rt-thread/bsp/phytium/libraries/standalone/drivers/pcie/fpcie/fpcie.c

859 lines
29 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright : (C) 2022 Phytium Information Technology, Inc.
* All Rights Reserved.
*
* This program is OPEN SOURCE software: you can redistribute it and/or modify it
* under the terms of the Phytium Public License as published by the Phytium Technology Co.,Ltd,
* either version 1.0 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the Phytium Public License for more details.
*
*
* FilePath: fpcie.c
* Date: 2022-08-10 14:55:11
* LastEditTime: 2022-08-18 08:59:28
* Description: This file is for the minimum required function implementations for this driver.
*
* Modify History:
* Ver   Who        Date         Changes
* ----- ------     --------    --------------------------------------
* 1.0 huanghe 2022/8/18 init commit
*/
/***************************** Include Files *********************************/
#include "fpcie.h"
#include "fpcie_hw.h"
#include "fpcie_common.h"
#include "fparameters.h"
#include "fkernel.h"
#include <stdio.h>
#include <string.h>
#include "fdebug.h"
#define CONFIG_SYS_PCI_CACHE_LINE_SIZE 8
#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
/***************** Macros (Inline Functions) Definitions *********************/
#define FPCIE_DEBUG_TAG "FPCIE"
#define FPCIE_ERROR(format, ...) FT_DEBUG_PRINT_E(FPCIE_DEBUG_TAG, format, ##__VA_ARGS__)
#define FPCIE_DEBUG_I(format, ...) FT_DEBUG_PRINT_I(FPCIE_DEBUG_TAG, format, ##__VA_ARGS__)
#define FPCIE_DEBUG_W(format, ...) FT_DEBUG_PRINT_W(FPCIE_DEBUG_TAG, format, ##__VA_ARGS__)
#define FPCIE_DEBUG_E(format, ...) FT_DEBUG_PRINT_E(FPCIE_DEBUG_TAG, format, ##__VA_ARGS__)
/************************** Constant Definitions *****************************/
/**************************** Type Definitions *******************************/
/************************** Variable Definitions *****************************/
extern int FPcieEpCleanBar(FPcie *instance_p, u32 peu_num, u32 bar_num) ;
static void FPcieShowRegion(const char *name, struct FPcieRegion *region)
{
FPCIE_DEBUG_I("Pci auto config: bus %s region: [0x%llx-0x%llx],\n"
"\t\tphysical memory [0x%llx-0x%llx]", name,
(unsigned long long)region->bus_start,
(unsigned long long)(region->bus_start + region->size - 1),
(unsigned long long)region->phys_start,
(unsigned long long)(region->phys_start + region->size - 1));
FPCIE_DEBUG_I("Bus lower is 0x%llx", (unsigned long long)region->bus_lower) ;
}
/**
* @name: FPcieRegionConfigInit
* @msg: 初始化PEU 用于分配的地址空间
* @param {FPcie} *instance_p is a pointer to the FPcie instance.
