rt-thread/bsp/nuvoton/libraries/m2354/rtt_port/drv_spi.c

660 lines
18 KiB
C

/**************************************************************************//**
*
* @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-6-15 YHKuo First version
*
******************************************************************************/
#include <rtconfig.h>
#if defined(BSP_USING_SPI)
#define LOG_TAG "drv.spi"
#define DBG_ENABLE
#define DBG_SECTION_NAME LOG_TAG
#define DBG_LEVEL DBG_INFO
#define DBG_COLOR
#include <rtdbg.h>
#include <rthw.h>
#include <rtdevice.h>
#include <rtdef.h>
#include <drv_spi.h>
/* Private define ---------------------------------------------------------------*/
#ifndef NU_SPI_USE_PDMA_MIN_THRESHOLD
#define NU_SPI_USE_PDMA_MIN_THRESHOLD (128)
#endif
enum
{
SPI_START = -1,
#if defined(BSP_USING_SPI0)
SPI0_IDX,
#endif
#if defined(BSP_USING_SPI1)
SPI1_IDX,
#endif
#if defined(BSP_USING_SPI2)
SPI2_IDX,
#endif
#if defined(BSP_USING_SPI3)
SPI3_IDX,
#endif
SPI_CNT
};
/* Private typedef --------------------------------------------------------------*/
/* Private functions ------------------------------------------------------------*/
static void nu_spi_transmission_with_poll(struct nu_spi *spi_bus,
uint8_t *send_addr, uint8_t *recv_addr, int length, uint8_t bytes_per_word);
static int nu_spi_register_bus(struct nu_spi *spi_bus, const char *name);
static rt_uint32_t nu_spi_bus_xfer(struct rt_spi_device *device, struct rt_spi_message *message);
static rt_err_t nu_spi_bus_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration);
#if defined(BSP_USING_SPI_PDMA)
static void nu_pdma_spi_rx_cb(void *pvUserData, uint32_t u32EventFilter);
static rt_err_t nu_pdma_spi_rx_config(struct nu_spi *spi_bus, uint8_t *pu8Buf, int32_t i32RcvLen, uint8_t bytes_per_word);
static rt_err_t nu_pdma_spi_tx_config(struct nu_spi *spi_bus, const uint8_t *pu8Buf, int32_t i32SndLen, uint8_t bytes_per_word);
static rt_size_t nu_spi_pdma_transmit(struct nu_spi *spi_bus, const uint8_t *send_addr, uint8_t *recv_addr, int length, uint8_t bytes_per_word);
#endif
/* Public functions -------------------------------------------------------------*/
void nu_spi_transfer(struct nu_spi *spi_bus, uint8_t *tx, uint8_t *rx, int length, uint8_t bytes_per_word);
void nu_spi_drain_rxfifo(SPI_T *spi_base);
/* Private variables ------------------------------------------------------------*/
static struct rt_spi_ops nu_spi_poll_ops =
{
.configure = nu_spi_bus_configure,
.xfer = nu_spi_bus_xfer,
};
static struct nu_spi nu_spi_arr [] =
{
#if defined(BSP_USING_SPI0)
{
.name = "spi0",
.spi_base = SPI0,
#if defined(BSP_USING_SPI_PDMA)
#if defined(BSP_USING_SPI0_PDMA)
.pdma_perp_tx = PDMA_SPI0_TX,
.pdma_perp_rx = PDMA_SPI0_RX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_SPI1)
{
.name = "spi1",
.spi_base = SPI1,
#if defined(BSP_USING_SPI_PDMA)
#if defined(BSP_USING_SPI1_PDMA)
.pdma_perp_tx = PDMA_SPI1_TX,
.pdma_perp_rx = PDMA_SPI1_RX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_SPI2)
