width == 16)
add_mapped_p1 = 1;
else
return EMC_FUNC_INVALID_PARAM;
}
else
{
while(1)
{
i++;
tmp = 16*(0x01 << (i+1));
if(tmp == chip_size)
{
for(j = 0; (8<<j)<=data_bus_max_size;j++)
{
if((8<<j) == data_bus_width)
break;
}
if( (8<<j) > data_bus_max_size)
return EMC_FUNC_INVALID_PARAM;
add_mapped_p1 = (i<<2) + j;
break;
}
if(tmp >= chip_max_size)
{
return EMC_FUNC_INVALID_PARAM;
}
}
}
switch ( index)
{
case 0:
LPC_EMC->DynamicConfig0 &= ~EMC_DYNAMIC_CFG_ADD_MAP_P1_MASK;
LPC_EMC->DynamicConfig0 |= EMC_DYNAMIC_CFG_ADD_MAP_P1(add_mapped_p1);
LPC_EMC->DynamicConfig0 &= ~EMC_DYNAMIC_CFG_ADD_MAP_P2_MASK;
LPC_EMC->DynamicConfig0 |= EMC_DYNAMIC_CFG_ADD_MAP_P2(add_mapped_p2);
LPC_EMC->DynamicConfig0 &= ~EMC_DYNAMIC_CFG_ADD_MAP_P3_MASK;
LPC_EMC->DynamicConfig0 |= EMC_DYNAMIC_CFG_ADD_MAP_P3(add_mapped_p3);
break;
case 1:
LPC_EMC->DynamicConfig1 &= ~EMC_DYNAMIC_CFG_ADD_MAP_P1_MASK;
LPC_EMC->DynamicConfig1 |= EMC_DYNAMIC_CFG_ADD_MAP_P1(add_mapped_p1);
LPC_EMC->DynamicConfig1 &= ~EMC_DYNAMIC_CFG_ADD_MAP_P2_MASK;
LPC_EMC->DynamicConfig1 |= EMC_DYNAMIC_CFG_ADD_MAP_P2(add_mapped_p2);
LPC_EMC->DynamicConfig1 &= ~EMC_DYNAMIC_CFG_ADD_MAP_P3_MASK;
LPC_EMC->DynamicConfig1 |= EMC_DYNAMIC_CFG_ADD_MAP_P3(add_mapped_p3);
break;
case 2:
LPC_EMC->DynamicConfig2 &= ~EMC_DYNAMIC_CFG_ADD_MAP_P1_MASK;
LPC_EMC->DynamicConfig2 |= EMC_DYNAMIC_CFG_ADD_MAP_P1(add_mapped_p1);
LPC_EMC->DynamicConfig2 &= ~EMC_DYNAMIC_CFG_ADD_MAP_P2_MASK;
LPC_EMC->DynamicConfig2 |= EMC_DYNAMIC_CFG_ADD_MAP_P2( add_mapped_p2);
LPC_EMC->DynamicConfig2 &= ~EMC_DYNAMIC_CFG_ADD_MAP_P3_MASK;
LPC_EMC->DynamicConfig2 |= EMC_DYNAMIC_CFG_ADD_MAP_P3(add_mapped_p3);
break;
case 3:
LPC_EMC->DynamicConfig3 &= ~EMC_DYNAMIC_CFG_ADD_MAP_P1_MASK;
LPC_EMC->DynamicConfig3 |= EMC_DYNAMIC_CFG_ADD_MAP_P1(add_mapped_p1);
LPC_EMC->DynamicConfig3 &= ~EMC_DYNAMIC_CFG_ADD_MAP_P2_MASK;
LPC_EMC->DynamicConfig3 |= EMC_DYNAMIC_CFG_ADD_MAP_P2(add_mapped_p2);
LPC_EMC->DynamicConfig3 &= ~EMC_DYNAMIC_CFG_ADD_MAP_P3_MASK;
LPC_EMC->DynamicConfig3 |= EMC_DYNAMIC_CFG_ADD_MAP_P3(add_mapped_p3);
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Enable/disable the buffer
*
* @param[in] index index number, should be from 0 to 3
*
* @param[in] buff_control buffer control mode, should be:
*
* - EMC_DYNAMIC_CFG_BUFF_DISABLED: buffer is disabled
*
* - EMC_DYNAMIC_CFG_BUFF_ENABLED: buffer is enable
*
* @return EMC_FUNC_OK/EMC_FUNC_INVALID_PARAM
**********************************************************************/
EMC_FUNC_CODE EMC_DynMemConfigB(uint32_t index , uint32_t buff_control)
{
switch ( index)
{
case 0:
LPC_EMC->DynamicConfig0 &= ~EMC_DYNAMIC_CFG_BUFFENABLE_BMASK;