* @param {FPcieRegion} *regs 地址空间对应的指针
* @param {u32} regs_num 传入regs 结构体的数量
*/
//用于资源初始化到instance_p中
static void FPcieRegionConfigInit(FPcie *instance_p, struct FPcieRegion *regs, u32 regs_num)
{
u32 i ;
for (i = 0; i < regs_num; i++)
{
switch (regs[i].flags)
{
case FPCIE_REGION_IO:
memset(&instance_p->mem_io, 0, sizeof(struct FPcieRegion)) ;
memcpy(&instance_p->mem_io, regs, sizeof(struct FPcieRegion)) ;
instance_p->mem_io.exist_flg = FPCIE_REGION_EXIST_FLG ;
instance_p->mem_io.bus_lower = instance_p->mem_io.phys_start;
FPcieShowRegion("I/O", &instance_p->mem_io);
break;
case FPCIE_REGION_MEM:
memset(&instance_p->mem, 0, sizeof(struct FPcieRegion)) ;
memcpy(&instance_p->mem, regs, sizeof(struct FPcieRegion)) ;
instance_p->mem.exist_flg = FPCIE_REGION_EXIST_FLG ;
instance_p->mem.bus_lower = instance_p->mem.phys_start;
FPcieShowRegion("Memory", &instance_p->mem);
break;
case (PCI_REGION_PREFETCH|FPCIE_REGION_MEM):
memset(&instance_p->mem_prefetch, 0, sizeof(struct FPcieRegion)) ;
memcpy(&instance_p->mem_prefetch, regs, sizeof(struct FPcieRegion)) ;
instance_p->mem_prefetch.exist_flg = FPCIE_REGION_EXIST_FLG ;
instance_p->mem_prefetch.bus_lower = instance_p->mem_prefetch.phys_start;
FPcieShowRegion("Prefetchable Mem", &instance_p->mem_prefetch);
break;
default:
break;
}
}
}
/**
* @name: FPcieCfgInitialize
* @msg: This function initializes the config space and PCIe bridge.
* @param {FPcie} *instance_p is a pointer to the FPcie instance.
* @param {FPcieConfig} *config_p pointer to FPcieConfig instrance Pointer.
* @return FError
*/
FError FPcieCfgInitialize(FPcie *instance_p, FPcieConfig *config_p) //用于从全局配置数据中获取数据初始化instance_p
{
fsize_t i;
struct FPcieRegion mem_region = {0} ;
struct FPcieRegion prefetch_region = {0} ;
struct FPcieRegion io_region = {0} ;
/* Assert arguments */
FASSERT(instance_p != NULL);
FASSERT(config_p != NULL);
/* Clear instance memory and make copy of configuration */
memset(instance_p, 0, sizeof(FPcie));
memcpy(&instance_p->config, config_p, sizeof(FPcieConfig));
/* 为枚举过程中,涉及的配置空间提供地址划分 */
/* mem32 地址 */ //使用获取到的硬件信息来初始化mem32
mem_region.phys_start = instance_p->config.npmem_base_addr ;
mem_region.bus_start = instance_p->config.npmem_base_addr ;
mem_region.size = instance_p->config.npmem_size ;
mem_region.flags = FPCIE_REGION_MEM ;
/* mem64 地址 */ //使用获取到的硬件信息来初始化mem64
prefetch_region.phys_start = instance_p->config.pmem_base_addr ;
prefetch_region.bus_start = instance_p->config.pmem_base_addr ;
prefetch_region.size = instance_p->config.pmem_size ;
prefetch_region.flags = (PCI_REGION_PREFETCH | FPCIE_REGION_MEM);
/* memio 地址 */ //使用获取到的硬件信息来初始化io
io_region.phys_start = instance_p->config.io_base_addr ;
io_region.bus_start = instance_p->config.io_base_addr ;
io_region.size = instance_p->config.io_size ;
io_region.flags = FPCIE_REGION_IO;
/* scaned bdf array clean */
instance_p->scaned_bdf_count = 0;
FPcieRegionConfigInit(instance_p, &mem_region, 1) ;
#if defined(__aarch64__)
FPcieRegionConfigInit(instance_p, &prefetch_region, 1) ;
#endif
FPcieRegionConfigInit(instance_p, &io_region, 1) ;
