2021-01-04 14:22:38 +08:00

1324 lines
41 KiB
C

/**
******************************************************************************
* @brief RCC functions of the firmware library.
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "gd32f10x_rcc.h"
/** @addtogroup GD32F10x_Firmware
* @{
*/
/** @defgroup RCC
* @brief RCC driver modules
* @{
*/
/** @defgroup RCC_Private_Defines
* @{
*/
/* RCC GCCR_HSIEN mask */
#define GCCR_HSIEN_SET ((uint32_t)0x00000001)
/* RCC GCFGR_Reset mask */
#define GCFGR_RESET_CL ((uint32_t)0xE0FF0000)
#define GCFGR_RESET ((uint32_t)0xE8FF0000)
/* RCC GCCR_HSEEN_CKMEN_PLLEN masks */
#define GCCR_HSEEN_CKMEN_PLLEN_RESET ((uint32_t)0xFEF6FFFF)
/* RCC GCCR_HSEBPS mask */
#define GCCR_HSEBPS_RESET ((uint32_t)0xFFFBFFFF)
/* RCC GCFGR_PLLSEL_PLLPREDV_PLLMF masks */
#define GCFGR_PLLSEL_PLLPREDV_PLLMF_USBPS_RESET ((uint32_t)0xF700FFFF)
#define GCFGR_PLLSEL_PLLPREDV_PLLMF_OTGFSPS_RESET_CL ((uint32_t)0xDF00FFFF)
/* RCC GCCR_PLL2EN_PLL3EN masks */
#define GCCR_PLL2EN_PLL3EN_RESET ((uint32_t)0xEBFFFFFF)
/* RCC GCFGR2 reset */
#define GCFGR2_RESET ((uint32_t)0x00000000)
/* RCC GCIR_INT ans FLAG masks */
#define GCIR_INT_FLAG_RESET ((uint32_t)0x009F0000)
#define GCIR_INT_FLAG_RESET_CL ((uint32_t)0x00FF0000)
#define GCCR_HSEEN_HSEBPS_RESET ((uint32_t)0xFFFAFFFF)
/* RCC GCCR_HSIADJ masks */
#define GCCR_HSIADJ_OFFSET ((uint32_t)0x00000003)
#define RCC_GCFGR_PLLMF_3_0 ((uint32_t)0x003C0000) /*!< PLLMF[3:0] Bits */
/* RCC HSI clock divided by 2 masks */
#define HSI_CLOCK_DIVIDED_2 ((uint32_t)0x00000001)
/* RCC HSE clock divided by 2 masks */
#define HSE_CLOCK_DIVIDED_2 ((uint32_t)0x00000001)
static __I uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
static __I uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4};
/* GCIR register byte 1 (Bits[15:8]) base address */
#define GCIR_BYTE1_ADDRESS ((uint32_t)0x40021009)
/* GCIR register byte 2 (Bits[23:16]) base address */
#define GCIR_BYTE2_ADDRESS ((uint32_t)0x4002100A)
/* RCC Flag Mask */
#define FLAG_MASK ((uint8_t)0x1F)
/**
* @}
*/
/** @defgroup RCC_Private_Functions
* @{
*/
/**
* @brief Reset the RCC clock configuration.
* @param None
* @retval None
*/
void RCC_DeInit(void)
{
/* Set RCC GCCR_HSIEN mask */
RCC->GCCR |= GCCR_HSIEN_SET;
/* Reset SCS[1:0], AHBPS[3:0], APB1PS[2:0],APB2PS[2:0], ADCPS[2:0],CKOTUSEL[2:0] bits */
#ifdef GD32F10X_CL
RCC->GCFGR &= GCFGR_RESET_CL;
#else
RCC->GCFGR &= GCFGR_RESET;
#endif /* GD32F10X_CL */
/* Reset HSEEN, CKMEN and PLLEN bits */
RCC->GCCR &= GCCR_HSEEN_CKMEN_PLLEN_RESET;
/* Reset HSEBPS bit */
RCC->GCCR &= GCCR_HSEBPS_RESET;
/* Reset PLLSEL, PLLPREDV and PLLMF[4:0] USBPS/OTGFSPS bits */
#ifdef GD32F10X_CL
RCC->GCFGR &= GCFGR_PLLSEL_PLLPREDV_PLLMF_OTGFSPS_RESET_CL;
#else
RCC->GCFGR &= GCFGR_PLLSEL_PLLPREDV_PLLMF_USBPS_RESET;
#endif /* GD32F10X_CL */
#ifdef GD32F10X_CL
/* Reset PLL2EN and PLL3EN bits */
RCC->GCCR &= GCCR_PLL2EN_PLL3EN_RESET;
/* Reset GCFGR2 register */
RCC->GCFGR2 = GCFGR2_RESET ;
/* Disable all interrupts and clear flag bits */
RCC->GCIR = GCIR_INT_FLAG_RESET_CL;
#else
/* Disable all interrupts and clear flag bits */
RCC->GCIR = GCIR_INT_FLAG_RESET;
#endif /* GD32F10X_CL */
}
/**
* @brief Configure the External High Speed oscillator (HSE).
* @param RCC_HSE: specify the new state of HSE.
* This parameter can be one of the following values:
* @arg RCC_HSE_OFF: turn off the HSE
* @arg RCC_HSE_ON: turn on the HSE
* @arg RCC_HSE_BYPASS: HSE bypassed with external clock
* @retval None
*/
void RCC_HSEConfig(uint32_t RCC_HSE)
{
/* Reset HSEEN and HSEBPS bits */
RCC->GCCR &= GCCR_HSEEN_HSEBPS_RESET;
/* Set the new state of HSE */
RCC->GCCR |= RCC_HSE;
}
/**
* @brief Wait for HSE start-up.
* @param None
* @retval The HSE start-up result(SUCCESS or ERROR)
*/
TypeState RCC_WaitForHSEStartUp(void)
{
__IO uint32_t HSE_StartOk_Counter = 0;
TypeState HSEState = RESET;
/* Wait until HSE is ready and if timeout to exit */
while ((HSE_StartOk_Counter != HSE_STARTUP_TIMEOUT) && (HSEState == RESET)) {
HSEState = RCC_GetBitState(RCC_FLAG_HSESTB);
HSE_StartOk_Counter++;
}
if (RCC_GetBitState(RCC_FLAG_HSESTB) != RESET) {
return SUCCESS;
} else {
return ERROR;
}
}
/**
* @brief Adjust the Internal High Speed oscillator (HSI) calibration value.
* @param HSICalibrationValue: the HSI calibration value.
* This parameter must be between 0 and 0x1F.