LPC_EMC->DynamicConfig0 |= buff_control & EMC_DYNAMIC_CFG_BUFFENABLE_BMASK;
break;
case 1:
LPC_EMC->DynamicConfig1 &= ~EMC_DYNAMIC_CFG_BUFFENABLE_BMASK;
LPC_EMC->DynamicConfig1 |= buff_control& EMC_DYNAMIC_CFG_BUFFENABLE_BMASK;
break;
case 2:
LPC_EMC->DynamicConfig2 &= ~EMC_DYNAMIC_CFG_BUFFENABLE_BMASK;
LPC_EMC->DynamicConfig2 |= buff_control& EMC_DYNAMIC_CFG_BUFFENABLE_BMASK;
break;
case 3:
LPC_EMC->DynamicConfig3 &= ~EMC_DYNAMIC_CFG_BUFFENABLE_BMASK;
LPC_EMC->DynamicConfig3|= buff_control& EMC_DYNAMIC_CFG_BUFFENABLE_BMASK;
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Configure write permission: protect or not
*
* @param[in] index index number, should be from 0 to 3
*
* @param[in] permission permission mode, should be:
*
* - EMC_DYNAMIC_CFG_WR_UNPROTECTED: will not protect
*
* - EMC_DYNAMIC_CFG_WR_PROTECTED: will protect
*
* @return EMC_FUNC_OK
**********************************************************************/
EMC_FUNC_CODE EMC_DynMemConfigP(uint32_t index , uint32_t permission)
{
switch ( index)
{
case 0:
LPC_EMC->DynamicConfig0 &= ~ EMC_DYNAMIC_CFG_WRPROTECT_BMASK;
LPC_EMC->DynamicConfig0 |= permission&EMC_DYNAMIC_CFG_WRPROTECT_BMASK;
break;
case 1:
LPC_EMC->DynamicConfig1 &= ~ EMC_DYNAMIC_CFG_WRPROTECT_BMASK;
LPC_EMC->DynamicConfig1 |= permission&EMC_DYNAMIC_CFG_WRPROTECT_BMASK;
break;
case 2:
LPC_EMC->DynamicConfig2 &= ~ EMC_DYNAMIC_CFG_WRPROTECT_BMASK;
LPC_EMC->DynamicConfig2 |= permission&EMC_DYNAMIC_CFG_WRPROTECT_BMASK;
break;
case 3:
LPC_EMC->DynamicConfig3 &= ~ EMC_DYNAMIC_CFG_WRPROTECT_BMASK;
LPC_EMC->DynamicConfig3 |= permission&EMC_DYNAMIC_CFG_WRPROTECT_BMASK;
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Set value for RAS latency
*
* @param[in] index index number, should be from 0 to 3
*
* @param[in] ras_val RAS value should be in range: 0..3
*
* @return EMC_FUNC_OK
**********************************************************************/
EMC_FUNC_CODE EMC_DynMemRAS(uint32_t index , uint32_t ras_val)
{
switch ( index)
{
case 0:
LPC_EMC->DynamicRasCas0 &= ~EMC_DYNAMIC_RASCAS_RASCFG_BMASK;
LPC_EMC->DynamicRasCas0 |=( ras_val << EMC_DYNAMIC_RASCAS_RASCFG_POS)
&EMC_DYNAMIC_RASCAS_RASCFG_BMASK;
break;
case 1:
LPC_EMC->DynamicRasCas1 &= ~EMC_DYNAMIC_RASCAS_RASCFG_BMASK;
LPC_EMC->DynamicRasCas1 |= ( ras_val << EMC_DYNAMIC_RASCAS_RASCFG_POS)
&EMC_DYNAMIC_RASCAS_RASCFG_BMASK;
break;
case 2:
LPC_EMC->DynamicRasCas2 &= ~EMC_DYNAMIC_RASCAS_RASCFG_BMASK;
LPC_EMC->DynamicRasCas2 |= ( ras_val << EMC_DYNAMIC_RASCAS_RASCFG_POS)
&EMC_DYNAMIC_RASCAS_RASCFG_BMASK;
break;
case 3:
LPC_EMC->DynamicRasCas3 &= ~EMC_DYNAMIC_RASCAS_RASCFG_BMASK;