{
.name = "spi2",
.spi_base = SPI2,
#if defined(BSP_USING_SPI_PDMA)
#if defined(BSP_USING_SPI2_PDMA)
.pdma_perp_tx = PDMA_SPI2_TX,
.pdma_perp_rx = PDMA_SPI2_RX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_SPI3)
{
.name = "spi3",
.spi_base = SPI3,
#if defined(BSP_USING_SPI_PDMA)
#if defined(BSP_USING_SPI3_PDMA)
.pdma_perp_tx = PDMA_SPI3_TX,
.pdma_perp_rx = PDMA_SPI3_RX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
{0}
}; /* spi nu_spi */
static rt_err_t nu_spi_bus_configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
struct nu_spi *spi_bus;
uint32_t u32SPIMode;
uint32_t u32BusClock;
rt_err_t ret = RT_EOK;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
spi_bus = (struct nu_spi *) device->bus;
/* Check mode */
switch (configuration->mode & RT_SPI_MODE_3)
{
case RT_SPI_MODE_0:
u32SPIMode = SPI_MODE_0;
break;
case RT_SPI_MODE_1:
u32SPIMode = SPI_MODE_1;
break;
case RT_SPI_MODE_2:
u32SPIMode = SPI_MODE_2;
break;
case RT_SPI_MODE_3:
u32SPIMode = SPI_MODE_3;
break;
default:
ret = RT_EIO;
goto exit_nu_spi_bus_configure;
}
/* Check data width */
if (!(configuration->data_width == 8 ||
configuration->data_width == 16 ||
configuration->data_width == 24 ||
configuration->data_width == 32))
{
ret = RT_EINVAL;
goto exit_nu_spi_bus_configure;
}
/* Try to set clock and get actual spi bus clock */
u32BusClock = SPI_SetBusClock(spi_bus->spi_base, configuration->max_hz);
if (configuration->max_hz > u32BusClock)
{
LOG_W("%s clock max frequency is %dHz (!= %dHz)\n", spi_bus->name, u32BusClock, configuration->max_hz);
configuration->max_hz = u32BusClock;
}
/* Need to initialize new configuration? */
if (rt_memcmp(configuration, &spi_bus->configuration, sizeof(*configuration)) != 0)
{
rt_memcpy(&spi_bus->configuration, configuration, sizeof(*configuration));
SPI_Open(spi_bus->spi_base, SPI_MASTER, u32SPIMode, configuration->data_width, u32BusClock);
if (configuration->mode & RT_SPI_CS_HIGH)
{
/* Set CS pin to LOW */
SPI_SET_SS_LOW(spi_bus->spi_base);
}
else
{
/* Set CS pin to HIGH */
SPI_SET_SS_HIGH(spi_bus->spi_base);
}
if (configuration->mode & RT_SPI_MSB)
{
/* Set sequence to MSB first */
SPI_SET_MSB_FIRST(spi_bus->spi_base);
}
else
{
/* Set sequence to LSB first */
SPI_SET_LSB_FIRST(spi_bus->spi_base);
}
}
/* Clear SPI RX FIFO */
nu_spi_drain_rxfifo(spi_bus->spi_base);
exit_nu_spi_bus_configure:
return -(ret);
}
#if defined(BSP_USING_SPI_PDMA)
static void nu_pdma_spi_rx_cb(void *pvUserData, uint32_t u32EventFilter)
{
rt_err_t result;
struct nu_spi *spi_bus = (struct nu_spi *)pvUserData;
RT_ASSERT(spi_bus != RT_NULL);
result = rt_sem_release(spi_bus->m_psSemBus);
RT_ASSERT(result == RT_EOK);
}
static rt_err_t nu_pdma_spi_rx_config(struct nu_spi *spi_bus, uint8_t *pu8Buf, int32_t i32RcvLen, uint8_t bytes_per_word)
{
rt_err_t result = RT_EOK;
rt_uint8_t *dst_addr = NULL;
nu_pdma_memctrl_t memctrl = eMemCtl_Undefined;
/* Get base address of spi register */
SPI_T *spi_base = spi_bus->spi_base;