instance_p->is_ready = FT_COMPONENT_IS_READY;
return (FT_SUCCESS);
}
u32 FPcieFindCapability(FPcie *instance_p, u32 bdf, u32 cid_type, u32 cid, u32 *cid_offset)
{
u32 reg_value;
u32 next_cap_offset;
if (cid_type == PCIE_CAP)
{
/* Serach in PCIe configuration space */
FPcieEcamReadConfig32bit(instance_p->config.ecam, bdf, FPCIE_CAPABILITY_LIST, &reg_value);
if (reg_value == 0xffffffff)
{
return -1;
}
next_cap_offset = (reg_value & 0xff);
while (next_cap_offset)
{
FPcieEcamReadConfig32bit(instance_p->config.ecam, bdf, next_cap_offset, &reg_value);
if ((reg_value & 0xff) == cid)
{
*cid_offset = next_cap_offset;
return 0;
}
next_cap_offset = ((reg_value >> 8) & 0xff);
}
}
else if (cid_type == PCIE_ECAP)
{
/* Serach in PCIe extended configuration space */
next_cap_offset = FPCIE_ECAP_START;
while (next_cap_offset)
{
FPcieEcamReadConfig32bit(instance_p->config.ecam, bdf, next_cap_offset, &reg_value);
if ((reg_value & 0xffff) == cid)
{
*cid_offset = next_cap_offset;
return 0;
}
next_cap_offset = ((reg_value >> 20) & 0xfff);
}
}
/* The capability was not found */
return -1;
}
const char *FPcieClassStr(u8 class)
{
switch (class)
{
case FPCI_CLASS_NOT_DEFINED:
return "Build before PCI Rev2.0";
break;
case FPCI_BASE_CLASS_STORAGE:
return "Mass storage controller";
break;
case FPCI_BASE_CLASS_NETWORK:
return "Network controller";
break;
case FPCI_BASE_CLASS_DISPLAY:
return "Display controller";
break;
case FPCI_BASE_CLASS_MULTIMEDIA:
return "Multimedia device";
break;
case FPCI_BASE_CLASS_MEMORY:
return "Memory controller";
break;
case FPCI_BASE_CLASS_BRIDGE:
return "Bridge device";
break;
case FPCI_BASE_CLASS_COMMUNICATION:
return "Simple comm. controller";
break;
case FPCI_BASE_CLASS_SYSTEM:
return "Base system peripheral";
break;
case FPCI_BASE_CLASS_INPUT:
return "Input device";
break;
case FPCI_BASE_CLASS_DOCKING:
return "Docking station";
break;
case FPCI_BASE_CLASS_PROCESSOR:
return "Processor";
break;
case FPCI_BASE_CLASS_SERIAL:
return "Serial bus controller";
break;
case FPCI_BASE_CLASS_INTELLIGENT:
return "Intelligent controller";
break;
case FPCI_BASE_CLASS_SATELLITE:
return "Satellite controller";
break;
case FPCI_BASE_CLASS_CRYPT:
return "Cryptographic device";
break;
case FPCI_BASE_CLASS_SIGNAL_PROCESSING:
return "DSP";
break;
case FPCI_CLASS_OTHERS:
return "Does not fit any class";
break;
default:
return "???";
break;
};
}
void FPcieAutoRegionAlign(struct FPcieRegion *res, pci_size_t size)
{
res->bus_lower = ((res->bus_lower - 1) | (size - 1)) + 1;
}
int FPcieAutoRegionAllocate(struct FPcieRegion *res, pci_size_t size,
pci_addr_t *bar, bool supports_64bit)
{
pci_addr_t addr;
if (!res)
{
FPCIE_DEBUG_E("No resource.");
goto error;
}
addr = ((res->bus_lower - 1) | (size - 1)) + 1;
if (addr - res->bus_start + size > res->size)
{
FPCIE_DEBUG_E("No room in resource.");
goto error;
}
if (upper_32_bits(addr) && !supports_64bit)
{
FPCIE_DEBUG_E("Cannot assign 64-bit address to 32-bit-only resource.");
goto error;
}
res->bus_lower = addr + size;
*bar = addr;
return 0;
error:
*bar = (pci_addr_t) -1;
