rt-thread/bsp/nuvoton/libraries/m2354/StdDriver/src/nu_usbd.c

779 lines
23 KiB
C

/**************************************************************************//**
* @file usbd.c
* @version V3.00
* @brief M2354 series USBD driver source file
*
* @copyright SPDX-License-Identifier: Apache-2.0
* @copyright Copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
*****************************************************************************/
#include <string.h>
#include "NuMicro.h"
#ifdef __cplusplus
extern "C"
{
#endif
/** @addtogroup Standard_Driver Standard Driver
@{
*/
/** @addtogroup USBD_Driver USBD Driver
@{
*/
/** @addtogroup USBD_EXPORTED_FUNCTIONS USBD Exported Functions
@{
*/
/* Global variables for Control Pipe */
uint8_t g_USBD_au8SetupPacket[8] = {0UL}; /*!< Setup packet buffer */
volatile uint8_t g_USBD_u8RemoteWakeupEn = 0UL; /*!< Remote wake up function enable flag */
/**
* @cond HIDDEN_SYMBOLS
*/
static uint8_t *s_USBD_pu8CtrlInPointer = 0;
static uint8_t *s_USBD_pu8CtrlOutPointer = 0;
static volatile uint32_t s_USBD_u32CtrlInSize = 0UL;
static volatile uint32_t s_USBD_u32CtrlOutSize = 0UL;
static volatile uint32_t s_USBD_u32CtrlOutSizeLimit = 0UL;
static volatile uint32_t s_USBD_u32UsbAddr = 0UL;
static volatile uint32_t s_USBD_u32UsbConfig = 0UL;
static volatile uint32_t s_USBD_u32CtrlMaxPktSize = 8UL;
static volatile uint32_t s_USBD_u32UsbAltInterface = 0UL;
static volatile uint8_t s_USBD_u8CtrlInZeroFlag = 0UL;
/**
* @endcond
*/
const S_USBD_INFO_T *g_USBD_sInfo; /*!< A pointer for USB information structure */
VENDOR_REQ g_USBD_pfnVendorRequest = NULL; /*!< USB Vendor Request Functional Pointer */
CLASS_REQ g_USBD_pfnClassRequest = NULL; /*!< USB Class Request Functional Pointer */
SET_INTERFACE_REQ g_USBD_pfnSetInterface = NULL; /*!< USB Set Interface Functional Pointer */
SET_CONFIG_CB g_USBD_pfnSetConfigCallback = NULL; /*!< USB Set configuration callback function pointer */
uint32_t g_USBD_u32EpStallLock = 0UL; /*!< Bit map flag to lock specified EP when SET_FEATURE */
/**
* @brief This function makes USBD module to be ready to use
*
* @param[in] param The structure of USBD information.
* @param[in] pfnClassReq USB Class request callback function.
* @param[in] pfnSetInterface USB Set Interface request callback function.
*
* @return None
*
* @details This function will enable USB controller, USB PHY transceiver and pull-up resistor of USB_D+ pin. USB PHY will drive SE0 to bus.
*/
void USBD_Open(const S_USBD_INFO_T *param, CLASS_REQ pfnClassReq, SET_INTERFACE_REQ pfnSetInterface)
{
USBD_T *pUSBD;
if((__PC() & NS_OFFSET) == NS_OFFSET)
{
pUSBD = USBD_NS;
}
else
{
pUSBD = USBD;
}
g_USBD_sInfo = param;
g_USBD_pfnClassRequest = pfnClassReq;
g_USBD_pfnSetInterface = pfnSetInterface;
/* get EP0 maximum packet size */
s_USBD_u32CtrlMaxPktSize = g_USBD_sInfo->gu8DevDesc[7];
/* Initial USB engine */
#ifdef SUPPORT_LPM
pUSBD->ATTR = 0x7D0UL | USBD_LPMACK;
#else
pUSBD->ATTR = 0x7D0UL;
#endif
/* Force SE0 */
USBD_SET_SE0();
}
/**
* @brief This function makes USB host to recognize the device
*
* @param None
*
* @return None
*
* @details Enable WAKEUP, FLDET, USB and BUS interrupts. Disable software-disconnect function after 100ms delay with SysTick timer.
