rt-thread/libcpu/arm/s3c24x0/rtc.c

303 lines
6.3 KiB
C

/*
* File : rtc.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://openlab.rt-thread.com/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2009-04-26 yi.qiu first version
* 2010-03-18 Gary Lee add functions such as GregorianDay
* and rt_rtc_time_to_tm
*/
#include <rtthread.h>
#include <time.h>
#include <s3c24x0.h>
#include "rtc.h"
/**
* This function get rtc time
*/
void rt_hw_rtc_get(struct rtc_time *ti)
{
rt_uint8_t sec, min, hour, mday, wday, mon, year;
/* enable access to RTC registers */
RTC_ENABLE();
/* read RTC registers */
do
{
sec = BCDSEC;
min = BCDMIN;
hour = BCDHOUR;
mday = BCDDATE;
wday = BCDDAY;
mon = BCDMON;
year = BCDYEAR;
} while (sec != BCDSEC);
/* disable access to RTC registers */
RTC_DISABLE();
ti->tm_sec = BCD2BIN(sec & 0x7F);
ti->tm_min = BCD2BIN(min & 0x7F);
ti->tm_hour = BCD2BIN(hour & 0x3F);
ti->tm_mday = BCD2BIN(mday & 0x3F);
ti->tm_mon = BCD2BIN(mon & 0x1F);
ti->tm_year = BCD2BIN(year);
ti->tm_wday = BCD2BIN(wday & 0x07);
ti->tm_yday = 0;
ti->tm_isdst = 0;
}
/**
* This function set rtc time
*/
void rt_hw_rtc_set(struct rtc_time *ti)
{
rt_uint8_t sec, min, hour, mday, wday, mon, year;
year = BIN2BCD(ti->tm_year);
mon = BIN2BCD(ti->tm_mon);
wday = BIN2BCD(ti->tm_wday);
mday = BIN2BCD(ti->tm_mday);
hour = BIN2BCD(ti->tm_hour);
min = BIN2BCD(ti->tm_min);
sec = BIN2BCD(ti->tm_sec);
/* enable access to RTC registers */
RTC_ENABLE();
/* write RTC registers */
BCDSEC = sec;
BCDMIN = min;
BCDHOUR = hour;
BCDDATE = mday;
BCDDAY = wday;
BCDMON = mon;
BCDYEAR = year;
/* disable access to RTC registers */
RTC_DISABLE();
}
/**
* This function reset rtc
*/
void rt_hw_rtc_reset (void)
{
RTCCON = (RTCCON & ~0x06) | 0x08;
RTCCON &= ~(0x08|0x01);
}
/*
* This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
*/
void GregorianDay(struct rtc_time * tm)
{
int leapsToDate;
int lastYear;
int day;
int MonthOffset[] = { 0,31,59,90,120,151,181,212,243,273,304,334 };
lastYear=tm->tm_year-1;
/*
* Number of leap corrections to apply up to end of last year
*/
leapsToDate = lastYear/4 - lastYear/100 + lastYear/400;
/*
* This year is a leap year if it is divisible by 4 except when it is
* divisible by 100 unless it is divisible by 400
*
* e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 will be
*/
if((tm->tm_year%4==0) &&
((tm->tm_year%100!=0) || (tm->tm_year%400==0)) &&
(tm->tm_mon>2)) {
/*
* We are past Feb. 29 in a leap year
*/
day=1;
} else {
day=0;
}
day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + tm->tm_mday;
tm->tm_wday=day%7;
}
void rt_rtc_time_to_tm(rt_uint32_t tim, struct rtc_time *tm)
{
register int i;
register long hms, day;
day = tim / SECDAY;
hms = tim % SECDAY;
/* Hours, minutes, seconds are easy */
tm->tm_hour = hms / 3600;
tm->tm_min = (hms % 3600) / 60;
tm->tm_sec = (hms % 3600) % 60;
/* Number of years in days */
for (i = STARTOFTIME; day >= days_in_year(i); i++) {
day -= days_in_year(i);
}
tm->tm_year = i;
/* Number of months in days left */
if (LEAP_YEAR(tm->tm_year)) {
days_in_month(FEBRUARY) = 29;
}
for (i = 1; day >= days_in_month(i); i++) {
day -= days_in_month(i);
}
days_in_month(FEBRUARY) = 28;
tm->tm_mon = i;
/* Days are what is left over (+1) from all that. */
tm->tm_mday = day + 1;
/*
* Determine the day of week
*/
GregorianDay(tm);
}
static struct rt_device rtc;
static rt_err_t rt_rtc_open(rt_device_t dev, rt_uint16_t oflag)
{
RTC_ENABLE();
return RT_EOK;
}
static rt_err_t rt_rtc_close(rt_device_t dev)
{
RTC_DISABLE();
return RT_EOK;
}
static rt_size_t rt_rtc_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
return RT_EOK;
}
static rt_err_t rt_rtc_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
struct rtc_time* time;
RT_ASSERT(dev != RT_NULL);
time = (struct rtc_time*)args;
switch (cmd)
{
case RT_DEVICE_CTRL_RTC_GET_TIME:
/* read device */
rt_hw_rtc_get(time);
break;
case RT_DEVICE_CTRL_RTC_SET_TIME:
/* write device */
rt_hw_rtc_set(time);
break;
}
return RT_EOK;
}
void rt_hw_rtc_init(void)
{
rtc.type = RT_Device_Class_RTC;
/* register rtc device */
rtc.init = RT_NULL;
rtc.open = rt_rtc_open;
rtc.close = rt_rtc_close;
rtc.read = rt_rtc_read;
rtc.write = RT_NULL;
rtc.control = rt_rtc_control;
/* no private */
rtc.private = RT_NULL;
rt_device_register(&rtc, "rtc", RT_DEVICE_FLAG_RDWR);
}
time_t time(time_t* t)
{
rt_device_t device;
struct tm ti;
time_t time;
device = rt_device_find("rtc");
if (device != RT_NULL)
{
rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &ti);
if (t != RT_NULL)
{
time = mktime(&ti);
*t = time;
}
}
return time;
}
#ifdef RT_USING_FINSH
#include <finsh.h>
void set_date(rt_uint32_t year, rt_uint32_t month, rt_uint32_t day)
{
struct rtc_time ti;
rt_device_t device;
device = rt_device_find("rtc");
if (device != RT_NULL)
{
rt_rtc_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &ti);
ti.tm_year = year - 1900;
ti.tm_mon = month - 1;
ti.tm_mday = day;
rt_rtc_control(device, RT_DEVICE_CTRL_RTC_SET_TIME, &ti);
}
}
FINSH_FUNCTION_EXPORT(set_date, set date(year, month, day))
void set_time(rt_uint32_t hour, rt_uint32_t minute, rt_uint32_t second)
{
struct rtc_time ti;
rt_device_t device;
device = rt_device_find("rtc");
if (device != RT_NULL)
{
rt_rtc_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &ti);
ti.tm_hour = hour;
ti.tm_min = minute;
ti.tm_sec = second;
rt_rtc_control(device, RT_DEVICE_CTRL_RTC_SET_TIME, &ti);
}
}
FINSH_FUNCTION_EXPORT(set_time, set time(hour, minute, second))
void list_date(void)
{
time_t now;
time(&now);
rt_kprintf("%s\n", ctime(&now));
}
FINSH_FUNCTION_EXPORT(list_date, list date)
#endif