2021-03-12 00:03:36 +08:00

330 lines
8.6 KiB
C

/*
* File : drv_spi.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2017 RT-Thread Develop Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2017-06-05 tanek first implementation.
*/
#include "drv_spi.h"
#include <board.h>
#include <finsh.h>
#ifdef RT_USING_SPI
#if !defined(RT_USING_SPI0) && !defined(RT_USING_SPI1) && \
!defined(RT_USING_SPI2) && !defined(RT_USING_SPI3) && \
!defined(RT_USING_SPI4) && !defined(RT_USING_SPI5)
#error "Please define at least one SPIx"
#endif
//#define DEBUG
#define ARR_LEN(__N) (sizeof(__N) / sizeof(__N[0]))
#ifdef DEBUG
#define DEBUG_PRINTF(...) rt_kprintf(__VA_ARGS__)
#else
#define DEBUG_PRINTF(...)
#endif
/* private rt-thread spi ops function */
static rt_err_t configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration);
static rt_uint32_t xfer(struct rt_spi_device* device, struct rt_spi_message* message);
static struct rt_spi_ops gd32_spi_ops =
{
configure,
xfer
};
static rt_err_t configure(struct rt_spi_device* device,
struct rt_spi_configuration* configuration)
{
struct rt_spi_bus * spi_bus = (struct rt_spi_bus *)device->bus;
struct gd32f4_spi *f4_spi = (struct gd32f4_spi *)spi_bus->parent.user_data;
spi_parameter_struct spi_init_struct;
uint32_t spi_periph = f4_spi->spi_periph;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
/* data_width */
if(configuration->data_width <= 8)
{
spi_init_struct.frame_size = SPI_FRAMESIZE_8BIT;
}
else if(configuration->data_width <= 16)
{
spi_init_struct.frame_size = SPI_FRAMESIZE_16BIT;
}
else
{
return RT_EIO;
}
/* baudrate */
{
rcu_clock_freq_enum spi_src;
uint32_t spi_apb_clock;
uint32_t max_hz;
max_hz = configuration->max_hz;
DEBUG_PRINTF("sys freq: %d\n", HAL_RCC_GetSysClockFreq());
DEBUG_PRINTF("pclk2 freq: %d\n", HAL_RCC_GetPCLK2Freq());
DEBUG_PRINTF("max freq: %d\n", max_hz);
if (spi_periph == SPI1 || spi_periph == SPI2)
{
spi_src = CK_APB1;
}
else
{
spi_src = CK_APB2;
}
spi_apb_clock = rcu_clock_freq_get(spi_src);
if(max_hz >= spi_apb_clock/2)
{
spi_init_struct.prescale = SPI_PSC_2;
}
else if (max_hz >= spi_apb_clock/4)
{
spi_init_struct.prescale = SPI_PSC_4;
}
else if (max_hz >= spi_apb_clock/8)
{
spi_init_struct.prescale = SPI_PSC_8;
}
else if (max_hz >= spi_apb_clock/16)
{
spi_init_struct.prescale = SPI_PSC_16;
}
else if (max_hz >= spi_apb_clock/32)
{
spi_init_struct.prescale = SPI_PSC_32;
}
else if (max_hz >= spi_apb_clock/64)
{
spi_init_struct.prescale = SPI_PSC_64;
}
else if (max_hz >= spi_apb_clock/128)
{
spi_init_struct.prescale = SPI_PSC_128;
}
else
{
/* min prescaler 256 */
spi_init_struct.prescale = SPI_PSC_256;
}
} /* baudrate */
switch(configuration->mode & RT_SPI_MODE_3)
{
case RT_SPI_MODE_0:
spi_init_struct.clock_polarity_phase = SPI_CK_PL_LOW_PH_1EDGE;
break;
case RT_SPI_MODE_1:
spi_init_struct.clock_polarity_phase = SPI_CK_PL_LOW_PH_2EDGE;
break;
case RT_SPI_MODE_2:
spi_init_struct.clock_polarity_phase = SPI_CK_PL_HIGH_PH_1EDGE;
break;
case RT_SPI_MODE_3:
spi_init_struct.clock_polarity_phase = SPI_CK_PL_HIGH_PH_2EDGE;
break;
}
/* MSB or LSB */
if(configuration->mode & RT_SPI_MSB)
{
spi_init_struct.endian = SPI_ENDIAN_MSB;
}
else
{
spi_init_struct.endian = SPI_ENDIAN_LSB;
}
spi_init_struct.trans_mode = SPI_TRANSMODE_FULLDUPLEX;
spi_init_struct.device_mode = SPI_MASTER;
spi_init_struct.nss = SPI_NSS_SOFT;
spi_crc_off(spi_periph);