LPC_EMC->DynamicRasCas3 |= ( ras_val << EMC_DYNAMIC_RASCAS_RASCFG_POS)
&EMC_DYNAMIC_RASCAS_RASCFG_BMASK;
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Set value for CAS latency
*
* @param[in] index index number, should be from 0 to 3
*
* @param[in] ras_val CAS value should be in range: 0..3
*
* @return EMC_FUNC_OK/EMC_FUNC_INVALID_PARAM
**********************************************************************/
EMC_FUNC_CODE EMC_DynMemCAS(uint32_t index , uint32_t cas_val)
{
switch ( index)
{
case 0:
LPC_EMC->DynamicRasCas0 &= ~EMC_DYNAMIC_RASCAS_CASCFG_BMASK;
LPC_EMC->DynamicRasCas0 |= (cas_val<<EMC_DYNAMIC_RASCAS_CASCFG_POS)
&EMC_DYNAMIC_RASCAS_CASCFG_BMASK;
break;
case 1:
LPC_EMC->DynamicRasCas1 &= ~EMC_DYNAMIC_RASCAS_CASCFG_BMASK;
LPC_EMC->DynamicRasCas1 |= (cas_val<<EMC_DYNAMIC_RASCAS_CASCFG_POS)
&EMC_DYNAMIC_RASCAS_CASCFG_BMASK;
break;
case 2:
LPC_EMC->DynamicRasCas2 &= ~EMC_DYNAMIC_RASCAS_CASCFG_BMASK;
LPC_EMC->DynamicRasCas2 |= (cas_val<<EMC_DYNAMIC_RASCAS_CASCFG_POS)
&EMC_DYNAMIC_RASCAS_CASCFG_BMASK;
break;
case 3:
LPC_EMC->DynamicRasCas3 &= ~EMC_DYNAMIC_RASCAS_CASCFG_BMASK;
LPC_EMC->DynamicRasCas3 |= (cas_val<<EMC_DYNAMIC_RASCAS_CASCFG_POS)
&EMC_DYNAMIC_RASCAS_CASCFG_BMASK;
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Set extended wait time out for accessing static memory
*
* @param[in] Extended_wait_time_out timeout value that will be set
*
* @return EMC_FUNC_OK
**********************************************************************/
EMC_FUNC_CODE EMC_StaticExtendedWait(uint32_t Extended_wait_time_out)
{
LPC_EMC->StaticExtendedWait = EMC_StaticExtendedWait_EXTENDEDWAIT(Extended_wait_time_out);
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Configure the memory width
*
* @param[in] index index number, should be from 0 to 3
*
* @param[in] mem_width memory width, should be:
*
* - EMC_STATIC_CFG_MW_8BITS: 8-bits
*
* - EMC_STATIC_CFG_MW_16BITS: 16-bits
*
* - EMC_STATIC_CFG_MW_32BITS02: 32-bits
*
* @return EMC_FUNC_OK/EMC_FUNC_INVALID_PARAM
**********************************************************************/
EMC_FUNC_CODE EMC_StaMemConfigMW(uint32_t index , uint32_t mem_width)
{
uint32_t mem_width_flg = 0;
switch(mem_width)
{
case 8:
mem_width_flg = EMC_STATIC_CFG_MW_8BITS;
break;
case 16:
mem_width_flg = EMC_STATIC_CFG_MW_16BITS;
break;
case 32:
mem_width_flg = EMC_STATIC_CFG_MW_32BITS;
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
switch ( index)
{
case 0:
LPC_EMC->StaticConfig0 &= ~ EMC_STATIC_CFG_MEMWIDTH_BMASK;
LPC_EMC->StaticConfig0 |= mem_width_flg;
break;
case 1:
LPC_EMC->StaticConfig1 &= ~ EMC_STATIC_CFG_MEMWIDTH_BMASK;
LPC_EMC->StaticConfig1 |= mem_width_flg;
break;