* @retval None
*/
void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue)
{
uint32_t temp_adjust = 0;
temp_adjust = RCC->GCCR;
/* Clear HSIADJ[4:0] bits */
temp_adjust &= ~RCC_GCCR_HSIADJ;
/* Set HSIADJ[4:0] bits according to HSICalibrationValue value */
temp_adjust |= (uint32_t)HSICalibrationValue << GCCR_HSIADJ_OFFSET ;
/* Store the calibration value */
RCC->GCCR = temp_adjust;
}
/**
* @brief Enable or disable the Internal High Speed oscillator (HSI).
* @param NewValue: new value of the HSI.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_HSI_Enable(TypeState NewValue)
{
if (NewValue != DISABLE) {
RCC->GCCR |= RCC_GCCR_HSIEN;
} else {
RCC->GCCR &= ~RCC_GCCR_HSIEN;
}
}
/**
* @brief Configure the PLL clock source and multiplication factor.
* @param RCC_PLLSelect: specify the PLL clock source.
* For @b GD32_Connectivity_line_devices, this parameter can be one of the following values:
* @arg RCC_PLLSOURCE_HSI_DIV2: HSI divided by 2 selected as PLL clock source
* @arg RCC_PLLSOURCE_PREDIV1: PREDIV1 clock selected as PLL clock source
* For @b other GD32_devices, this parameter can be one of the following values:
* @arg RCC_PLLSOURCE_HSI_DIV2: HSI divided by 2 selected as PLL clock source
* @arg RCC_PLLSOURCE_HSE_DIV1: HSE selected as PLL clock source
* @arg RCC_PLLSOURCE_HSE_DIV2: HSE divided by 2 selected as PLL clock source
* @param RCC_PLLMF: specify the PLL multiplication factor.
* For @b GD32_Connectivity_line_devices, this parameter can be RCC_PLLMUL_x where x:{[2,32], 6_5}
* For @b other_GD32_devices, this parameter can be RCC_PLLMUL_x where x:[2,32]
* @retval None
*/
void RCC_PLLConfig(uint32_t RCC_PLLSelect, uint32_t RCC_PLLMF)
{
uint32_t temp = 0;
temp = RCC->GCFGR;
/* Clear PLLSEL [16] and PLLMF[4:0] bits */
temp &= ~(RCC_GCFGR_PLLMF | RCC_GCFGR_PLLSEL);
/* Set the PLLSEL and PLLMF */
temp |= RCC_PLLSelect | RCC_PLLMF;
RCC->GCFGR = temp;
}
/**
* @brief Enable or disable the PLL.
* @param NewValue: new value of the PLL.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_PLL_Enable(TypeState NewValue)
{
if (NewValue != DISABLE) {
RCC->GCCR |= RCC_GCCR_PLLEN;
} else {
RCC->GCCR &= ~RCC_GCCR_PLLEN;
}
}
#ifdef GD32F10X_CL
/**
* @brief Configure the PREDV1 division factor.
* @param RCC_PREDV1_Source: specifies the PREDV1 clock source.
* This parameter can be one of the following values:
* @arg RCC_PREDIV1_SOURCE_HSE: HSE selected as PREDIV1 clock
* @arg RCC_PREDIV1_SOURCE_PLL2: PLL2 selected as PREDIV1 clock
* @param RCC_PREDV1_DIV: specify the PREDV1 division factor.
* This parameter can be RCC_PREDIV1_DIVx where x:[1,16]
* @retval None
*/
void RCC_PREDV1Config(uint32_t RCC_PREDV1_Source, uint32_t RCC_PREDV1_Div)
{
uint32_t temp = 0;
temp = RCC->GCFGR2;
/* Clear PREDV1[3:0] and PREDV1SEL bits */
temp &= ~(RCC_GCFGR2_PREDV1 | RCC_GCFGR2_PREDV1SEL);
/* Set the PREDV1 division factor and PREDV1SEL */
temp |= (RCC_PREDV1_Div | RCC_PREDV1_Source);
RCC->GCFGR2 = temp;
}
/**
* @brief Configure the PREDV2 division factor.
* @param RCC_PREDV2_Div: specify the PREDV2 clock division factor.
* This parameter can be RCC_PREDIV2_DIVx where x:[1,16]
* @retval None
*/
void RCC_PREDV2Config(uint32_t RCC_PREDV2_Div)
{
uint32_t temp = 0;
temp = RCC->GCFGR2;
/* Clear PREDV2[3:0] bits */
temp &= ~RCC_GCFGR2_PREDV2;
/* Set the PREDV2 division factor */
temp |= RCC_PREDV2_Div;
RCC->GCFGR2 = temp;
}
/**
* @brief Configure the PLL2 multiplication factor.
* @param RCC_PLL2MF: specify the PLL2 multiplication factor.
* This parameter can be RCC_PLL2MUL_x where x:{[8,14], 16, 20}
* @retval None
*/
void RCC_PLL2Config(uint32_t RCC_PLL2MF)
{
uint32_t temp = 0;
temp = RCC->GCFGR2;
/* Clear PLL2MF[3:0] bits */
temp &= ~RCC_GCFGR2_PLL2MF;
/* Set the PLL2 configuration bits */
temp |= RCC_PLL2MF;
RCC->GCFGR2 = temp;
}
/**
* @brief Enable or disable the PLL2.
* @param NewValue: new value of the PLL2.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_PLL2_Enable(TypeState NewValue)
{
if (NewValue != DISABLE) {
RCC->GCCR |= RCC_GCCR_PLL2EN;
} else {
RCC->GCCR &= ~RCC_GCCR_PLL2EN;
}
}
/**
* @brief Configure the PLL3 multiplication factor.
* @param RCC_PLL3MF: specify the PLL3 multiplication factor.
* This parameter can be RCC_PLL3MUL_x where x:{[8,14], 16, 20}
* @retval None
*/
void RCC_PLL3Config(uint32_t RCC_PLL3MF)
{
uint32_t temp = 0;
temp = RCC->GCFGR2;
/* Clear PLL2MF[3:0] bits */
temp &= ~RCC_GCFGR2_PLL3MF;
/* Set the PLL3 configuration bits */
temp |= RCC_PLL3MF;
RCC->GCFGR2 = temp;
}
/**
* @brief Enable or disable the PLL3.