rt_uint8_t spi_pdma_rx_chid = spi_bus->pdma_chanid_rx;
result = nu_pdma_callback_register(spi_pdma_rx_chid,
nu_pdma_spi_rx_cb,
(void *)spi_bus,
NU_PDMA_EVENT_TRANSFER_DONE);
if (result != RT_EOK)
{
goto exit_nu_pdma_spi_rx_config;
}
if (pu8Buf == RT_NULL)
{
memctrl = eMemCtl_SrcFix_DstFix;
dst_addr = (rt_uint8_t *) &spi_bus->dummy;
}
else
{
memctrl = eMemCtl_SrcFix_DstInc;
dst_addr = pu8Buf;
}
result = nu_pdma_channel_memctrl_set(spi_pdma_rx_chid, memctrl);
if (result != RT_EOK)
{
goto exit_nu_pdma_spi_rx_config;
}
result = nu_pdma_transfer(spi_pdma_rx_chid,
bytes_per_word * 8,
(uint32_t)&spi_base->RX,
(uint32_t)dst_addr,
i32RcvLen / bytes_per_word,
0);
exit_nu_pdma_spi_rx_config:
return result;
}
static rt_err_t nu_pdma_spi_tx_config(struct nu_spi *spi_bus, const uint8_t *pu8Buf, int32_t i32SndLen, uint8_t bytes_per_word)
{
rt_err_t result = RT_EOK;
rt_uint8_t *src_addr = NULL;
nu_pdma_memctrl_t memctrl = eMemCtl_Undefined;
/* Get base address of spi register */
SPI_T *spi_base = spi_bus->spi_base;
rt_uint8_t spi_pdma_tx_chid = spi_bus->pdma_chanid_tx;
if (pu8Buf == RT_NULL)
{
spi_bus->dummy = 0;
memctrl = eMemCtl_SrcFix_DstFix;
src_addr = (rt_uint8_t *)&spi_bus->dummy;
}
else
{
memctrl = eMemCtl_SrcInc_DstFix;
src_addr = (rt_uint8_t *)pu8Buf;
}
result = nu_pdma_channel_memctrl_set(spi_pdma_tx_chid, memctrl);
if (result != RT_EOK)
{
goto exit_nu_pdma_spi_tx_config;
}
result = nu_pdma_transfer(spi_pdma_tx_chid,
bytes_per_word * 8,
(uint32_t)src_addr,
(uint32_t)&spi_base->TX,
i32SndLen / bytes_per_word,
0);
exit_nu_pdma_spi_tx_config:
return result;
}
/**
* SPI PDMA transfer
*/
static rt_size_t nu_spi_pdma_transmit(struct nu_spi *spi_bus, const uint8_t *send_addr, uint8_t *recv_addr, int length, uint8_t bytes_per_word)
{
rt_err_t result = RT_EOK;
rt_uint32_t u32Offset = 0;
rt_uint32_t u32TransferCnt = length / bytes_per_word;
rt_uint32_t u32TxCnt = 0;
/* Get base address of spi register */
SPI_T *spi_base = spi_bus->spi_base;
do
{
u32TxCnt = (u32TransferCnt > NU_PDMA_MAX_TXCNT) ? NU_PDMA_MAX_TXCNT : u32TransferCnt;
result = nu_pdma_spi_rx_config(spi_bus, (recv_addr == RT_NULL) ? recv_addr : &recv_addr[u32Offset], (u32TxCnt * bytes_per_word), bytes_per_word);
RT_ASSERT(result == RT_EOK);
result = nu_pdma_spi_tx_config(spi_bus, (send_addr == RT_NULL) ? send_addr : &send_addr[u32Offset], (u32TxCnt * bytes_per_word), bytes_per_word);
RT_ASSERT(result == RT_EOK);
/* Trigger TX/RX PDMA transfer. */
SPI_TRIGGER_TX_RX_PDMA(spi_base);
/* Wait RX-PDMA transfer done */
result = rt_sem_take(spi_bus->m_psSemBus, RT_WAITING_FOREVER);
RT_ASSERT(result == RT_EOK);
/* Stop TX/RX DMA transfer. */
SPI_DISABLE_TX_RX_PDMA(spi_base);
u32TransferCnt -= u32TxCnt;
u32Offset += u32TxCnt;
}
while (u32TransferCnt > 0);
return length;
}
rt_err_t nu_hw_spi_pdma_allocate(struct nu_spi *spi_bus)
{
/* Allocate SPI_TX nu_dma channel */
if ((spi_bus->pdma_chanid_tx = nu_pdma_channel_allocate(spi_bus->pdma_perp_tx)) < 0)
{
goto exit_nu_hw_spi_pdma_allocate;
}
/* Allocate SPI_RX nu_dma channel */