case 2:
LPC_EMC->StaticConfig2 &= ~ EMC_STATIC_CFG_MEMWIDTH_BMASK;
LPC_EMC->StaticConfig2 |= mem_width_flg;
break;
case 3:
LPC_EMC->StaticConfig3 &= ~ EMC_STATIC_CFG_MEMWIDTH_BMASK;
LPC_EMC->StaticConfig3 |= mem_width_flg;
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Configure the page mode
*
* @param[in] index index number, should be from 0 to 3
*
* @param[in] page_mode page mode, should be:
*
* - EMC_CFG_PM_DISABLE: disable
*
* - EMC_CFG_PM_ASYNC_ENABLE: asynchronous page mode enable
*
* @return EMC_FUNC_OK/EMC_FUNC_INVALID_PARAM
**********************************************************************/
EMC_FUNC_CODE EMC_StaMemConfigPM(uint32_t index , uint32_t page_mode)
{
switch ( index)
{
case 0:
LPC_EMC->StaticConfig0 &= ~EMC_STATIC_CFG_PAGEMODE_MASK;
LPC_EMC->StaticConfig0 |= page_mode&EMC_STATIC_CFG_PAGEMODE_MASK;
break;
case 1:
LPC_EMC->StaticConfig1 &= ~EMC_STATIC_CFG_PAGEMODE_MASK;
LPC_EMC->StaticConfig1 |= page_mode&EMC_STATIC_CFG_PAGEMODE_MASK;
break;
case 2:
LPC_EMC->StaticConfig2 &= ~EMC_STATIC_CFG_PAGEMODE_MASK;
LPC_EMC->StaticConfig2 |= page_mode&EMC_STATIC_CFG_PAGEMODE_MASK;
break;
case 3:
LPC_EMC->StaticConfig3 &= ~EMC_STATIC_CFG_PAGEMODE_MASK;
LPC_EMC->StaticConfig3 |= page_mode&EMC_STATIC_CFG_PAGEMODE_MASK;
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Configure the chip select polarity
*
* @param[in] index index number, should be from 0 to 3
*
* @param[in] pagepol_val_mode page mode, should be:
*
* - EMC_CFG_BYTELAND_PC_ACTIVE_LO: Active LOW ship select
*
* - EMC_CFG_BYTELAND_PC_ACTIVE_HI: Active HIGH chip select
*
* @return EMC_FUNC_OK/EMC_FUNC_INVALID_PARAM
**********************************************************************/
EMC_FUNC_CODE EMC_StaMemConfigPC(uint32_t index , uint32_t pol_val)
{
switch ( index)
{
case 0:
LPC_EMC->StaticConfig0 &= ~EMC_STATIC_CFG_CHIPPOLARITY_MASK;
LPC_EMC->StaticConfig0 |= pol_val&EMC_STATIC_CFG_CHIPPOLARITY_MASK;
break;
case 1:
LPC_EMC->StaticConfig1 &= ~EMC_STATIC_CFG_CHIPPOLARITY_MASK;
LPC_EMC->StaticConfig1 |= pol_val&EMC_STATIC_CFG_CHIPPOLARITY_MASK;
break;
case 2:
LPC_EMC->StaticConfig2 &= ~EMC_STATIC_CFG_CHIPPOLARITY_MASK;
LPC_EMC->StaticConfig2 |= pol_val&EMC_STATIC_CFG_CHIPPOLARITY_MASK;
break;
case 3:
LPC_EMC->StaticConfig3 &= ~EMC_STATIC_CFG_CHIPPOLARITY_MASK;
LPC_EMC->StaticConfig3 |= pol_val&EMC_STATIC_CFG_CHIPPOLARITY_MASK;
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Configure the byte lane state
*
* @param[in] index index number, should be from 0 to 3
*
* @param[in] pb_val Byte lane state, should be:
*
* - EMC_CFG_BYTELAND_READ_BITSHIGH: For reads all bits
* in BLSn[3:0] are HIGH.