* @param NewValue: new value of the PLL3.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_PLL3_Enable(TypeState NewValue)
{
if (NewValue != DISABLE) {
RCC->GCCR |= RCC_GCCR_PLL3EN;
} else {
RCC->GCCR &= ~RCC_GCCR_PLL3EN;
}
}
#endif /* GD32F10X_CL */
/**
* @brief Configure the system clock (CK_SYS)
* @param RCC_SYSCLKSource: specify the system clock source
* This parameter can be one of the following values:
* @arg RCC_SYSCLKSOURCE_HSI: selecte HSI as CK_SYS source
* @arg RCC_SYSCLKSOURCE_HSE: selecte HSE as CK_SYS source
* @arg RCC_SYSCLKSOURCE_PLLCLK: selecte PLL as CK_SYS source
* @retval None
*/
void RCC_CK_SYSConfig(uint32_t RCC_SYSCLKSource)
{
uint32_t temp = 0;
temp = RCC->GCFGR;
/* Clear SCS[1:0] bits */
temp &= ~RCC_GCFGR_SCS;
/* Set SCS[1:0] bits according to RCC_SYSCLKSource value */
temp |= RCC_SYSCLKSource;
/* Store the new value */
RCC->GCFGR = temp;
}
/**
* @brief Get the system clock source.
* @param None
* @retval Get the system clock source. The returned value can be one
* of the following values:
* @arg 0x00: HSI used as CK_SYS source
* @arg 0x04: HSE used as CK_SYS source
* @arg 0x08: PLL used as CK_SYS source
*/
uint8_t RCC_GetCK_SYSSource(void)
{
return ((uint8_t)(RCC->GCFGR & RCC_GCFGR_SCSS));
}
/**
* @brief Configure the AHB clock.
* @param RCC_CK_SYSDiv: specify the AHB clock divider. This clock is derived from
* the system clock (CK_SYS).
* This parameter can be one of the following values:
* @arg RCC_SYSCLK_DIV1: AHB clock = CK_SYS
* @arg RCC_SYSCLK_DIV2: AHB clock = CK_SYS/2
* @arg RCC_SYSCLK_DIV4: AHB clock = CK_SYS/4
* @arg RCC_SYSCLK_DIV8: AHB clock = CK_SYS/8
* @arg RCC_SYSCLK_DIV16: AHB clock = CK_SYS/16
* @arg RCC_SYSCLK_DIV64: AHB clock = CK_SYS/64
* @arg RCC_SYSCLK_DIV128: AHB clock = CK_SYS/128
* @arg RCC_SYSCLK_DIV256: AHB clock = CK_SYS/256
* @arg RCC_SYSCLK_DIV512: AHB clock = CK_SYS/512
* @retval None
*/
void RCC_AHBConfig(uint32_t RCC_CK_SYSDiv)
{
uint32_t temp = 0;
temp = RCC->GCFGR;
/* Clear AHBPS[3:0] bits */
temp &= ~RCC_GCFGR_AHBPS;
/* Set AHBPS[3:0] bits according to RCC_CK_SYSDiv value */
temp |= RCC_CK_SYSDiv;
/* Store the new value */
RCC->GCFGR = temp;
}
/**
* @brief Configure the APB1 clock.
* @param RCC_APB1: specify the APB1 clock divider. This clock is derived from
* the AHB clock.
* This parameter can be one of the following values:
* @arg RCC_APB1AHB_DIV1: APB1 clock = AHB
* @arg RCC_APB1AHB_DIV2: APB1 clock = AHB/2
* @arg RCC_APB1AHB_DIV4: APB1 clock = AHB/4
* @arg RCC_APB1AHB_DIV8: APB1 clock = AHB/8
* @arg RCC_APB1AHB_DIV16: APB1 clock = AHB/16
* @retval None
*/
void RCC_APB1Config(uint32_t RCC_APB1)
{
uint32_t temp = 0;
temp = RCC->GCFGR;
/* Clear APB1PS[2:0] bits */
temp &= ~RCC_GCFGR_APB1PS;
/* Set APB1PS[2:0] bits according to RCC_APB1 value */
temp |= RCC_APB1;
/* Store the new value */
RCC->GCFGR = temp;
}
/**
* @brief Configure the APB2 clock.
* @param RCC_APB2: specify the APB2 clock divider. This clock is derived from
* the AHB clock.
* This parameter can be one of the following values:
* @arg RCC_APB2AHB_DIV1: APB2 clock = AHB
* @arg RCC_APB2AHB_DIV2: APB2 clock = AHB/2
* @arg RCC_APB2AHB_DIV4: APB2 clock = AHB/4
* @arg RCC_APB2AHB_DIV8: APB2 clock = AHB/8
* @arg RCC_APB2AHB_DIV16: APB2 clock = AHB/16
* @retval None
*/
void RCC_APB2Config(uint32_t RCC_APB2)
{
uint32_t temp = 0;
temp = RCC->GCFGR;
/* Clear APB2PS[2:0] bits */
temp &= ~RCC_GCFGR_APB2PS;
/* Set APB2PS[2:0] bits according to RCC_APB2 value */
temp |= RCC_APB2;
/* Store the new value */
RCC->GCFGR = temp;
}
#ifdef GD32F10X_CL
/**
* @brief Configure the USB_OTG clock (USB_OTG CLK).
* @param RCC_OTGFSCLK: specify the USB_OTG clock source. This clock is derived
* from the PLL.
* This parameter can be one of the following values:
* @arg RCC_OTGCLK_PLL_DIV1_5: USB_OTG clock = PLL/1.5
* @arg RCC_OTGCLK_PLL_DIV1: USB_OTG clock = PLL
* @arg RCC_OTGCLK_PLL_DIV2: USB_OTG clock = PLL/2
* @arg RCC_OTGCLK_PLL_DIV2_5: USB-OTG clock = PLL/2.5
* @retval None
*/
void RCC_OTGFSCLKConfig(uint32_t RCC_OTGFSCLK)
{
/* Clear OTGFSPS bit */
RCC->GCFGR &= ~RCC_GCFGR_OTGFSPS;
/* Set OTGFSPS bits according to RCC_OTGFSCLK value */
RCC->GCFGR |= RCC_OTGFSCLK;
}
#else
/**
* @brief Configure the USB clock (USBCLK).
* @param RCC_USBCLK: specify the USB clock source. This clock is derived
* from the PLL.
* This parameter can be one of the following values:
* @arg RCC_USBCLK_PLL_DIV1_5: USB clock = PLL/1.5
* @arg RCC_USBCLK_PLL_DIV1: USB clock = PLL
* @arg RCC_USBCLK_PLL_DIV2: USB clock = PLL/2
* @arg RCC_USBCLK_PLL_DIV2_5: USB clock = PLL/2.5
* @retval None
*/
void RCC_USBCLKConfig(uint32_t RCC_USBCLK)
{
/* Clear USBPS bit */
RCC->GCFGR &= ~RCC_GCFGR_USBPS;
/* Set USBPS bits according to RCC_USBCLK value */
RCC->GCFGR |= RCC_USBCLK;
}
#endif /* GD32F10X_CL */
/**
* @brief Configure the ADC clock (ADCCLK).
* @param RCC_ADCCLK: specify the ADC clock source. This clock is derived from APB2 clock.