else if ((spi_bus->pdma_chanid_rx = nu_pdma_channel_allocate(spi_bus->pdma_perp_rx)) < 0)
{
nu_pdma_channel_free(spi_bus->pdma_chanid_tx);
goto exit_nu_hw_spi_pdma_allocate;
}
spi_bus->m_psSemBus = rt_sem_create("spibus_sem", 0, RT_IPC_FLAG_FIFO);
RT_ASSERT(spi_bus->m_psSemBus != RT_NULL);
return RT_EOK;
exit_nu_hw_spi_pdma_allocate:
return -(RT_ERROR);
}
#endif /* #if defined(BSP_USING_SPI_PDMA) */
void nu_spi_drain_rxfifo(SPI_T *spi_base)
{
while (SPI_IS_BUSY(spi_base));
// Drain SPI RX FIFO, make sure RX FIFO is empty
while (!SPI_GET_RX_FIFO_EMPTY_FLAG(spi_base))
{
SPI_ClearRxFIFO(spi_base);
}
}
static int nu_spi_read(SPI_T *spi_base, uint8_t *recv_addr, uint8_t bytes_per_word)
{
int size = 0;
// Read RX data
if (!SPI_GET_RX_FIFO_EMPTY_FLAG(spi_base))
{
uint32_t val;
// Read data from SPI RX FIFO
switch (bytes_per_word)
{
case 4:
val = SPI_READ_RX(spi_base);
nu_set32_le(recv_addr, val);
break;
case 3:
val = SPI_READ_RX(spi_base);
nu_set24_le(recv_addr, val);
break;
case 2:
val = SPI_READ_RX(spi_base);
nu_set16_le(recv_addr, val);
break;
case 1:
*recv_addr = SPI_READ_RX(spi_base);
break;
default:
LOG_E("Data length is not supported.\n");
break;
}
size = bytes_per_word;
}
return size;
}
static int nu_spi_write(SPI_T *spi_base, const uint8_t *send_addr, uint8_t bytes_per_word)
{
// Wait SPI TX send data
while (SPI_GET_TX_FIFO_FULL_FLAG(spi_base));
// Input data to SPI TX
switch (bytes_per_word)
{
case 4:
SPI_WRITE_TX(spi_base, nu_get32_le(send_addr));
break;
case 3:
SPI_WRITE_TX(spi_base, nu_get24_le(send_addr));
break;
case 2:
SPI_WRITE_TX(spi_base, nu_get16_le(send_addr));
break;
case 1:
SPI_WRITE_TX(spi_base, *((uint8_t *)send_addr));
break;
default:
LOG_E("Data length is not supported.\n");
break;
}
return bytes_per_word;
}
/**
* @brief SPI bus polling
* @param dev : The pointer of the specified SPI module.
* @param send_addr : Source address
* @param recv_addr : Destination address
* @param length : Data length
*/
static void nu_spi_transmission_with_poll(struct nu_spi *spi_bus,
uint8_t *send_addr, uint8_t *recv_addr, int length, uint8_t bytes_per_word)
{
SPI_T *spi_base = spi_bus->spi_base;
// Write-only
if ((send_addr != RT_NULL) && (recv_addr == RT_NULL))
{
while (length > 0)
{
send_addr += nu_spi_write(spi_base, send_addr, bytes_per_word);
length -= bytes_per_word;
}
} // if (send_addr != RT_NULL && recv_addr == RT_NULL)
// Read-only
else if ((send_addr == RT_NULL) && (recv_addr != RT_NULL))
{
spi_bus->dummy = 0;
while (length > 0)
{
/* Input data to SPI TX FIFO */
length -= nu_spi_write(spi_base, (const uint8_t *)&spi_bus->dummy, bytes_per_word);
/* Read data from RX FIFO */
recv_addr += nu_spi_read(spi_base, recv_addr, bytes_per_word);
}
} // else if (send_addr == RT_NULL && recv_addr != RT_NULL)
// Read&Write
else
{
while (length > 0)
{
/* Input data to SPI TX FIFO */
send_addr += nu_spi_write(spi_base, send_addr, bytes_per_word);
length -= bytes_per_word;
/* Read data from RX FIFO */
recv_addr += nu_spi_read(spi_base, recv_addr, bytes_per_word);