*
* - EMC_CFG_BYTELAND_READ_BITSLOW: For reads all bits
* in BLSn[3:0] are LOW.
*
* @return EMC_FUNC_OK/EMC_FUNC_INVALID_PARAM
**********************************************************************/
EMC_FUNC_CODE EMC_StaMemConfigPB(uint32_t index , uint32_t pb_val)
{
switch ( index)
{
case 0:
LPC_EMC->StaticConfig0 &= ~EMC_STATIC_CFG_BYTELAND_MASK;
LPC_EMC->StaticConfig0 |= pb_val&EMC_STATIC_CFG_BYTELAND_MASK;
break;
case 1:
LPC_EMC->StaticConfig1 &= ~EMC_STATIC_CFG_BYTELAND_MASK;
LPC_EMC->StaticConfig1 |= pb_val&EMC_STATIC_CFG_BYTELAND_MASK;
break;
case 2:
LPC_EMC->StaticConfig2 &= ~EMC_STATIC_CFG_BYTELAND_MASK;
LPC_EMC->StaticConfig2 |= pb_val&EMC_STATIC_CFG_BYTELAND_MASK;
break;
case 3:
LPC_EMC->StaticConfig3 &= ~EMC_STATIC_CFG_BYTELAND_MASK;
LPC_EMC->StaticConfig3 |= pb_val&EMC_STATIC_CFG_BYTELAND_MASK;
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Configure the extended wait value
*
* @param[in] index index number, should be from 0 to 3
*
* @param[in] ex_wait Extended wait mode, should be:
*
* - EMC_CFG_EW_DISABLED: Extended wait disabled.
*
* - EMC_CFG_EW_ENABLED: Extended wait enabled.
*
* @return EMC_FUNC_OK/EMC_FUNC_INVALID_PARAM
**********************************************************************/
EMC_FUNC_CODE EMC_StaMemConfigEW(uint32_t index , uint32_t ex_wait)
{
switch ( index)
{
case 0:
LPC_EMC->StaticConfig0 &= ~EMC_STATIC_CFG_EXTWAIT_MASK;
LPC_EMC->StaticConfig0 |= ex_wait&EMC_STATIC_CFG_EXTWAIT_MASK;
break;
case 1:
LPC_EMC->StaticConfig1 &= ~EMC_STATIC_CFG_EXTWAIT_MASK;
LPC_EMC->StaticConfig1 |= ex_wait&EMC_STATIC_CFG_EXTWAIT_MASK;
break;
case 2:
LPC_EMC->StaticConfig2 &= ~EMC_STATIC_CFG_EXTWAIT_MASK;
LPC_EMC->StaticConfig2 |= ex_wait&EMC_STATIC_CFG_EXTWAIT_MASK;
break;
case 3:
LPC_EMC->StaticConfig3 &= ~EMC_STATIC_CFG_EXTWAIT_MASK;
LPC_EMC->StaticConfig3 |= ex_wait&EMC_STATIC_CFG_EXTWAIT_MASK;
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Configure the buffer enable value
*
* @param[in] index index number, should be from 0 to 3
*
* @param[in] buf_val Buffer mode, should be:
*
* - EMC_CFG_BUF_DISABLED: Buffer disabled.
*
* - EMC_CFG_BUF_ENABLED: Buffer enabled.