*/
void USBD_Start(void)
{
/* Disable software-disconnect function */
USBD_CLR_SE0();
/* Clear USB-related interrupts before enable interrupt */
USBD_CLR_INT_FLAG(USBD_INT_BUS | USBD_INT_USB | USBD_INT_FLDET | USBD_INT_WAKEUP);
/* Enable USB-related interrupts. */
USBD_ENABLE_INT(USBD_INT_BUS | USBD_INT_USB | USBD_INT_FLDET | USBD_INT_WAKEUP);
}
/**
* @brief Get the received SETUP packet
*
* @param[in] buf A buffer pointer used to store 8-byte SETUP packet.
*
* @return None
*
* @details Store SETUP packet to a user-specified buffer.
*
*/
void USBD_GetSetupPacket(uint8_t *buf)
{
USBD_MemCopy(buf, g_USBD_au8SetupPacket, 8UL);
}
/**
* @brief Process SETUP packet
*
* @param None
*
* @return None
*
* @details Parse SETUP packet and perform the corresponding action.
*
*/
void USBD_ProcessSetupPacket(void)
{
/* Get SETUP packet from USB buffer */
USBD_MemCopy(g_USBD_au8SetupPacket, (uint8_t *)USBD_BUF_BASE, 8UL);
/* Check the request type */
switch(g_USBD_au8SetupPacket[0] & 0x60UL)
{
case REQ_STANDARD: /* Standard */
{
USBD_StandardRequest();
break;
}
case REQ_CLASS: /* Class */
{
if(g_USBD_pfnClassRequest != NULL)
{
g_USBD_pfnClassRequest();
}
break;
}
case REQ_VENDOR: /* Vendor */
{
if(g_USBD_pfnVendorRequest != NULL)
{
g_USBD_pfnVendorRequest();
}
break;
}
default: /* reserved */
{
/* Setup error, stall the device */
USBD_SET_EP_STALL(EP0);
USBD_SET_EP_STALL(EP1);
break;
}
}
}
/**
* @brief Process GetDescriptor request
*
* @param None
*
* @return None
*
* @details Parse GetDescriptor request and perform the corresponding action.
*
*/
void USBD_GetDescriptor(void)
{
uint32_t u32Len;
s_USBD_u8CtrlInZeroFlag = (uint8_t)0UL;
u32Len = 0UL;
u32Len = g_USBD_au8SetupPacket[7];
u32Len <<= 8UL;
u32Len += g_USBD_au8SetupPacket[6];
switch(g_USBD_au8SetupPacket[3])
{
/* Get Device Descriptor */
case DESC_DEVICE:
{
u32Len = USBD_Minimum(u32Len, (uint32_t)LEN_DEVICE);
USBD_PrepareCtrlIn((uint8_t *)g_USBD_sInfo->gu8DevDesc, u32Len);
break;
}
/* Get Configuration Descriptor */
case DESC_CONFIG:
{
uint32_t u32TotalLen;
u32TotalLen = g_USBD_sInfo->gu8ConfigDesc[3];
u32TotalLen = g_USBD_sInfo->gu8ConfigDesc[2] + (u32TotalLen << 8UL);
if(u32Len > u32TotalLen)
{
u32Len = u32TotalLen;
if((u32Len % s_USBD_u32CtrlMaxPktSize) == 0UL)
{
s_USBD_u8CtrlInZeroFlag = (uint8_t)1UL;
}
}
USBD_PrepareCtrlIn((uint8_t *)g_USBD_sInfo->gu8ConfigDesc, u32Len);
break;
}
/* Get BOS Descriptor */
case DESC_BOS:
{
if(g_USBD_sInfo->gu8BosDesc == 0)
{
USBD_SET_EP_STALL(EP0);
USBD_SET_EP_STALL(EP1);
}
else
{
u32Len = USBD_Minimum(u32Len, LEN_BOS + LEN_BOSCAP);
USBD_PrepareCtrlIn((uint8_t *)g_USBD_sInfo->gu8BosDesc, u32Len);
}
break;
}
/* Get HID Descriptor */
case DESC_HID:
{
/* CV3.0 HID Class Descriptor Test,
Need to indicate index of the HID Descriptor within gu8ConfigDescriptor, specifically HID Composite device. */
uint32_t u32ConfigDescOffset; /* u32ConfigDescOffset is configuration descriptor offset (HID descriptor start index) */