return -1;
}
/* This function uses BAR to request IO or MMIO space and configure the expansion ROM address */
void FPcieAutoSetupDevice(FPcie *instance_p, u32 bdf, int bars_num,
struct FPcieRegion *mem,
struct FPcieRegion *prefetch, struct FPcieRegion *io,
bool enum_only)
{
u32 bar_response;
pci_size_t bar_size;
u16 cmdstat = 0;
int bar, bar_nr = 0;
u8 header_type;
int rom_addr;
pci_addr_t bar_value;
struct FPcieRegion *bar_res = NULL;
int found_mem64 = 0;
u16 class;
/* Command register: enable or disable the access to I/O and memory */
FPcieEcamReadConfig16bit(instance_p->config.ecam, bdf, FPCIE_COMMAND_REG, &cmdstat);
cmdstat = (cmdstat & ~(FPCIE_COMMAND_IO | FPCIE_COMMAND_MEMORY)) |
FPCIE_COMMAND_MASTER;
for (bar = FPCIE_BASE_ADDRESS_0;
bar < FPCIE_BASE_ADDRESS_0 + (bars_num * 4); bar += 4)
{
/* Tickle the BAR and get the response */
if (!enum_only)
{
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, bar, 0xffffffff);
}
FPcieEcamReadConfig32bit(instance_p->config.ecam, bdf, bar, &bar_response);
/* If BAR is not implemented go to the next BAR */
if (!bar_response)
{
continue;
}
found_mem64 = 0;
/* Check the BAR type and set our address mask */
if (bar_response & FPCIE_BASE_ADDRESS_SPACE)
{
/* formula to get addr space of BAR */
bar_size = ((~(bar_response & FPCIE_BASE_ADDRESS_IO_MASK))
& 0xffff) + 1;
if (!enum_only)
{
bar_res = io;
}
}
else
{
if ((bar_response & FPCIE_BASE_ADDRESS_MEM_TYPE_MASK) ==
FPCIE_BASE_ADDRESS_MEM_TYPE_64)
{
u32 bar_response_upper;
u64 bar64;
if (!enum_only)
{
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, bar + 4, 0xffffffff);
}
FPcieEcamReadConfig32bit(instance_p->config.ecam, bdf, bar + 4, &bar_response_upper);
bar64 = ((u64)bar_response_upper << 32) |
bar_response;
bar_size = ~(bar64 & FPCIE_BASE_ADDRESS_MEM_MASK)
+ 1;
if (!enum_only)
{
found_mem64 = 1;
}
}
else
{
bar_size = (u32)(~(bar_response &
FPCIE_BASE_ADDRESS_MEM_MASK) + 1);
}
if (!enum_only)
{
if ((prefetch->exist_flg & FPCIE_REGION_EXIST_FLG) & (bar_response &
FPCIE_BASE_ADDRESS_MEM_PREFETCH))
{
bar_res = prefetch;
}
else
{
bar_res = mem;
}
}
}
if (!enum_only && FPcieAutoRegionAllocate(bar_res, bar_size,
&bar_value,
found_mem64) == 0)
{
/* Write it out and update our limit */
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, bar, (u32)bar_value);
if (found_mem64)
{
bar += 4;
#ifdef CONFIG_SYS_PCI_64BIT
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, bar, (u32)(bar_value >> 32));
#else
/*
* If we are a 64-bit decoder then increment to
* the upper 32 bits of the bar and force it to
* locate in the lower 4GB of memory.
*/
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, bar, 0x00000000);
#endif
}
}
cmdstat |= (bar_response & FPCIE_BASE_ADDRESS_SPACE) ?
FPCIE_COMMAND_IO : FPCIE_COMMAND_MEMORY;
bar_nr++;
}
if (!enum_only)
{
/* Configure the expansion ROM address */
FPcieEcamReadConfig8bit(instance_p->config.ecam, bdf, FPCIE_HEADER_TYPE_REG, &header_type);
header_type &= 0x7f;
if (header_type != FPCIE_HEADER_TYPE_CARDBUS)
{
rom_addr = (header_type == FPCIE_HEADER_TYPE_NORMAL) ?