* This parameter can be one of the following values:
* @arg RCC_ADCCLK_APB2_DIV2: ADC clock = APB2/2
* @arg RCC_ADCCLK_APB2_DIV4: ADC clock = APB2/4
* @arg RCC_ADCCLK_APB2_DIV6: ADC clock = APB2/6
* @arg RCC_ADCCLK_APB2_DIV8: ADC clock = APB2/8
* @arg RCC_ADCCLK_APB2_DIV12: ADC clock = APB2/12
* @arg RCC_ADCCLK_APB2_DIV16: ADC clock = APB2/16
* @retval None
*/
void RCC_ADCCLKConfig(uint32_t RCC_ADCCLK)
{
/* Clear ADCPS bit */
RCC->GCFGR &= ~RCC_GCFGR_ADCPS;
/* Set ADCPS bits according to RCC_APB2 value */
RCC->GCFGR |= RCC_ADCCLK;
}
#ifdef GD32F10X_CL
/**
* @brief Configure the I2S2 clock source(I2S2CLK).
* @param RCC_I2S2CLK: specify the I2S2 clock source.
* This parameter can be one of the following values:
* @arg RCC_I2S2CLK_SYSCLK: system clock selected as I2S2 clock entry
* @arg RCC_I2S2CLK_PLL3: PLL3 clock selected as I2S2 clock entry
* @note If the RCC_I2S2CLK_PLL3 selected, the I2S2 clock is (PLL3 x 2).
* @retval None
*/
void RCC_I2S2CLKConfig(uint32_t RCC_I2S2CLK)
{
/* Clear I2S2SEL bit */
RCC->GCFGR2 &= ~RCC_GCFGR2_I2S2SEL;
/* Set I2S2CLK bits according to RCC_I2S2CLK value */
RCC->GCFGR2 |= RCC_I2S2CLK;
}
/**
* @brief Configure the I2S3 clock source(I2S3CLK).
* @param RCC_I2S3CLK: specify the I2S3 clock source.
* This parameter can be one of the following values:
* @arg RCC_I2S3CLK_SYSCLK: system clock selected as I2S3 clock entry
* @arg RCC_I2S3CLK_PLL3: PLL3 clock selected as I2S3 clock entry
* @note If the RCC_I2S3CLK_PLL3 selected, the I2S3 clock is (PLL3 x 2).
* @retval None
*/
void RCC_I2S3CLKConfig(uint32_t RCC_I2S3CLK)
{
/* Clear I2S3SEL bit */
RCC->GCFGR2 &= ~RCC_GCFGR2_I2S3SEL;
/* Set I2S3CLK bits according to RCC_I2S3CLK value */
RCC->GCFGR2 |= RCC_I2S3CLK;
}
#endif /* GD32F10X_CL */
/**
* @brief Configure the External Low Speed oscillator (LSE).
* @param RCC_LSE: specify the new state of the LSE.
* This parameter can be one of the following values:
* @arg RCC_LSE_OFF: turn off the LSE
* @arg RCC_LSE_EN: turn on the LSE
* @arg RCC_LSE_BYPASS: LSE bypassed with external clock
* @retval None
*/
void RCC_LSEConfig(uint32_t RCC_LSE)
{
/* Reset LSEEN and LSEBPS bits before configuring the LSE */
RCC->BDCR &= ~(RCC_BDCR_LSEEN);
RCC->BDCR &= ~(RCC_BDCR_LSEBPS);
/* Configure LSE */
RCC->BDCR |= RCC_LSE;
}
/**
* @brief Enable or disable the Internal Low Speed oscillator (LSI).
* @param NewValue: new value of the LSI.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_LSI_Enable(TypeState NewValue)
{
if (NewValue != DISABLE) {
RCC->GCSR |= RCC_GCSR_LSIEN;
} else {
RCC->GCSR &= ~RCC_GCSR_LSIEN;
}
}
/**
* @brief Configure the RTC clock (RTCCLK).
* @param RCC_RTCCLKSource: specify the RTC clock source.
* This parameter can be one of the following values:
* @arg RCC_RTCCLKSOURCE_LSE: selecte LSE as RTC clock
* @arg RCC_RTCCLKSOURCE_LSI: selecte LSI as RTC clock
* @arg RCC_RTCCLKSOURCE_HSE_DIV128: selecte HSE divided by 128 as RTC clock
* @note if using HSE as RTC source, the maximum clock frequency for RTC is 2 MHz.
* @retval None
*/
void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource)
{
/* Clear RTCSEL bit */
RCC->BDCR &= ~RCC_BDCR_RTCSEL;
/* Select the RTC clock source */
RCC->BDCR |= RCC_RTCCLKSource;
}
/**
* @brief Enable or disable the RTC clock.
* @param NewValue: new state of the RTC clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_RTCCLK_Enable(TypeState NewValue)
{
if (NewValue != DISABLE) {
RCC->BDCR |= RCC_BDCR_RTCEN;
} else {
RCC->BDCR &= ~RCC_BDCR_RTCEN;
}
}
/**
* @brief Get the frequencies of the CK_SYS, AHB, APB1, APB2, ADC clocks.