u32Len = USBD_Minimum(u32Len, LEN_HID);
u32ConfigDescOffset = g_USBD_sInfo->gu32ConfigHidDescIdx[g_USBD_au8SetupPacket[4]];
USBD_PrepareCtrlIn((uint8_t *)&g_USBD_sInfo->gu8ConfigDesc[u32ConfigDescOffset], u32Len);
break;
}
/* Get Report Descriptor */
case DESC_HID_RPT:
{
if(u32Len > g_USBD_sInfo->gu32HidReportSize[g_USBD_au8SetupPacket[4]])
{
u32Len = g_USBD_sInfo->gu32HidReportSize[g_USBD_au8SetupPacket[4]];
if((u32Len % s_USBD_u32CtrlMaxPktSize) == 0UL)
{
s_USBD_u8CtrlInZeroFlag = (uint8_t)1UL;
}
}
USBD_PrepareCtrlIn((uint8_t *)g_USBD_sInfo->gu8HidReportDesc[g_USBD_au8SetupPacket[4]], u32Len);
break;
}
/* Get String Descriptor */
case DESC_STRING:
{
/* Get String Descriptor */
if(g_USBD_au8SetupPacket[2] < 4UL)
{
if(u32Len > g_USBD_sInfo->gu8StringDesc[g_USBD_au8SetupPacket[2]][0])
{
u32Len = g_USBD_sInfo->gu8StringDesc[g_USBD_au8SetupPacket[2]][0];
if((u32Len % s_USBD_u32CtrlMaxPktSize) == 0UL)
{
s_USBD_u8CtrlInZeroFlag = (uint8_t)1UL;
}
}
USBD_PrepareCtrlIn((uint8_t *)g_USBD_sInfo->gu8StringDesc[g_USBD_au8SetupPacket[2]], u32Len);
break;
}
else
{
/* Not support. Reply STALL. */
USBD_SET_EP_STALL(EP0);
USBD_SET_EP_STALL(EP1);
break;
}
}
default:
/* Not support. Reply STALL. */
USBD_SET_EP_STALL(EP0);
USBD_SET_EP_STALL(EP1);
break;
}
}
/**
* @brief Process standard request
*
* @param None
*
* @return None
*
* @details Parse standard request and perform the corresponding action.
*
*/
void USBD_StandardRequest(void)
{
uint32_t u32Addr;
USBD_T *pUSBD;
OTG_T *pOTG;
if((__PC() & NS_OFFSET) == NS_OFFSET)
{
pUSBD = USBD_NS;
pOTG = OTG_NS;
}
else
{
pUSBD = USBD;
pOTG = OTG;
}
/* clear global variables for new request */
s_USBD_pu8CtrlInPointer = 0;
s_USBD_u32CtrlInSize = 0UL;
if((g_USBD_au8SetupPacket[0] & 0x80UL) == 0x80UL) /* request data transfer direction */
{
/* Device to host */
switch(g_USBD_au8SetupPacket[1])
{
case GET_CONFIGURATION:
{
/* Return current configuration setting */
/* Data stage */
u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0);
M8(u32Addr) = (uint8_t)s_USBD_u32UsbConfig;
USBD_SET_DATA1(EP0);
USBD_SET_PAYLOAD_LEN(EP0, 1UL);
/* Status stage */
USBD_PrepareCtrlOut(0, 0UL);
break;
}
case GET_DESCRIPTOR:
{
USBD_GetDescriptor();
USBD_PrepareCtrlOut(0, 0UL); /* For status stage */
break;
}
case GET_INTERFACE:
{
/* Return current interface setting */
/* Data stage */
u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0);
M8(u32Addr) = (uint8_t)s_USBD_u32UsbAltInterface;
USBD_SET_DATA1(EP0);
USBD_SET_PAYLOAD_LEN(EP0, 1UL);
/* Status stage */
USBD_PrepareCtrlOut(0, 0UL);
break;
}
case GET_STATUS:
{
/* Device */
if(g_USBD_au8SetupPacket[0] == 0x80UL)
{
uint8_t u8Tmp;
u8Tmp = (uint8_t)0UL;
if((g_USBD_sInfo->gu8ConfigDesc[7] & 0x40UL) == 0x40UL)
{
u8Tmp |= (uint8_t)1UL; /* Self-Powered/Bus-Powered. */
}
if((g_USBD_sInfo->gu8ConfigDesc[7] & 0x20UL) == 0x20UL)
{
u8Tmp |= (uint8_t)(g_USBD_u8RemoteWakeupEn << 1UL); /* Remote wake up */
}
u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0);