FPCIE_ROM_ADDRESS : FPCIE_ROM_ADDRESS1;
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, rom_addr, 0xfffffffe);
FPcieEcamReadConfig32bit(instance_p->config.ecam, bdf, rom_addr, &bar_response);
if (bar_response)
{
bar_size = -(bar_response & ~1);
if (FPcieAutoRegionAllocate(mem, bar_size,
&bar_value,
false) == 0)
{
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, rom_addr, bar_value);
}
cmdstat |= FPCIE_COMMAND_MEMORY;
}
}
}
/* PCI_COMMAND_IO must be set for VGA device */
FPcieEcamReadConfig16bit(instance_p->config.ecam, bdf, FPCI_CLASS_DEVICE_REG, &class);
if (class == FPCI_CLASS_DISPLAY_VGA)
{
cmdstat |= FPCIE_COMMAND_IO;
}
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_COMMAND_REG, cmdstat);
FPcieEcamWriteConfig8bit(instance_p->config.ecam, bdf, FPCIE_CACHE_LINE_SIZE_REG,
CONFIG_SYS_PCI_CACHE_LINE_SIZE);
FPcieEcamWriteConfig8bit(instance_p->config.ecam, bdf, FPCIE_LATENCY_TIMER_REG, 0x80);
}
void FPcieAutoPrescanSetupBridge(FPcie *instance_p, u32 bdf, int sub_bus)
{
struct FPcieRegion *pci_mem;
struct FPcieRegion *pci_prefetch;
struct FPcieRegion *pci_io;
u16 cmdstat, prefechable_64;
pci_mem = &(instance_p->mem);
pci_prefetch = &(instance_p->mem_prefetch);
pci_io = &(instance_p->mem_io);
FPcieEcamReadConfig16bit(instance_p->config.ecam, bdf, FPCIE_COMMAND_REG, &cmdstat) ;
FPcieEcamReadConfig16bit(instance_p->config.ecam, bdf, FPCIE_PREF_MEMORY_BASE_REG, &prefechable_64) ;
prefechable_64 &= FPCIE_PREF_RANGE_TYPE_MASK;
/* Configure bus number registers *///暂时只有一个pcie配置空间的做法如果多个pci配置空间则需当前bus减去该配置空间对应设备的起始bus号
FPcieEcamWriteConfig8bit(instance_p->config.ecam, bdf, FPCIE_PRIMARY_BUS_REG, FPCIE_BUS(bdf));
FPcieEcamWriteConfig8bit(instance_p->config.ecam, bdf, FPCIE_SECONDARY_BUS_REG, sub_bus);
FPcieEcamWriteConfig8bit(instance_p->config.ecam, bdf, FPCIE_SUBORDINATE_BUS_REG, 0xff);
if (pci_mem->exist_flg & FPCIE_REGION_EXIST_FLG)
{
/* Round memory allocator to 1MB boundary */
FPcieAutoRegionAlign(pci_mem, 0x100000);
/*
* Set up memory and I/O filter limits, assume 32-bit
* I/O space
*/
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_MEMORY_BASE_REG,
(pci_mem->bus_lower & 0xfff00000) >> 16);
cmdstat |= FPCIE_COMMAND_MEMORY;
}
if (pci_prefetch->exist_flg & FPCIE_REGION_EXIST_FLG)
{
/* Round memory allocator to 1MB boundary */
FPcieAutoRegionAlign(pci_prefetch, 0x100000);
/*
* Set up memory and I/O filter limits, assume 32-bit
* I/O space
*/
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_PREF_MEMORY_BASE_REG,
(pci_prefetch->bus_lower & 0xfff00000) >> 16);
if (prefechable_64 == FPCIE_PREF_RANGE_TYPE_64)
#ifdef CONFIG_SYS_PCI_64BIT
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, FPCIE_PREF_BASE_UPPER32_REG,
pci_prefetch->bus_lower >> 32);
#else
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, FPCIE_PREF_BASE_UPPER32_REG,