/* init SPI */
spi_init(spi_periph, &spi_init_struct);
/* Enable SPI_MASTER */
spi_enable(spi_periph);
return RT_EOK;
};
static rt_uint32_t xfer(struct rt_spi_device* device, struct rt_spi_message* message)
{
struct rt_spi_bus * gd32_spi_bus = (struct rt_spi_bus *)device->bus;
struct gd32f4_spi *f4_spi = (struct gd32f4_spi *)gd32_spi_bus->parent.user_data;
struct rt_spi_configuration * config = &device->config;
struct gd32_spi_cs * gd32_spi_cs = device->parent.user_data;
uint32_t spi_periph = f4_spi->spi_periph;
RT_ASSERT(device != NULL);
RT_ASSERT(message != NULL);
/* take CS */
if(message->cs_take)
{
gpio_bit_reset(gd32_spi_cs->GPIOx, gd32_spi_cs->GPIO_Pin);
DEBUG_PRINTF("spi take cs\n");
}
{
if(config->data_width <= 8)
{
const rt_uint8_t * send_ptr = message->send_buf;
rt_uint8_t * recv_ptr = message->recv_buf;
rt_uint32_t size = message->length;
DEBUG_PRINTF("spi poll transfer start: %d\n", size);
while(size--)
{
rt_uint8_t data = 0xFF;
if(send_ptr != RT_NULL)
{
data = *send_ptr++;
}
// Todo: replace register read/write by gd32f4 lib
//Wait until the transmit buffer is empty
while(RESET == spi_i2s_flag_get(spi_periph, SPI_FLAG_TBE));
// Send the byte
spi_i2s_data_transmit(spi_periph, data);
//Wait until a data is received
while(RESET == spi_i2s_flag_get(spi_periph, SPI_FLAG_RBNE));
// Get the received data
data = spi_i2s_data_receive(spi_periph);
if(recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
DEBUG_PRINTF("spi poll transfer finsh\n");
}
else if(config->data_width <= 16)
{
const rt_uint16_t * send_ptr = message->send_buf;
rt_uint16_t * recv_ptr = message->recv_buf;
rt_uint32_t size = message->length;
while(size--)
{
rt_uint16_t data = 0xFF;
if(send_ptr != RT_NULL)
{
data = *send_ptr++;
}
//Wait until the transmit buffer is empty
while(RESET == spi_i2s_flag_get(spi_periph, SPI_FLAG_TBE));
// Send the byte
spi_i2s_data_transmit(spi_periph, data);
//Wait until a data is received
while(RESET == spi_i2s_flag_get(spi_periph, SPI_FLAG_RBNE));
// Get the received data
data = spi_i2s_data_receive(spi_periph);
if(recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
}
}
/* release CS */
if(message->cs_release)
{
gpio_bit_set(gd32_spi_cs->GPIOx, gd32_spi_cs->GPIO_Pin);
DEBUG_PRINTF("spi release cs\n");
}
return message->length;
};
static struct rt_spi_bus spi_bus[];
static const struct gd32f4_spi spis[] = {
#ifdef RT_USING_SPI0
{SPI0, RCU_SPI0, &spi_bus[0]},
#endif
#ifdef RT_USING_SPI1
{SPI1, RCU_SPI1, &spi_bus[1]},
#endif
#ifdef RT_USING_SPI2
{SPI2, RCU_SPI2, &spi_bus[2]},
#endif
#ifdef RT_USING_SPI3
{SPI3, RCU_SPI3, &spi_bus[3]},
#endif
#ifdef RT_USING_SPI4
{SPI4, RCU_SPI4, &spi_bus[4]},
#endif
#ifdef RT_USING_SPI5
{SPI5, RCU_SPI5, &spi_bus[5]},
#endif
};
static struct rt_spi_bus spi_bus[ARR_LEN(spis)];
/** \brief init and register gd32 spi bus.
*
* \param SPI: gd32 SPI, e.g: SPI1,SPI2,SPI3.
* \param spi_bus_name: spi bus name, e.g: "spi1"
* \return
*
*/
rt_err_t gd32_spi_bus_register(uint32_t spi_periph,
//struct gd32_spi_bus * gd32_spi,
const char * spi_bus_name)
{
int i;
RT_ASSERT(spi_bus_name != RT_NULL);
for (i = 0; i < ARR_LEN(spis); i++)
{
if (spi_periph == spis[i].spi_periph)
{
rcu_periph_clock_enable(spis[i].spi_clk);
spis[i].spi_bus->parent.user_data = (void *)&spis[i];
rt_spi_bus_register(spis[i].spi_bus, spi_bus_name, &gd32_spi_ops);
return RT_EOK;
}
}
return RT_ERROR;
}
#endif