M8(u32Addr) = u8Tmp;
}
/* Interface */
else if(g_USBD_au8SetupPacket[0] == 0x81UL)
{
u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0);
M8(u32Addr) = (uint8_t)0UL;
}
/* Endpoint */
else if(g_USBD_au8SetupPacket[0] == 0x82UL)
{
uint8_t ep = (uint8_t)(g_USBD_au8SetupPacket[4] & 0xFUL);
u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0);
M8(u32Addr) = (uint8_t)(USBD_GetStall(ep) ? 1UL : 0UL);
}
u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0) + 1UL;
M8(u32Addr) = (uint8_t)0UL;
/* Data stage */
USBD_SET_DATA1(EP0);
USBD_SET_PAYLOAD_LEN(EP0, 2UL);
/* Status stage */
USBD_PrepareCtrlOut(0, 0UL);
break;
}
default:
{
/* Setup error, stall the device */
USBD_SET_EP_STALL(EP0);
USBD_SET_EP_STALL(EP1);
break;
}
}
}
else
{
/* Host to device */
switch(g_USBD_au8SetupPacket[1])
{
case CLEAR_FEATURE:
{
if(g_USBD_au8SetupPacket[2] == FEATURE_ENDPOINT_HALT)
{
uint32_t epNum, i;
/* EP number stall is not allow to be clear in MSC class "Error Recovery Test".
a flag: g_USBD_u32EpStallLock is added to support it */
epNum = (uint8_t)(g_USBD_au8SetupPacket[4] & 0xFUL);
for(i = 0UL; i < USBD_MAX_EP; i++)
{
if(((pUSBD->EP[i].CFG & 0xFUL) == epNum) && ((g_USBD_u32EpStallLock & (1UL << i)) == 0UL))
{
pUSBD->EP[i].CFGP &= ~USBD_CFGP_SSTALL_Msk;
pUSBD->EP[i].CFG &= ~USBD_CFG_DSQSYNC_Msk;
}
}
}
else if(g_USBD_au8SetupPacket[2] == FEATURE_DEVICE_REMOTE_WAKEUP)
{
g_USBD_u8RemoteWakeupEn = (uint8_t)0UL;
}
/* Status stage */
USBD_SET_DATA1(EP0);
USBD_SET_PAYLOAD_LEN(EP0, 0UL);
break;
}
case SET_ADDRESS:
{
s_USBD_u32UsbAddr = g_USBD_au8SetupPacket[2];
/* DATA IN for end of setup */
/* Status Stage */
USBD_SET_DATA1(EP0);
USBD_SET_PAYLOAD_LEN(EP0, 0UL);
break;
}
case SET_CONFIGURATION:
{
s_USBD_u32UsbConfig = g_USBD_au8SetupPacket[2];
if(g_USBD_pfnSetConfigCallback)
{
g_USBD_pfnSetConfigCallback();
}
/* DATA IN for end of setup */
/* Status stage */
USBD_SET_DATA1(EP0);
USBD_SET_PAYLOAD_LEN(EP0, 0UL);
break;
}
case SET_FEATURE:
{
if((g_USBD_au8SetupPacket[0] & 0xFUL) == 0UL) /* 0: device */
{
if((g_USBD_au8SetupPacket[2] == 3UL) && (g_USBD_au8SetupPacket[3] == 0UL)) /* 3: HNP enable */
{
pOTG->CTL |= (OTG_CTL_HNPREQEN_Msk | OTG_CTL_BUSREQ_Msk);
}
}
if(g_USBD_au8SetupPacket[2] == FEATURE_ENDPOINT_HALT)
{
USBD_SetStall((uint8_t)(g_USBD_au8SetupPacket[4] & 0xFUL));
}
else if(g_USBD_au8SetupPacket[2] == FEATURE_DEVICE_REMOTE_WAKEUP)
{
g_USBD_u8RemoteWakeupEn = (uint8_t)1UL;
}
/* Status stage */
USBD_SET_DATA1(EP0);
USBD_SET_PAYLOAD_LEN(EP0, 0UL);
break;
}
case SET_INTERFACE:
{
s_USBD_u32UsbAltInterface = g_USBD_au8SetupPacket[2];
if(g_USBD_pfnSetInterface != NULL)
{
g_USBD_pfnSetInterface(s_USBD_u32UsbAltInterface);
}
/* Status stage */
USBD_SET_DATA1(EP0);
USBD_SET_PAYLOAD_LEN(EP0, 0UL);
break;
}
default:
{
/* Setup error, stall the device */
USBD_SET_EP_STALL(EP0);
USBD_SET_EP_STALL(EP1);
break;
}
}
}
}
/**
* @brief Prepare the first Control IN pipe
*
* @param[in] pu8Buf The pointer of data sent to USB host.