0x0);
#endif
cmdstat |= FPCIE_COMMAND_MEMORY;
}
else
{
/* We don't support prefetchable memory for now, so disable */
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_PREF_MEMORY_BASE_REG, 0x1000);
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_PREF_MEMORY_LIMIT_REG, 0x0);
if (prefechable_64 == FPCIE_PREF_RANGE_TYPE_64)
{
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_PREF_BASE_UPPER32_REG, 0x0);
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_PREF_LIMIT_UPPER32_REG, 0x0);
}
}
if (pci_io->exist_flg & FPCIE_REGION_EXIST_FLG)
{
/* Round I/O allocator to 4KB boundary */
FPcieAutoRegionAlign(pci_io, 0x1000);
FPcieEcamWriteConfig8bit(instance_p->config.ecam, bdf, FPCIE_IO_BASE_REG,
(pci_io->bus_lower & 0x0000f000) >> 8);
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_IO_BASE_UPPER16_REG,
(pci_io->bus_lower & 0xffff0000) >> 16);
cmdstat |= FPCIE_COMMAND_IO;
}
/* Enable memory and I/O accesses, enable bus master */
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_COMMAND_REG, cmdstat | FPCIE_COMMAND_MASTER);
}
void FPcieAutoPostscanSetupBridge(FPcie *instance_p, u32 bdf, int sub_bus)
{
struct FPcieRegion *pci_mem;
struct FPcieRegion *pci_prefetch;
struct FPcieRegion *pci_io;
pci_mem = &(instance_p->mem);
pci_prefetch = &(instance_p->mem_prefetch);
pci_io = &(instance_p->mem_io);
/* Configure bus number registers */
FPcieEcamWriteConfig8bit(instance_p->config.ecam, bdf, FPCIE_SUBORDINATE_BUS_REG, sub_bus);//配置一下subordinate-bus可能在固件下不一定必须用
if (pci_mem->exist_flg & FPCIE_REGION_EXIST_FLG)
{
/* Round memory allocator to 1MB boundary */
FPcieAutoRegionAlign(pci_mem, 0x100000);
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_MEMORY_LIMIT_REG, (pci_mem->bus_lower - 1) >> 16);
}
if (pci_prefetch->exist_flg & FPCIE_REGION_EXIST_FLG)
{
u16 prefechable_64;
FPcieEcamReadConfig16bit(instance_p->config.ecam, bdf, FPCIE_PREF_MEMORY_LIMIT_REG, &prefechable_64);
prefechable_64 &= FPCIE_PREF_RANGE_TYPE_MASK;
/* Round memory allocator to 1MB boundary */
FPcieAutoRegionAlign(pci_prefetch, 0x100000);
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_PREF_MEMORY_LIMIT_REG, (pci_prefetch->bus_lower - 1) >> 16);
if (prefechable_64 == FPCIE_PREF_RANGE_TYPE_64)
#ifdef CONFIG_SYS_PCI_64BIT
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, FPCIE_PREF_LIMIT_UPPER32_REG,
(pci_prefetch->bus_lower - 1) >> 32);
#else
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, FPCIE_PREF_LIMIT_UPPER32_REG, 0x0);
#endif
}
if (pci_io->exist_flg & FPCIE_REGION_EXIST_FLG)
{
/* Round I/O allocator to 4KB boundary */
FPcieAutoRegionAlign(pci_io, 0x1000);
FPcieEcamWriteConfig8bit(instance_p->config.ecam, bdf, FPCIE_IO_LIMIT_REG,
((pci_io->bus_lower - 1) & 0x0000f000) >> 8);