*
* @return EMC_FUNC_OK/EMC_FUNC_INVALID_PARAM
**********************************************************************/
EMC_FUNC_CODE EMC_StaMemConfigB(uint32_t index , uint32_t buf_val)
{
switch ( index)
{
case 0:
LPC_EMC->StaticConfig0 &= ~EMC_STATIC_CFG_BUFENABLE_MASK;
LPC_EMC->StaticConfig0 |= buf_val&EMC_STATIC_CFG_BUFENABLE_MASK;
break;
case 1:
LPC_EMC->StaticConfig1 &= ~EMC_STATIC_CFG_BUFENABLE_MASK;
LPC_EMC->StaticConfig1 |= buf_val&EMC_STATIC_CFG_BUFENABLE_MASK;
break;
case 2:
LPC_EMC->StaticConfig2 &= ~EMC_STATIC_CFG_BUFENABLE_MASK;
LPC_EMC->StaticConfig2 |= buf_val&EMC_STATIC_CFG_BUFENABLE_MASK;
break;
case 3:
LPC_EMC->StaticConfig3 &= ~EMC_STATIC_CFG_BUFENABLE_MASK;
LPC_EMC->StaticConfig3 |= buf_val&EMC_STATIC_CFG_BUFENABLE_MASK;
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Configure the write permission
*
* @param[in] index index number, should be from 0 to 3
*
* @param[in] per_val Permission mode, should be:
*
* - EMC_CFG_WRITEPROTECT_DISABLED: Write not protected.
*
* - EMC_CFG_WRITEPROTECT_ENABLED: Write protected.
*
* @return EMC_FUNC_OK/EMC_FUNC_INVALID_PARAM
**********************************************************************/
EMC_FUNC_CODE EMC_StaMemConfigpP(uint32_t index , uint32_t per_val)
{
switch ( index)
{
case 0:
LPC_EMC->StaticConfig0 &= ~EMC_STATIC_CFG_WRIEPROTECT_MASK;
LPC_EMC->StaticConfig0 |= per_val&EMC_STATIC_CFG_WRIEPROTECT_MASK;
break;
case 1:
LPC_EMC->StaticConfig1 &= ~EMC_STATIC_CFG_WRIEPROTECT_MASK;
LPC_EMC->StaticConfig1 |= per_val&EMC_STATIC_CFG_WRIEPROTECT_MASK;
break;
case 2:
LPC_EMC->StaticConfig2 &= ~EMC_STATIC_CFG_WRIEPROTECT_MASK;
LPC_EMC->StaticConfig2 |= per_val&EMC_STATIC_CFG_WRIEPROTECT_MASK;
break;
case 3:
LPC_EMC->StaticConfig3 &= ~EMC_STATIC_CFG_WRIEPROTECT_MASK;
LPC_EMC->StaticConfig3 |= per_val&EMC_STATIC_CFG_WRIEPROTECT_MASK;
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
return EMC_FUNC_OK;
}
/*********************************************************************//**
* @brief Set the value of LPC_EMC static memory registers
*
* @param[in] index index number, should be from 0 to 3
*
* @param[in] EMC_STA_MEM_PAR Static register, should be:
*
* - EMC_STA_MEM_WAITWEN: StaticWaitWen0 register
* - EMC_STA_MEM_WAITOEN: StaticWaitOen0 register
* - EMC_STA_MEM_WAITRD: StaticWaitRd0 register
* - EMC_STA_MEM_WAITPAGE: StaticWaitPage0 register
* - EMC_STA_MEM_WAITWR: StaticWaitWr0 register
* - EMC_STA_MEM_WAITTURN: StaticWaitTurn0 register
*
* @return EMC_FUNC_OK/EMC_FUNC_INVALID_PARAM
**********************************************************************/
EMC_FUNC_CODE EMC_SetStaMemoryParameter(uint32_t index ,EMC_STA_MEM_PAR par, uint32_t val)