* @param[in] u32Size The IN transfer size.
*
* @return None
*
* @details Prepare data for Control IN transfer.
*
*/
void USBD_PrepareCtrlIn(uint8_t pu8Buf[], uint32_t u32Size)
{
uint32_t u32Addr;
if(u32Size > s_USBD_u32CtrlMaxPktSize)
{
/* Data size > MXPLD */
s_USBD_pu8CtrlInPointer = pu8Buf + s_USBD_u32CtrlMaxPktSize;
s_USBD_u32CtrlInSize = u32Size - s_USBD_u32CtrlMaxPktSize;
USBD_SET_DATA1(EP0);
u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0);
USBD_MemCopy((uint8_t *)u32Addr, pu8Buf, s_USBD_u32CtrlMaxPktSize);
USBD_SET_PAYLOAD_LEN(EP0, s_USBD_u32CtrlMaxPktSize);
}
else
{
/* Data size <= MXPLD */
s_USBD_pu8CtrlInPointer = 0;
s_USBD_u32CtrlInSize = 0UL;
USBD_SET_DATA1(EP0);
u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0);
USBD_MemCopy((uint8_t *)u32Addr, pu8Buf, u32Size);
USBD_SET_PAYLOAD_LEN(EP0, u32Size);
}
}
/**
* @brief Repeat Control IN pipe
*
* @param None
*
* @return None
*
* @details This function processes the remained data of Control IN transfer.
*
*/
void USBD_CtrlIn(void)
{
uint32_t u32Addr;
if(s_USBD_u32CtrlInSize)
{
/* Process remained data */
if(s_USBD_u32CtrlInSize > s_USBD_u32CtrlMaxPktSize)
{
/* Data size > MXPLD */
u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0);
USBD_MemCopy((uint8_t *)u32Addr, (uint8_t *)s_USBD_pu8CtrlInPointer, s_USBD_u32CtrlMaxPktSize);
USBD_SET_PAYLOAD_LEN(EP0, s_USBD_u32CtrlMaxPktSize);
s_USBD_pu8CtrlInPointer += s_USBD_u32CtrlMaxPktSize;
s_USBD_u32CtrlInSize -= s_USBD_u32CtrlMaxPktSize;
}
else
{
/* Data size <= MXPLD */
u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0);
USBD_MemCopy((uint8_t *)u32Addr, (uint8_t *)s_USBD_pu8CtrlInPointer, s_USBD_u32CtrlInSize);
USBD_SET_PAYLOAD_LEN(EP0, s_USBD_u32CtrlInSize);
s_USBD_pu8CtrlInPointer = 0;
s_USBD_u32CtrlInSize = 0UL;
}
}
else /* No more data for IN token */
{
/* In ACK for Set address */
if((g_USBD_au8SetupPacket[0] == REQ_STANDARD) && (g_USBD_au8SetupPacket[1] == SET_ADDRESS))
{
u32Addr = USBD_GET_ADDR();
if((u32Addr != s_USBD_u32UsbAddr) && (u32Addr == 0UL))
{
USBD_SET_ADDR(s_USBD_u32UsbAddr);
}
}
/* For the case of data size is integral times maximum packet size */
if(s_USBD_u8CtrlInZeroFlag)
{
USBD_SET_PAYLOAD_LEN(EP0, 0UL);
s_USBD_u8CtrlInZeroFlag = (uint8_t)0UL;
}
}
}
/**
* @brief Prepare the first Control OUT pipe
*
* @param[in] pu8Buf The pointer of data received from USB host.
* @param[in] u32Size The OUT transfer size.
*
* @return None
*
* @details This function is used to prepare the first Control OUT transfer.