* @retval None
*/
void RCC_GetClocksFreq(RCC_ClocksPara *RCC_Clocks)
{
uint32_t temp = 0, pllmf = 0, pllmf4 = 0, pllselect = 0, presc = 0;
#ifdef GD32F10X_CL
uint32_t prediv1select = 0, prediv1factor = 0, prediv2factor = 0, pll2mf = 0;
#endif /* GD32F10X_CL */
/* Get CK_SYS source */
temp = RCC->GCFGR & RCC_GCFGR_SCSS;
switch (temp) {
case 0x00: /* HSI used as CK_SYS */
RCC_Clocks->CK_SYS_Frequency = HSI_VALUE;
break;
case 0x04: /* HSE used as CK_SYS */
RCC_Clocks->CK_SYS_Frequency = HSE_VALUE;
break;
case 0x08: /* PLL used as CK_SYS */
#ifdef GD32F10X_CL
/* Get PLL clock source and multiplication factor */
/* Get PLLMF[3:0] */
pllmf = RCC->GCFGR & RCC_GCFGR_PLLMF_3_0;
/* Get PLLMF[4] */
pllmf4 = RCC->GCFGR & RCC_GCFGR_PLLMF_4;
pllmf4 = ((pllmf4 >> 29) * 16);
pllmf = (pllmf >> 18) + pllmf4;
if (pllmf == 0x0D) {
/* PLL multiplication factor = PLL input clock * 6.5*/
/* Beacause of the float number 6.5, pllmf * 2 to remove the float number */
pllmf = 13 * 2 / 2;
} else if (pllmf >= 0x0F) {
pllmf += 1;
/* Here is consistent with the above that pllmf * 2 to remove the float number*/
pllmf = pllmf * 2;
} else {
pllmf += 2;
/* Here is consistent with the above that pllmf * 2 to remove the float number*/
pllmf = pllmf * 2;
}
pllselect = RCC->GCFGR & RCC_GCFGR_PLLSEL;
if (pllselect == 0x00) {
/* HSI clock divided by 2 selected as PLL clock source */
/* Here is consistent with the above that pllmf / 2 */
RCC_Clocks->CK_SYS_Frequency = (HSI_VALUE >> HSI_CLOCK_DIVIDED_2) * pllmf / 2;
} else {
/* PREDIV1 selected as PLL clock entry */
/* Get PREDIV1 clock source and division factor */
prediv1select = RCC->GCFGR2 & RCC_GCFGR2_PREDV1SEL;
prediv1factor = (RCC->GCFGR2 & RCC_GCFGR2_PREDV1) + 1;
if (prediv1select == 0) {
/* HSE clock selected as PREDIV1 clock entry */
/* Here is consistent with the above that pllmf / 2 */
RCC_Clocks->CK_SYS_Frequency = (HSE_VALUE / prediv1factor) * pllmf / 2;
} else {
/* PLL2 clock selected as PREDIV1 clock entry */
/* Get PREDIV2 division factor and PLL2 multiplication factor */
prediv2factor = ((RCC->GCFGR2 & RCC_GCFGR2_PREDV2) >> 4) + 1;
pll2mf = ((RCC->GCFGR2 & RCC_GCFGR2_PLL2MF) >> 8);
if (pll2mf != 15) {
pll2mf += 2;
} else {
pll2mf += 5;
}
/* Here is consistent with the above that pllmf / 2 */
RCC_Clocks->CK_SYS_Frequency = (((HSE_VALUE / prediv2factor) * pll2mf) / prediv1factor) * pllmf / 2;
}
}
#else
/* Get PLL clock source and multiplication factor */
/* Get PLLMF[3:0] */
pllmf = RCC->GCFGR & RCC_GCFGR_PLLMF_3_0;
/* Get PLLMF[4] */
pllmf4 = RCC->GCFGR & RCC_GCFGR_PLLMF_4;
pllmf4 = ((pllmf4 >> 27) * 16);
pllmf = (pllmf >> 18) + pllmf4;
if (pllmf >= 0x0F)
pllmf += 1;
else
pllmf += 2;
pllselect = RCC->GCFGR & RCC_GCFGR_PLLSEL;
if (pllselect == 0x00) {
/* HSI clock divided by 2 selected as PLL clock source */
RCC_Clocks->CK_SYS_Frequency = (HSI_VALUE >> HSI_CLOCK_DIVIDED_2) * pllmf;
} else {
if ((RCC->GCFGR & RCC_GCFGR_PLLPREDV) != (uint32_t)RESET) {
/* HSE clock divided by 2 */
RCC_Clocks->CK_SYS_Frequency = (HSE_VALUE >> HSE_CLOCK_DIVIDED_2) * pllmf;
} else {
RCC_Clocks->CK_SYS_Frequency = HSE_VALUE * pllmf;
}
}
#endif/* GD32F10X_CL */
break;
default: /* HSI used as system clock */
RCC_Clocks->CK_SYS_Frequency = HSI_VALUE;
break;
}
/* Get AHB prescaler */
temp = RCC->GCFGR & RCC_GCFGR_AHBPS;
temp = temp >> 4;
presc = AHBPrescTable[temp];
/* Get AHB clock frequency */
RCC_Clocks->AHB_Frequency = RCC_Clocks->CK_SYS_Frequency >> presc;
/* Get APB1 prescaler */
temp = RCC->GCFGR & RCC_GCFGR_APB1PS;
temp = temp >> 8;
presc = APBPrescTable[temp];
/* Get APB1 clock frequency */
RCC_Clocks->APB1_Frequency = RCC_Clocks->AHB_Frequency >> presc;
/* Get APB2 prescaler */
temp = RCC->GCFGR & RCC_GCFGR_APB2PS;
temp = temp >> 11;
presc = APBPrescTable[temp];
/* Get APB2 clock frequency */
RCC_Clocks->APB2_Frequency = RCC_Clocks->AHB_Frequency >> presc;
/* Get ADCCLK clock frequency */
temp = ((RCC->GCFGR & RCC_GCFGR_ADCPS_2) >> 26);
temp += ((RCC->GCFGR & (RCC_GCFGR_ADCPS_0 | RCC_GCFGR_ADCPS_1)) >> 14);
switch (temp) {
case 0x00: /* ADC Clock is derived from APB2/2 */
RCC_Clocks->ADCCLK_Frequency = (RCC_Clocks->APB2_Frequency / 2);
break;
case 0x01: /* ADC Clock is derived from APB2/4 */
RCC_Clocks->ADCCLK_Frequency = (RCC_Clocks->APB2_Frequency / 4);
break;
case 0x02: /* ADC Clock is derived from APB2/6 */
RCC_Clocks->ADCCLK_Frequency = (RCC_Clocks->APB2_Frequency / 6);
break;
case 0x03: /* ADC Clock is derived from APB2/8 */
RCC_Clocks->ADCCLK_Frequency = (RCC_Clocks->APB2_Frequency / 8);
break;
case 0x04: /* ADC Clock is derived from APB2/2 */
RCC_Clocks->ADCCLK_Frequency = (RCC_Clocks->APB2_Frequency / 2);
break;
case 0x05: /* ADC Clock is derived from APB2/12 */
RCC_Clocks->ADCCLK_Frequency = (RCC_Clocks->APB2_Frequency / 12);
break;
case 0x06: /* ADC Clock is derived from APB2/8 */
RCC_Clocks->ADCCLK_Frequency = (RCC_Clocks->APB2_Frequency / 8);
break;
case 0x07: /* ADC Clock is derived from APB2/16 */
RCC_Clocks->ADCCLK_Frequency = (RCC_Clocks->APB2_Frequency / 16);
break;
default:
break;
}
}
/**
* @brief Enable or disable the AHB peripheral clock.
* @param RCC_AHBPeriph: specify the AHB peripheral clock.