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_IO_LIMIT_UPPER16_REG,
((pci_io->bus_lower - 1) & 0xffff0000) >> 16);
}
}
int FPcieHoseProbeBus(FPcie *instance_p, u32 bdf)
{
int sub_bus;
int ret;
instance_p->bus_max = instance_p->bus_max + 1;
sub_bus = instance_p->bus_max;
FPcieAutoPrescanSetupBridge(instance_p, bdf, sub_bus);
FPcieScanBus(instance_p, sub_bus, bdf);
sub_bus = instance_p->bus_max;
FPcieAutoPostscanSetupBridge(instance_p, bdf, sub_bus);
return sub_bus;
}
/*
* HJF: Changed this to return int. I think this is required
* to get the correct result when scanning bridges
*/
int FPcieAutoConfigDevice(FPcie *instance_p, u32 bdf)
{
u16 class = 0;
struct FPcieRegion *pci_mem;
struct FPcieRegion *pci_prefetch;
struct FPcieRegion *pci_io;
bool enum_only = false;
int n;
#ifdef CONFIG_PCI_ENUM_ONLY
enum_only = true;
#endif
pci_mem = &(instance_p->mem);
pci_prefetch = &(instance_p->mem_prefetch);
pci_io = &(instance_p->mem_io);
FPcieEcamReadConfig16bit(instance_p->config.ecam, bdf, FPCIE_CLASS_DEVICE_REG, &class) ;//读取classcode编号
switch (class)
{
case FPCI_CLASS_BRIDGE_PCI:
FPcieAutoSetupDevice(instance_p, bdf, 2, pci_mem, pci_prefetch, pci_io,
enum_only);
n = FPcieHoseProbeBus(instance_p, bdf);
if (n < 0)
{
return n;
}
break;
case FPCI_CLASS_BRIDGE_CARDBUS:
/*
* just do a minimal setup of the bridge,
* let the OS take care of the rest
*/
FPcieAutoSetupDevice(instance_p, bdf, 0, pci_mem, pci_prefetch, pci_io,
enum_only);
FPCIE_DEBUG_I("PCI auto config: Found P2CardBus bridge, device %d.", FPCIE_DEV(bdf));
break;
case FPCI_CLASS_PROCESSOR_POWERPC: /* an agent or end-point */
FPCIE_DEBUG_I("PCI auto config: Found PowerPC device.");
default:
FPcieAutoSetupDevice(instance_p, bdf, 6, pci_mem, pci_prefetch, pci_io,
enum_only);
break;
}
return FT_SUCCESS;
}
FError FPcieBindBusDevices(FPcie *instance_p, u32 bus_num, u32 parent_bdf, struct FPcieBus *bus)
{
int dev_count = 0;
u16 vendor, device;
u8 header_type;
s32 bdf, end;
bool found_multi;
FError ret;
u8 class_show;
u32 dev_exp_cap, bus_exp_cap, dev_ext_ari_cap;
u32 data;
char buf_bdf_print[20];
found_multi = false;
end = FPCIE_BDF(bus_num, FPCIE_CFG_MAX_NUM_OF_DEV - 1,
FPCIE_CFG_MAX_NUM_OF_FUN - 1);
/* 使用bus的seq成员来进行扫描其实相当于secondory_bus号 */
for (bdf = FPCIE_BDF(bus_num, 0, 0); bdf <= end;
bdf += FPCIE_BDF(0, 0, 1))
{
u32 class;
/* phytium old pci ip version, need skip in some bus */
if (instance_p->config.need_skip)
{
if (FPcieSkipDevice(instance_p->config.ecam, parent_bdf) == FPCIE_NEED_SKIP)
{
continue;
}
}
if (!FPCIE_FUNC(bdf))
{
found_multi = false;
}
if (FPCIE_FUNC(bdf) && !found_multi)
{
continue;
}
/* Check only the first access, we don't expect problems */
FPcieEcamReadConfig16bit(instance_p->config.ecam, bdf, FPCIE_VENDOR_REG, &vendor) ;
if (vendor == 0xffff || vendor == 0x0000)