*
*/
void USBD_PrepareCtrlOut(uint8_t *pu8Buf, uint32_t u32Size)
{
s_USBD_pu8CtrlOutPointer = pu8Buf;
s_USBD_u32CtrlOutSize = 0UL;
s_USBD_u32CtrlOutSizeLimit = u32Size;
USBD_SET_PAYLOAD_LEN(EP1, s_USBD_u32CtrlMaxPktSize);
}
/**
* @brief Repeat Control OUT pipe
*
* @param None
*
* @return None
*
* @details This function processes the successive Control OUT transfer.
*
*/
void USBD_CtrlOut(void)
{
uint32_t u32Size;
uint32_t u32Addr;
if(s_USBD_u32CtrlOutSize < s_USBD_u32CtrlOutSizeLimit)
{
u32Size = USBD_GET_PAYLOAD_LEN(EP1);
u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP1);
USBD_MemCopy((uint8_t *)s_USBD_pu8CtrlOutPointer, (uint8_t *)u32Addr, u32Size);
s_USBD_pu8CtrlOutPointer += u32Size;
s_USBD_u32CtrlOutSize += u32Size;
if(s_USBD_u32CtrlOutSize < s_USBD_u32CtrlOutSizeLimit)
{
USBD_SET_PAYLOAD_LEN(EP1, s_USBD_u32CtrlMaxPktSize);
}
}
}
/**
* @brief Reset software flags
*
* @param None
*
* @return None
*
* @details This function resets all variables for protocol and resets USB device address to 0.
*
*/
void USBD_SwReset(void)
{
uint32_t i, u32CFG;
USBD_T *pUSBD;
if((__PC() & NS_OFFSET) == NS_OFFSET)
{
pUSBD = USBD_NS;
}
else
{
pUSBD = USBD;
}
/* Reset all variables for protocol */
s_USBD_pu8CtrlInPointer = 0;
s_USBD_u32CtrlInSize = 0UL;
s_USBD_pu8CtrlOutPointer = 0;
s_USBD_u32CtrlOutSize = 0UL;
s_USBD_u32CtrlOutSizeLimit = 0UL;
g_USBD_u32EpStallLock = 0UL;
memset(g_USBD_au8SetupPacket, 0, 8UL);
for(i = 0UL; i < USBD_MAX_EP; i++)
{
if(!USBD_IS_DB_MODE(i))
{
/* Reset PID DATA0 */
pUSBD->EP[i].CFG &= ~USBD_CFG_DSQSYNC_Msk;
}
else
{
/* Reset double buffer setting */
u32CFG = pUSBD->EP[i].CFG;
pUSBD->EP[i].CFG = u32CFG;
}
}
/* Reset USB device address */
USBD_SET_ADDR(0UL);
}
/**
* @brief USBD Set Vendor Request
*
* @param[in] pfnVendorReq Vendor Request Callback Function
*
* @return None
*
* @details This function is used to set USBD vendor request callback function
*/
void USBD_SetVendorRequest(VENDOR_REQ pfnVendorReq)
{
g_USBD_pfnVendorRequest = pfnVendorReq;
}
/**
* @brief The callback function which called when get SET CONFIGURATION request
*
* @param[in] pfnSetConfigCallback Callback function pointer for SET CONFIGURATION request
*
* @return None
*
* @details This function is used to set the callback function which will be called at SET CONFIGURATION request.
*/
void USBD_SetConfigCallback(SET_CONFIG_CB pfnSetConfigCallback)
{
g_USBD_pfnSetConfigCallback = pfnSetConfigCallback;
}
/**
* @brief EP stall lock function to avoid stall clear by USB SET FEATURE request.
*
* @param[in] u32EpBitmap Use bitmap to select which endpoints will be locked
*
* @return None
*
* @details This function is used to lock relative endpoint to avoid stall clear by SET FEATURE request.
* If ep stall locked, user needs to reset USB device or re-configure device to clear it.
*/
void USBD_LockEpStall(uint32_t u32EpBitmap)
{
g_USBD_u32EpStallLock = u32EpBitmap;
}
/**@}*/ /* end of group USBD_EXPORTED_FUNCTIONS */
/**@}*/ /* end of group USBD_Driver */
/**@}*/ /* end of group Standard_Driver */
#ifdef __cplusplus
}
#endif