* For @b GD32_Connectivity_line_devices,
* this parameter can be any combination of the following values:
* @arg RCC_AHBPERIPH_DMA1
* @arg RCC_AHBPERIPH_DMA2
* @arg RCC_AHBPERIPH_SRAM
* @arg RCC_AHBPERIPH_FMC
* @arg RCC_AHBPERIPH_CRC
* @arg RCC_AHBPERIPH_EXMC
* @arg RCC_AHBPERIPH_OTG_FS
* @arg RCC_AHBPERIPH_ETH_MAC
* @arg RCC_AHBPERIPH_ETH_MAC_RX
* @arg RCC_AHBPERIPH_ETH_MAC_TX
*
* For @b other_GD32_devices, this parameter can be any combination of the
* following values:
* @arg RCC_AHBPERIPH_DMA1
* @arg RCC_AHBPERIPH_DMA2
* @arg RCC_AHBPERIPH_SRAM
* @arg RCC_AHBPERIPH_FMC
* @arg RCC_AHBPERIPH_CRC
* @arg RCC_AHBPERIPH_EXMC
* @arg RCC_AHBPERIPH_SDIO
* @param NewValue: new state of the peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_AHBPeriphClock_Enable(uint32_t RCC_AHBPeriph, TypeState NewValue)
{
if (NewValue != DISABLE) {
RCC->AHBCCR |= RCC_AHBPeriph;
} else {
RCC->AHBCCR &= ~RCC_AHBPeriph;
}
}
/**
* @brief Enable or disable the APB2 peripheral clock.
* @param RCC_APB2Periph: specify the APB2 peripheral clock.
* This parameter can be any combination of the following values:
* @arg RCC_APB2PERIPH_AF
* @arg RCC_APB2PERIPH_GPIOA
* @arg RCC_APB2PERIPH_GPIOB
* @arg RCC_APB2PERIPH_GPIOC
* @arg RCC_APB2PERIPH_GPIOD
* @arg RCC_APB2PERIPH_GPIOE
* @arg RCC_APB2PERIPH_GPIOF
* @arg RCC_APB2PERIPH_GPIOG
* @arg RCC_APB2PERIPH_ADC1
* @arg RCC_APB2PERIPH_ADC2
* @arg RCC_APB2PERIPH_TIMER1
* @arg RCC_APB2PERIPH_SPI1
* @arg RCC_APB2PERIPH_TIMER8
* @arg RCC_APB2PERIPH_USART1
* @arg RCC_APB2PERIPH_ADC3
* @arg RCC_APB2PERIPH_TIMER9
* @arg RCC_APB2PERIPH_TIMER10
* @arg RCC_APB2PERIPH_TIMER11
* @param NewValue: new state of the peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB2PeriphClock_Enable(uint32_t RCC_APB2Periph, TypeState NewValue)
{
if (NewValue != DISABLE) {
RCC->APB2CCR |= RCC_APB2Periph;
} else {
RCC->APB2CCR &= ~RCC_APB2Periph;
}
}
/**
* @brief Enable or disable the APB1 peripheral clock.
* @param RCC_APB1Periph: specify the APB1 peripheral clock.
* This parameter can be any combination of the following values:
* @arg RCC_APB1PERIPH_TIMER2
* @arg RCC_APB1PERIPH_TIMER3
* @arg RCC_APB1PERIPH_TIMER4
* @arg RCC_APB1PERIPH_TIMER5
* @arg RCC_APB1PERIPH_TIMER6
* @arg RCC_APB1PERIPH_TIMER7
* @arg RCC_APB1PERIPH_TIMER12
* @arg RCC_APB1PERIPH_TIMER13
* @arg RCC_APB1PERIPH_TIMER14
* @arg RCC_APB1PERIPH_WWDG
* @arg RCC_APB1PERIPH_SPI2
* @arg RCC_APB1PERIPH_SPI3,
* @arg RCC_APB1PERIPH_USART2
* @arg RCC_APB1PERIPH_USART3
* @arg RCC_APB1PERIPH_UART4
* @arg RCC_APB1PERIPH_UART5
* @arg RCC_APB1PERIPH_I2C1
* @arg RCC_APB1PERIPH_I2C2
* @arg RCC_APB1PERIPH_USB
* @arg RCC_APB1PERIPH_CAN1
* @arg RCC_APB1PERIPH_CAN2
* @arg RCC_APB1PERIPH_BKP
* @arg RCC_APB1PERIPH_PWR
* @arg RCC_APB1PERIPH_DAC
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB1PeriphClock_Enable(uint32_t RCC_APB1Periph, TypeState NewValue)
{
if (NewValue != DISABLE) {
RCC->APB1CCR |= RCC_APB1Periph;
} else {
RCC->APB1CCR &= ~RCC_APB1Periph;
}
}
#ifdef GD32F10X_CL
/**
* @brief Force or release AHB peripheral reset.
* @param RCC_AHBPeriphRST: specify the AHB peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_AHBPeriph_OTGFSRST
* @arg RCC_AHBPeriph_ETHMACRST
* @param NewState: new state of the specified peripheral reset.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_AHBPeriphReset_Enable(uint32_t RCC_AHBPeriphRST, TypeState NewValue)
{
if (NewValue != DISABLE) {
RCC->AHBRCR |= RCC_AHBPeriphRST;
} else {
RCC->AHBRCR &= ~RCC_AHBPeriphRST;
}
}
#endif /* GD32F10X_CL */
/**
* @brief Force or release APB2 peripheral reset.
* @param RCC_APB2PeriphRST: specify the APB2 peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_APB2PERIPH_AFRST
* @arg RCC_APB2PERIPH_GPIOARST
* @arg RCC_APB2PERIPH_GPIOBRST
* @arg RCC_APB2PERIPH_GPIOCRST
* @arg RCC_APB2PERIPH_GPIODRST
* @arg RCC_APB2PERIPH_GPIOERST
* @arg RCC_APB2PERIPH_GPIOFRST
* @arg RCC_APB2PERIPH_GPIOGRST
* @arg RCC_APB2PERIPH_ADC1RST
* @arg RCC_APB2PERIPH_ADC2RST
* @arg RCC_APB2PERIPH_TIMER1RST
* @arg RCC_APB2PERIPH_SPI1RST
* @arg RCC_APB2PERIPH_TIMER8RST
* @arg RCC_APB2PERIPH_USART1RST
* @arg RCC_APB2PERIPH_ADC3RST
* @arg RCC_APB2PERIPH_TIMER9RST
* @arg RCC_APB2PERIPH_TIMER10RST
* @arg RCC_APB2PERIPH_TIMER11RST
* @param NewValue: new state of the peripheral reset.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB2PeriphReset_Enable(uint32_t RCC_APB2PeriphRST, TypeState NewValue)
{
if (NewValue != DISABLE) {
RCC->APB2RCR |= RCC_APB2PeriphRST;
} else {
RCC->APB2RCR &= ~RCC_APB2PeriphRST;
}
}
/**
* @brief Force or release APB1 peripheral reset.