{
switch (index)
{
case 0:
switch ( par)
{
case EMC_STA_MEM_WAITWEN:
LPC_EMC->StaticWaitWen0 = EMC_StaticWaitWen_WAITWEN(val);
break;
case EMC_STA_MEM_WAITOEN:
LPC_EMC->StaticWaitOen0 = EMC_StaticWaitOen_WAITOEN(val);
break;
case EMC_STA_MEM_WAITRD:
LPC_EMC->StaticWaitRd0 = EMC_StaticWaitRd_WAITRD(val);
break;
case EMC_STA_MEM_WAITPAGE:
LPC_EMC->StaticWaitPage0 = EMC_StaticwaitPage_WAITPAGE(val);
break;
case EMC_STA_MEM_WAITWR:
LPC_EMC->StaticWaitWr0 = EMC_StaticWaitwr_WAITWR(val);
break;
case EMC_STA_MEM_WAITTURN:
LPC_EMC->StaticWaitTurn0 =EMC_StaticWaitTurn_WAITTURN(val);
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
break;
case 1:
switch ( par)
{
case EMC_STA_MEM_WAITWEN:
LPC_EMC->StaticWaitWen1 = EMC_StaticWaitWen_WAITWEN(val);
break;
case EMC_STA_MEM_WAITOEN:
LPC_EMC->StaticWaitOen1 = EMC_StaticWaitOen_WAITOEN(val);
break;
case EMC_STA_MEM_WAITRD:
LPC_EMC->StaticWaitRd1 = EMC_StaticWaitRd_WAITRD(val);
break;
case EMC_STA_MEM_WAITPAGE:
LPC_EMC->StaticWaitPage1 = EMC_StaticwaitPage_WAITPAGE(val);
break;
case EMC_STA_MEM_WAITWR:
LPC_EMC->StaticWaitWr1 = EMC_StaticWaitwr_WAITWR(val);
break;
case EMC_STA_MEM_WAITTURN:
LPC_EMC->StaticWaitTurn1 =EMC_StaticWaitTurn_WAITTURN(val);
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
break;
case 2:
switch ( par)
{
case EMC_STA_MEM_WAITWEN:
LPC_EMC->StaticWaitWen2 = EMC_StaticWaitWen_WAITWEN(val);
break;
case EMC_STA_MEM_WAITOEN:
LPC_EMC->StaticWaitOen2 = EMC_StaticWaitOen_WAITOEN(val);
break;
case EMC_STA_MEM_WAITRD:
LPC_EMC->StaticWaitRd2 = EMC_StaticWaitRd_WAITRD(val);
break;
case EMC_STA_MEM_WAITPAGE:
LPC_EMC->StaticWaitPage2 = EMC_StaticwaitPage_WAITPAGE(val);
break;
case EMC_STA_MEM_WAITWR:
LPC_EMC->StaticWaitWr2 = EMC_StaticWaitwr_WAITWR(val);
break;
case EMC_STA_MEM_WAITTURN:
LPC_EMC->StaticWaitTurn2 =EMC_StaticWaitTurn_WAITTURN(val);
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
break;
case 3:
switch ( par)
{
case EMC_STA_MEM_WAITWEN:
LPC_EMC->StaticWaitWen3 = EMC_StaticWaitWen_WAITWEN(val);
break;
case EMC_STA_MEM_WAITOEN:
LPC_EMC->StaticWaitOen3 = EMC_StaticWaitOen_WAITOEN(val);
break;
case EMC_STA_MEM_WAITRD:
LPC_EMC->StaticWaitRd3 = EMC_StaticWaitRd_WAITRD(val);
break;
case EMC_STA_MEM_WAITPAGE:
LPC_EMC->StaticWaitPage3 = EMC_StaticwaitPage_WAITPAGE(val);
break;
case EMC_STA_MEM_WAITWR:
LPC_EMC->StaticWaitWr3 = EMC_StaticWaitwr_WAITWR(val);
break;
case EMC_STA_MEM_WAITTURN:
LPC_EMC->StaticWaitTurn3 =EMC_StaticWaitTurn_WAITTURN(val);
break;
default:
return EMC_FUNC_INVALID_PARAM;
}
break;
}
return EMC_FUNC_OK;
}
/**
* @}
*/
/**
* @}
*/
#endif /*_EMC*/