2021-08-29 17:29:43 +08:00

346 lines
9.9 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-08-15 Jonas first version
*/
#include <board.h>
#include "drv_spi.h"
#ifdef RT_USING_SPI
#if !defined(BSP_USING_SPI1) && !defined(BSP_USING_SPI2) && \
!defined(BSP_USING_SPI3) && !defined(BSP_USING_SPI4)
#error "Please define at least one SPIx"
#endif
//#define DEBUG
#define ARR_LEN(__N) (sizeof(__N) / sizeof(__N[0]))
#ifdef DEBUG
#define DEBUG_PRINTF(...) rt_kprintf(__VA_ARGS__)
#else
#define DEBUG_PRINTF(...)
#endif
/* private rt-thread spi ops function */
static rt_err_t configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration);
static rt_uint32_t xfer(struct rt_spi_device *device, struct rt_spi_message *message);
static struct rt_spi_ops hk32_spi_ops =
{
configure,
xfer
};
/**
* Attach the spi device to SPI bus, this function must be used after initialization.
*/
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_TypeDef *cs_gpiox, uint16_t cs_gpio_pin)
{
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
rt_err_t result;
struct rt_spi_device *spi_device;
struct hk32_spi_cs *cs_pin;
/* initialize the cs pin && select the slave*/
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.GPIO_Pin = cs_gpio_pin;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(cs_gpiox, &GPIO_InitStruct);
GPIO_SetBits(cs_gpiox, cs_gpio_pin);
/* attach the device to spi bus*/
spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
cs_pin = (struct hk32_spi_cs *)rt_malloc(sizeof(struct hk32_spi_cs));
RT_ASSERT(cs_pin != RT_NULL);
cs_pin->GPIOx = cs_gpiox;
cs_pin->GPIO_Pin = cs_gpio_pin;
result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
if (result != RT_EOK)
{
DEBUG_PRINTF("%s attach to %s faild, %d\n", device_name, bus_name, result);
}
RT_ASSERT(result == RT_EOK);
DEBUG_PRINTF("%s attach to %s done", device_name, bus_name);
return result;
}
static rt_err_t configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
struct rt_spi_bus *spi_bus = (struct rt_spi_bus *)device->bus;
struct hk32_spi *spi_instance = (struct hk32_spi *)spi_bus->parent.user_data;
SPI_InitTypeDef SPI_InitStruct;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
hk32_msp_spi_init(spi_instance->config->spix);
/* data_width */
if (configuration->data_width <= 8)
{
SPI_InitStruct.SPI_DataSize = SPI_DataSize_8b;
}
else if (configuration->data_width <= 16)
{
SPI_InitStruct.SPI_DataSize = SPI_DataSize_16b;
}
else
{
return RT_EIO;
}
/* baudrate */
{
uint32_t spi_apb_clock;
uint32_t max_hz;
RCC_ClocksTypeDef RCC_Clocks;
max_hz = configuration->max_hz;
RCC_GetClocksFreq(&RCC_Clocks);
DEBUG_PRINTF("sys freq: %d\n", RCC_Clocks.SYSCLK_Freq);
DEBUG_PRINTF("max freq: %d\n", max_hz);
if (spi_instance->config->spix == SPI1)
{
spi_apb_clock = RCC_Clocks.PCLK_Frequency;
DEBUG_PRINTF("pclk freq: %d\n", RCC_Clocks.PCLK_Frequency);
}
else
{
spi_apb_clock = RCC_Clocks.PCLK_Frequency;
DEBUG_PRINTF("pclk1 freq: %d\n", RCC_Clocks.PCLK_Frequency);
}
if (max_hz >= spi_apb_clock / 2)
{
SPI_InitStruct.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2;
}
else if (max_hz >= spi_apb_clock / 4)
{
SPI_InitStruct.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
}
else if (max_hz >= spi_apb_clock / 8)
{
SPI_InitStruct.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8;
}
else if (max_hz >= spi_apb_clock / 16)
{
SPI_InitStruct.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_16;
}
else if (max_hz >= spi_apb_clock / 32)
{
SPI_InitStruct.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_32;
}
else if (max_hz >= spi_apb_clock / 64)
{
SPI_InitStruct.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_64;
}
else if (max_hz >= spi_apb_clock / 128)
{
SPI_InitStruct.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_128;
}
else
{
/* min prescaler 256 */
SPI_InitStruct.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256;
}
} /* baudrate */
switch (configuration->mode & RT_SPI_MODE_3)
{
case RT_SPI_MODE_0:
SPI_InitStruct.SPI_CPHA = SPI_CPHA_1Edge;
SPI_InitStruct.SPI_CPOL = SPI_CPOL_Low;
break;
case RT_SPI_MODE_1:
SPI_InitStruct.SPI_CPHA = SPI_CPHA_2Edge;
SPI_InitStruct.SPI_CPOL = SPI_CPOL_Low;
break;
case RT_SPI_MODE_2:
SPI_InitStruct.SPI_CPHA = SPI_CPHA_1Edge;
SPI_InitStruct.SPI_CPOL = SPI_CPOL_High;
break;
case RT_SPI_MODE_3:
SPI_InitStruct.SPI_CPHA = SPI_CPHA_2Edge;
SPI_InitStruct.SPI_CPOL = SPI_CPOL_High;
break;
}
/* MSB or LSB */
if (configuration->mode & RT_SPI_MSB)
{
SPI_InitStruct.SPI_FirstBit = SPI_FirstBit_MSB;
}
else
{
SPI_InitStruct.SPI_FirstBit = SPI_FirstBit_LSB;
}
SPI_InitStruct.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_InitStruct.SPI_Mode = SPI_Mode_Master;
SPI_InitStruct.SPI_NSS = SPI_NSS_Soft;
/* init SPI */
SPI_Init(spi_instance->config->spix, &SPI_InitStruct);
/* Enable SPI_MASTER */
SPI_Cmd(spi_instance->config->spix, ENABLE);
SPI_CalculateCRC(spi_instance->config->spix, DISABLE);
return RT_EOK;
};
static rt_uint32_t xfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
struct rt_spi_bus *hk32_spi_bus = (struct rt_spi_bus *)device->bus;
struct hk32_spi *spi_instance = (struct hk32_spi *)hk32_spi_bus->parent.user_data;
struct rt_spi_configuration *config = &device->config;
struct hk32_spi_cs *hk32_spi_cs = device->parent.user_data;
RT_ASSERT(device != NULL);
RT_ASSERT(message != NULL);
/* take CS */
if (message->cs_take)
{
GPIO_ResetBits(hk32_spi_cs->GPIOx, hk32_spi_cs->GPIO_Pin);
DEBUG_PRINTF("spi take cs\n");
}
{
if (config->data_width <= 8)
{
const rt_uint8_t *send_ptr = message->send_buf;
rt_uint8_t *recv_ptr = message->recv_buf;
rt_uint32_t size = message->length;
DEBUG_PRINTF("spi poll transfer start: %d\n", size);
while (size--)
{
rt_uint8_t data = 0xFF;
if (send_ptr != RT_NULL)
{
data = *send_ptr++;
}
/* Todo: replace register read/write by hk32 lib */
/* Wait until the transmit buffer is empty */
while (RESET == SPI_I2S_GetFlagStatus(spi_instance->config->spix, SPI_I2S_FLAG_TXE));
/* Send the byte */
SPI_SendData8(spi_instance->config->spix, data);
/* Wait until a data is received */
while (RESET == SPI_I2S_GetFlagStatus(spi_instance->config->spix, SPI_I2S_FLAG_RXNE));
/* Get the received data */
data = SPI_ReceiveData8(spi_instance->config->spix);
if (recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
DEBUG_PRINTF("spi poll transfer finsh\n");
}
else if (config->data_width <= 16)
{
const rt_uint16_t *send_ptr = message->send_buf;
rt_uint16_t *recv_ptr = message->recv_buf;
rt_uint32_t size = message->length;
while (size--)
{
rt_uint16_t data = 0xFF;
if (send_ptr != RT_NULL)
{
data = *send_ptr++;
}
/* Wait until the transmit buffer is empty */
while (RESET == SPI_I2S_GetFlagStatus(spi_instance->config->spix, SPI_I2S_FLAG_TXE));
/* Send the byte */
SPI_I2S_SendData16(spi_instance->config->spix, data);
/* Wait until a data is received */
while (RESET == SPI_I2S_GetFlagStatus(spi_instance->config->spix, SPI_I2S_FLAG_RXNE));
/* Get the received data */
data = SPI_I2S_ReceiveData16(spi_instance->config->spix);
if (recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
}
}
/* release CS */
if (message->cs_release)
{
GPIO_SetBits(hk32_spi_cs->GPIOx, hk32_spi_cs->GPIO_Pin);
DEBUG_PRINTF("spi release cs\n");
}
return message->length;
};
static struct hk32_spi_config configs[] =
{
#ifdef BSP_USING_SPI1
{SPI1, "spi1"},
#endif
#ifdef BSP_USING_SPI2
{SPI2, "spi2"},
#endif
#ifdef BSP_USING_SPI3
{SPI3, "spi3"},
#endif
#ifdef BSP_USING_SPI4
{SPI4, "spi4"},
#endif
};
static struct hk32_spi spis[sizeof(configs) / sizeof(configs[0])] = {0};
int rt_hw_spi_init(void)
{
int i;
rt_err_t result;
rt_size_t obj_num = sizeof(spis) / sizeof(struct hk32_spi);
for (i = 0; i < obj_num; i++)
{
spis[i].config = &configs[i];
spis[i].spi_bus.parent.user_data = (void *)&spis[i];
result = rt_spi_bus_register(&(spis[i].spi_bus), spis[i].config->spi_name, &hk32_spi_ops);
}
return result;
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
#endif