* @param RCC_APB1PeriphRST: specify the APB1 peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_APB1PERIPH_TIMER2RST
* @arg RCC_APB1PERIPH_TIMER3RST
* @arg RCC_APB1PERIPH_TIMER4RST
* @arg RCC_APB1PERIPH_TIMER5RST
* @arg RCC_APB1PERIPH_TIMER6RST
* @arg RCC_APB1PERIPH_TIMER7RST
* @arg RCC_APB1PERIPH_TIMER12RST
* @arg RCC_APB1PERIPH_TIMER13RST
* @arg RCC_APB1PERIPH_TIMER14RST
* @arg RCC_APB1PERIPH_WWDGRST
* @arg RCC_APB1PERIPH_SPI2RST
* @arg RCC_APB1PERIPH_SPI3RST
* @arg RCC_APB1PERIPH_USART2RST
* @arg RCC_APB1PERIPH_USART3RST
* @arg RCC_APB1PERIPH_UART4RST
* @arg RCC_APB1PERIPH_UART5RST
* @arg RCC_APB1PERIPH_I2C1RST
* @arg RCC_APB1PERIPH_I2C2RST
* @arg RCC_APB1PERIPH_USBRST
* @arg RCC_APB1PERIPH_CAN1RST
* @arg RCC_APB1PERIPH_CAN2RST
* @arg RCC_APB1PERIPH_BKPRST
* @arg RCC_APB1PERIPH_PWRRST
* @arg RCC_APB1PERIPH_DACRST
* @param NewValue: new state of the peripheral clock (ENABLE or DISABLE).
* @retval None
*/
void RCC_APB1PeriphReset_Enable(uint32_t RCC_APB1PeriphRST, TypeState NewValue)
{
if (NewValue != DISABLE) {
RCC->APB1RCR |= RCC_APB1PeriphRST;
} else {
RCC->APB1RCR &= ~RCC_APB1PeriphRST;
}
}
/**
* @brief Force or release the Backup domain reset.
* @param NewValue: new state of the Backup domain reset (ENABLE or DISABLE).
* @retval None
*/
void RCC_BackupReset_Enable(TypeState NewValue)
{
if (NewValue != DISABLE) {
RCC->BDCR |= RCC_BDCR_BKPRST;
} else {
RCC->BDCR &= ~RCC_BDCR_BKPRST;
}
}
/**
* @brief Enable or disable the Clock Security System.
* @param NewValue: new value of the Clock Security System.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_HSEClockMonitor_Enable(TypeState NewValue)
{
if (NewValue != DISABLE) {
RCC->GCCR |= RCC_GCCR_CKMEN;
} else {
RCC->GCCR &= ~RCC_GCCR_CKMEN;
}
}
/**
* @brief Select the clock source to output on CKOUTSRC and the corresponding prescaler.
* @param RCC_CKOUTSRC: specify the clock source to output.
* For @b GD32_Connectivity_line_devices, this parameter can be one of the
* following values:
* @arg RCC_CKOUTSRC_NOCLOCK: No clock selected
* @arg RCC_CKOUTSRC_SYSCLK: System clock selected
* @arg RCC_CKOUTSRC_HSI: HSI oscillator clock selected
* @arg RCC_CKOUTSRC_HSE: HSE oscillator clock selected
* @arg RCC_CKOUTSRC_PLL2CLK: PLL2 clock selected
* @arg RCC_CKOUTSRC_PLLCLK_DIV2: PLL clock divided by 2 selected
* @arg RCC_CKOUTSRC_PLL3CLK: PLL3 clock selected
* @arg RCC_CKOUTSRC_PLL3CLK_DIV2: PLL3 clock divided by 2 selected
* @arg RCC_CKOUTSRC_EXT1: External 3-25 MHz oscillator clock selected
* For @b other_GD32_devices, this parameter can be one of the following values:
* @arg RCC_CKOUTSRC_NOCLOCK: No clock selected
* @arg RCC_CKOUTSRC_SYSCLK: System clock selected
* @arg RCC_CKOUTSRC_HSI: HSI oscillator clock selected
* @arg RCC_CKOUTSRC_HSE: HSE oscillator clock selected
* @arg RCC_CKOUTSRC_PLLCLK_DIV2: PLL clock divided by 2 selected
* @retval None
*/
void RCC_CKOUTSRCConfig(uint32_t RCC_CKOUTSRC)
{
uint32_t temp = 0;
temp = RCC->GCFGR;
/* Clear CKOUTSRC[2:0] bits */
temp &= ~(RCC_GCFGR_CKOUTSEL);
/* Set the RCC_CKOUTSRC */
temp |= RCC_CKOUTSRC;
/* Store the new value */
RCC->GCFGR = temp;
}
/**
* @brief Enable or disable RCC interrupts.
* @param RCC_INT: specify the RCC interrupt sources.
* For @b GD32_Connectivity_line_devices, this parameter can be any combination
* of the following values
* @arg RCC_INT_LSISTB: LSI ready interrupt
* @arg RCC_INT_LSESTB LSE ready interrupt
* @arg RCC_INT_HSISTB: HSI ready interrupt
* @arg RCC_INT_HSESTB: HSE ready interrupt
* @arg RCC_INT_PLLSTB: PLL ready interrupt
* @arg RCC_INT_PLL2STB: PLL2 ready interrupt
* @arg RCC_INT_PLL3STB: PLL3 ready interrupt
*
* For @b other_GD32_devices, this parameter can be any combination of the
* following values
* @arg RCC_INT_LSISTB: LSI ready interrupt
* @arg RCC_INT_LSESTB: LSE ready interrupt
* @arg RCC_INT_HSISTB: HSI ready interrupt
* @arg RCC_INT_HSESTB: HSE ready interrupt
* @arg RCC_INT_PLLSTB: PLL ready interrupt
* @param NewValue: new state of the RCC interrupts (ENABLE or DISABLE).
* @retval None
*/
void RCC_INTConfig(uint8_t RCC_INT, TypeState NewValue)
{
if (NewValue != DISABLE) {
/* Perform Byte access to RCC_GCIR[14:8] bits to enable the selected interrupts */
*(__IO uint8_t *) GCIR_BYTE1_ADDRESS |= RCC_INT;
} else {
/* Perform Byte access to RCC_GCIR bits to disable the selected interrupts */
*(__IO uint8_t *) GCIR_BYTE1_ADDRESS &= (uint8_t)~RCC_INT;
}
}
/**
* @brief Check whether the specified RCC flag is set or not.
* @param RCC_FLAG: specify the flag to check.