}
} // else
/* Wait RX or drain RX-FIFO */
if (recv_addr)
{
// Wait SPI transmission done
while (SPI_IS_BUSY(spi_base))
{
while (!SPI_GET_RX_FIFO_EMPTY_FLAG(spi_base))
{
recv_addr += nu_spi_read(spi_base, recv_addr, bytes_per_word);
}
}
while (!SPI_GET_RX_FIFO_EMPTY_FLAG(spi_base))
{
recv_addr += nu_spi_read(spi_base, recv_addr, bytes_per_word);
}
}
else
{
/* Clear SPI RX FIFO */
nu_spi_drain_rxfifo(spi_base);
}
}
void nu_spi_transfer(struct nu_spi *spi_bus, uint8_t *tx, uint8_t *rx, int length, uint8_t bytes_per_word)
{
RT_ASSERT(spi_bus != RT_NULL);
#if defined(BSP_USING_SPI_PDMA)
/* DMA transfer constrains */
if ((spi_bus->pdma_chanid_rx >= 0) &&
!((uint32_t)tx % bytes_per_word) &&
!((uint32_t)rx % bytes_per_word) &&
(bytes_per_word != 3) &&
(length >= NU_SPI_USE_PDMA_MIN_THRESHOLD))
nu_spi_pdma_transmit(spi_bus, tx, rx, length, bytes_per_word);
else
nu_spi_transmission_with_poll(spi_bus, tx, rx, length, bytes_per_word);
#else
nu_spi_transmission_with_poll(spi_bus, tx, rx, length, bytes_per_word);
#endif
}
static rt_uint32_t nu_spi_bus_xfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
struct nu_spi *spi_bus;
struct rt_spi_configuration *configuration;
uint8_t bytes_per_word;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(message != RT_NULL);
spi_bus = (struct nu_spi *) device->bus;
configuration = (struct rt_spi_configuration *)&spi_bus->configuration;
bytes_per_word = configuration->data_width / 8;
if ((message->length % bytes_per_word) != 0)
{
/* Say bye. */
LOG_E("%s: error payload length(%d%%%d != 0).\n", spi_bus->name, message->length, bytes_per_word);
return 0;
}
if (message->length > 0)
{
if (message->cs_take && !(configuration->mode & RT_SPI_NO_CS))
{
if (configuration->mode & RT_SPI_CS_HIGH)
{
SPI_SET_SS_HIGH(spi_bus->spi_base);
}
else
{
SPI_SET_SS_LOW(spi_bus->spi_base);
}
}
nu_spi_transfer(spi_bus, (uint8_t *)message->send_buf, (uint8_t *)message->recv_buf, message->length, bytes_per_word);
if (message->cs_release && !(configuration->mode & RT_SPI_NO_CS))
{
if (configuration->mode & RT_SPI_CS_HIGH)
{
SPI_SET_SS_LOW(spi_bus->spi_base);
}
else
{
SPI_SET_SS_HIGH(spi_bus->spi_base);
}
}
}
return message->length;
}
static int nu_spi_register_bus(struct nu_spi *spi_bus, const char *name)
{
return rt_spi_bus_register(&spi_bus->dev, name, &nu_spi_poll_ops);
}
/**
* Hardware SPI Initial
*/
static int rt_hw_spi_init(void)
{
int i;
for (i = (SPI_START + 1); i < SPI_CNT; i++)
{
nu_spi_register_bus(&nu_spi_arr[i], nu_spi_arr[i].name);
#if defined(BSP_USING_SPI_PDMA)
nu_spi_arr[i].pdma_chanid_tx = -1;
nu_spi_arr[i].pdma_chanid_rx = -1;
if ((nu_spi_arr[i].pdma_perp_tx != NU_PDMA_UNUSED) && (nu_spi_arr[i].pdma_perp_rx != NU_PDMA_UNUSED))
{
if (nu_hw_spi_pdma_allocate(&nu_spi_arr[i]) != RT_EOK)
{
LOG_W("Failed to allocate DMA channels for %s. We will use poll-mode for this bus.\n", nu_spi_arr[i].name);
}
}
#endif
}
return 0;
}
INIT_DEVICE_EXPORT(rt_hw_spi_init);
#endif //#if defined(BSP_USING_SPI)