{
continue;
}
FPcieEcamReadConfig8bit(instance_p->config.ecam, bdf, FPCIE_HEADER_TYPE_REG, &header_type) ;
if (!FPCIE_FUNC(bdf))
{
found_multi = header_type & 0x80;
}
/* 读取deviceid, classcode */
FPcieEcamReadConfig16bit(instance_p->config.ecam, bdf, FPCIE_DEVICE_ID_REG, &device) ;
FPcieEcamReadConfig32bit(instance_p->config.ecam, bdf, FPCI_CLASS_REVISION, &class) ;
class >>= 8;
FPcieEcamReadConfig8bit(instance_p->config.ecam, bdf, FPCIE_CLASS_CODE_REG, &class_show) ;
if (parent_bdf == 0xffffffff)
{
strcpy(buf_bdf_print, "root-controller");
}
else
{
sprintf(buf_bdf_print, "pci_%x:%x:%x",
FPCIE_BUS(parent_bdf), FPCIE_DEV(parent_bdf), FPCIE_FUNC(parent_bdf));
}
printf("\t%02x:%02x.%02x\t\t%04lx:%04lx\t\t%s",
FPCIE_BUS(bdf), FPCIE_DEV(bdf), FPCIE_FUNC(bdf), vendor, device,
buf_bdf_print);
printf("\t\t\t0x%.2x (%s)\n", (int)class_show, FPcieClassStr(class_show));
/* ARI function handle */
/* step 1: detect if PCI Express Device */
ret = FPcieFindCapability(instance_p, bdf, PCIE_CAP, FPCI_CAP_ID_EXP, &dev_exp_cap);
if (ret == 0 && dev_exp_cap > 0)
{
/* step2: check if the device is an ARI device */
ret = FPcieFindCapability(instance_p, bdf, PCIE_ECAP, FPCI_EXT_CAP_ID_ARI, &dev_ext_ari_cap);
if (ret == 0 && dev_ext_ari_cap > 0)
{
/* step3: check if its parent supports ARI forwarding */
ret = FPcieFindCapability(instance_p, parent_bdf, PCIE_CAP, FPCI_CAP_ID_EXP, &bus_exp_cap);
/* config bus ARI forwarding */
if (ret == 0 && bus_exp_cap > 0)
{
FPcieEcamReadConfig32bit(instance_p->config.ecam, parent_bdf,
bus_exp_cap + FPCIE_CAPABILITY_DEVICE_CAPABILITIES_2_OFFSET, &data);
if ((data & FPCIE_CAPABILITY_DEVICE_CAPABILITIES_2_ARI_FORWARDING) != 0)
{
/* step4: ARI forwarding support in bridge, so enable it */
FPcieEcamReadConfig32bit(instance_p->config.ecam, parent_bdf,
bus_exp_cap + FPCIE_CAPABILITY_DEVICE_CONTROL_2_OFFSET, &data);
if (data & FPCIE_CAPABILITY_DEVICE_CONTROL_2_ARI_FORWARDING == 0)
{
data |= FPCIE_CAPABILITY_DEVICE_CONTROL_2_ARI_FORWARDING;
FPcieEcamWriteConfig32bit(instance_p->config.ecam, parent_bdf,
bus_exp_cap + FPCIE_CAPABILITY_DEVICE_CONTROL_2_OFFSET, data);
}
}
}
}
}
bus->ChildN[dev_count] = bdf;
dev_count++;
//这里可以将当前的device保存到全局变量中供别的驱动来查询。
instance_p->scaned_bdf_array[instance_p->scaned_bdf_count] = bdf;
(instance_p->scaned_bdf_count)++;
}
bus->ChildCount = dev_count;
return FT_SUCCESS;
}
FError FPcieScanBus(FPcie *instance_p, u32 bus_num, u32 parent_bdf)
{
int i = 0;
s32 bdf;
struct FPcieBus bus;
bus.ChildCount = 0;
/* scan bus 0 device */
FPcieBindBusDevices(instance_p, bus_num, parent_bdf, &bus);
if (bus.ChildCount > 0)
{
for (i = 0; i < bus.ChildCount; i++)
{
bdf = bus.ChildN[i];
FPcieAutoConfigDevice(instance_p, bdf);
}
}
instance_p->is_scaned = 1; //表示已经扫描完成
return FT_SUCCESS;
}