* For @b GD32_Connectivity_line_devices, this parameter can be one of the
* following values:
* @arg RCC_FLAG_HSISTB: HSI clock ready
* @arg RCC_FLAG_HSESTB: HSE clock ready
* @arg RCC_FLAG_PLLSTB: PLL clock ready
* @arg RCC_FLAG_PLL2STB: PLL2 clock ready
* @arg RCC_FLAG_PLL3STB: PLL3 clock ready
* @arg RCC_FLAG_LSESTB: LSE clock ready
* @arg RCC_FLAG_LSISTB: LSI clock ready
* @arg RCC_FLAG_EPRST: Pin reset
* @arg RCC_FLAG_POPDRST: POR/PDR reset
* @arg RCC_FLAG_SWRRST: Software reset
* @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
* @arg RCC_FLAG_WWDGRST: Window Watchdog reset
* @arg RCC_FLAG_LPRRST: Low Power reset
* For @b other_GD32_devices, this parameter can be one of the following values:
* @arg RCC_FLAG_HSISTB: HSI oscillator clock ready
* @arg RCC_FLAG_HSESTB: HSE oscillator clock ready
* @arg RCC_FLAG_PLLSTB: PLL clock ready
* @arg RCC_FLAG_LSESTB: LSE oscillator clock ready
* @arg RCC_FLAG_LSISTB: LSI oscillator clock ready
* @arg RCC_FLAG_EPRST: Pin reset
* @arg RCC_FLAG_POPDRST: POR/PDR reset
* @arg RCC_FLAG_SWRRST: Software reset
* @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
* @arg RCC_FLAG_WWDGRST: Window Watchdog reset
* @arg RCC_FLAG_LPRRST: Low Power reset
* @retval The new state of RCC_FLAG (SET or RESET).
*/
TypeState RCC_GetBitState(uint8_t RCC_FLAG)
{
uint32_t temp = 0;
uint32_t statusreg = 0;
/* Get the RCC register index */
temp = RCC_FLAG >> 5;
/* The flag to check is in GCCR register */
if (temp == 1) {
statusreg = RCC->GCCR;
}
/* The flag to check is in BDCR register */
else if (temp == 2) {
statusreg = RCC->BDCR;
}
/* The flag to check is in GCSR register */
else {
statusreg = RCC->GCSR;
}
/* Get the flag position */
temp = RCC_FLAG & FLAG_MASK;
if ((statusreg & ((uint32_t)(1 << temp))) != (uint32_t)RESET) {
return SET;
} else {
return RESET;
}
}
/**
* @brief Clear the RCC all reset flags.
* @param None
* @retval None
*/
void RCC_ClearBitState(void)
{
/* Set RSTFC bit to clear all reset flags */
RCC->GCSR |= RCC_GCSR_RSTFC;
}
/**
* @brief Check whether the RCC interrupt has occurred or not.
* @param RCC_INT: specify the RCC interrupt source to check.
* For @b GD32_Connectivity_line_devices, this parameter can be one of the
* following values:
* @arg RCC_INT_LSISTB: the flag of LSI ready interrupt
* @arg RCC_INT_LSESTB: the flag of LSE ready interrupt
* @arg RCC_INT_HSISTB: the flag of HSI ready interrupt
* @arg RCC_INT_HSESTB: the flag of HSE ready interrupt
* @arg RCC_INT_PLLSTB: the flag of PLL ready interrupt
* @arg RCC_INT_PLL2STB: the flag of PLL2 ready interrupt
* @arg RCC_INT_PLL3STB: the flag of PLL3 ready interrupt
* @arg RCC_INT_CKM: the flag of Clock Security System interrupt
* For @b other_GD32_devices, this parameter can be one of the following values:
* @arg RCC_INT_LSISTB: the flag of LSI ready interrupt
* @arg RCC_INT_LSESTB: the flag of LSE ready interrupt
* @arg RCC_INT_HSISTB: the flag of HSI ready interrupt
* @arg RCC_INT_HSESTB: the flag of HSE ready interrupt
* @arg RCC_INT_PLLSTB: the flag of PLL ready interrupt
* @arg RCC_INT_CKM: the flag of Clock Security System interrupt
* @retval The new state of RCC_INT (SET or RESET).
*/
TypeState RCC_GetIntBitState(uint8_t RCC_INT)
{
/* Check the status of the RCC interrupt */
if ((RCC->GCIR & RCC_INT) != (uint32_t)RESET) {
return SET;
} else {
return RESET;
}
}
/**
* @brief Clear the RCC interrupt bits.
* @param RCC_INT: specify the interrupt bit to clear.
* For @b GD32_Connectivity_line_devices, this parameter can be any combination
* of the following values:
* @arg RCC_INT_LSISTB: LSI ready interrupt
* @arg RCC_INT_LSESTB LSE ready interrupt
* @arg RCC_INT_HSISTB: HSI ready interrupt
* @arg RCC_INT_HSESTB: HSE ready interrupt
* @arg RCC_INT_PLLSTB: PLL ready interrupt
* @arg RCC_INT_PLL2STB: PLL2 ready interrupt
* @arg RCC_INT_PLL3STB: PLL3 ready interrupt
* @arg RCC_INT_CKM: Clock Security System interrupt
* For @b other_GD32_devices, this parameter can be any combination of the
* following values
* @arg RCC_INT_LSISTB: LSI ready interrupt
* @arg RCC_INT_LSESTB: LSE ready interrupt
* @arg RCC_INT_HSISTB: HSI ready interrupt
* @arg RCC_INT_HSESTB: HSE ready interrupt
* @arg RCC_INT_PLLSTB: PLL ready interrupt
* @arg RCC_INT_CKM: Clock Security System interrupt
* @retval None
*/
void RCC_ClearIntBitState(uint8_t RCC_INT)
{
/* Perform RCC_GCIR[23:16] bits to clear the selected interrupt bits */
*(__IO uint8_t *) GCIR_BYTE2_ADDRESS = RCC_INT;
}
/**
* @brief Configure the kernel voltage in Deep-sleep mode.
* @note Only unlock the power,this configuration is effective.
* @param RCC_KERNEL_VOL: specify the kernel voltage.
* This parameter can be one of the following values:
* @arg RCC_KERNEL_VOL1_2: The kernel voltage in Deep-sleep mode is 1.2V
* @arg RCC_KERNEL_VOL1_1: The kernel voltage in Deep-sleep mode is 1.1V
* @arg RCC_KERNEL_VOL1_0: The kernel voltage in Deep-sleep mode is 1.0V
* @arg RCC_KERNEL_VOL0_9: The kernel voltage in Deep-sleep mode is 0.9V
* @retval None
*/
void RCC_KERNELVOLConfig(uint32_t RCC_KERNEL_VOL)
{
/* Clear DEEPSLEEP_VC bit */
RCC->RCC_DEEPSLEEP_VC &= ~RCC_DEEPSLEEP_VC_CLEAR;
/* Set DEEPSLEEP_VC bits according to RCC_KERNEL_VOL value */
RCC->RCC_DEEPSLEEP_VC |= RCC_KERNEL_VOL;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/