406 lines
12 KiB
C

/**************************************************************************//**
*
* @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-6-30 YHKuo First version
*
******************************************************************************/
#include <rtconfig.h>
#if defined(BSP_USING_QSPI)
#define LOG_TAG "drv.qspi"
#define DBG_ENABLE
#define DBG_SECTION_NAME LOG_TAG
#define DBG_LEVEL DBG_INFO
#define DBG_COLOR
#include <rtdbg.h>
#include <rthw.h>
#include <rtdef.h>
#include <drv_spi.h>
/* Private define ---------------------------------------------------------------*/
enum
{
QSPI_START = -1,
#if defined(BSP_USING_QSPI0)
QSPI0_IDX,
#endif
QSPI_CNT
};
/* Private typedef --------------------------------------------------------------*/
/* Private functions ------------------------------------------------------------*/
static rt_err_t nu_qspi_bus_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration);
static rt_uint32_t nu_qspi_bus_xfer(struct rt_spi_device *device, struct rt_spi_message *message);
static int nu_qspi_register_bus(struct nu_spi *qspi_bus, const char *name);
/* Public functions -------------------------------------------------------------*/
/* Private variables ------------------------------------------------------------*/
static struct rt_spi_ops nu_qspi_poll_ops =
{
.configure = nu_qspi_bus_configure,
.xfer = nu_qspi_bus_xfer,
};
static struct nu_spi nu_qspi_arr [] =
{
#if defined(BSP_USING_QSPI0)
{
.name = "qspi0",
.spi_base = (SPI_T *)QSPI0,
#if defined(BSP_USING_SPI_PDMA)
#if defined(BSP_USING_QSPI0_PDMA)
.pdma_perp_tx = PDMA_QSPI0_TX,
.pdma_perp_rx = PDMA_QSPI0_RX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
{0}
}; /* qspi nu_qspi */
static rt_err_t nu_qspi_bus_configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
struct nu_spi *spi_bus;
rt_uint32_t u32SPIMode;
rt_uint32_t u32BusClock;
rt_err_t ret = RT_EOK;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
spi_bus = (struct nu_spi *) device->bus;
/* Check mode */
switch (configuration->mode & RT_SPI_MODE_3)
{
case RT_SPI_MODE_0:
u32SPIMode = SPI_MODE_0;
break;
case RT_SPI_MODE_1:
u32SPIMode = SPI_MODE_1;
break;
case RT_SPI_MODE_2:
u32SPIMode = SPI_MODE_2;
break;
case RT_SPI_MODE_3:
u32SPIMode = SPI_MODE_3;
break;
default:
ret = -RT_EIO;
goto exit_nu_qspi_bus_configure;
}
/* Check data width */
if (!(configuration->data_width == 8 ||
configuration->data_width == 16 ||
configuration->data_width == 24 ||
configuration->data_width == 32))
{
ret = RT_EINVAL;
goto exit_nu_qspi_bus_configure;
}
/* Try to set clock and get actual spi bus clock */
u32BusClock = QSPI_SetBusClock((QSPI_T *)spi_bus->spi_base, configuration->max_hz);
if (configuration->max_hz > u32BusClock)
{
LOG_W("%s clock max frequency is %dHz (!= %dHz)\n", spi_bus->name, u32BusClock, configuration->max_hz);
configuration->max_hz = u32BusClock;
}
/* Need to initialize new configuration? */
if (rt_memcmp(configuration, &spi_bus->configuration, sizeof(struct rt_spi_configuration)) != 0)
{
rt_memcpy(&spi_bus->configuration, configuration, sizeof(struct rt_spi_configuration));
QSPI_Open((QSPI_T *)spi_bus->spi_base, SPI_MASTER, u32SPIMode, configuration->data_width, u32BusClock);
if (configuration->mode & RT_SPI_CS_HIGH)
{
/* Set CS pin to LOW */
SPI_SET_SS_LOW(spi_bus->spi_base);
}
else
{
/* Set CS pin to HIGH */
SPI_SET_SS_HIGH(spi_bus->spi_base);
}
if (configuration->mode & RT_SPI_MSB)
{
/* Set sequence to MSB first */
SPI_SET_MSB_FIRST(spi_bus->spi_base);
}
else
{
/* Set sequence to LSB first */
SPI_SET_LSB_FIRST(spi_bus->spi_base);
}
}
/* Clear SPI RX FIFO */
nu_spi_drain_rxfifo(spi_bus->spi_base);
exit_nu_qspi_bus_configure:
return -(ret);
}
static int nu_qspi_mode_config(struct nu_spi *qspi_bus, rt_uint8_t *tx, rt_uint8_t *rx, int qspi_lines)
{
QSPI_T *qspi_base = (QSPI_T *)qspi_bus->spi_base;
#if defined(RT_SFUD_USING_QSPI)
if (qspi_lines > 1)
{
if (tx)
{
switch (qspi_lines)
{
case 2:
QSPI_ENABLE_DUAL_OUTPUT_MODE(qspi_base);
break;
case 4:
QSPI_ENABLE_QUAD_OUTPUT_MODE(qspi_base);
break;
default:
LOG_E("Data line is not supported.\n");
break;
}
}
else
{
switch (qspi_lines)
{
case 2:
QSPI_ENABLE_DUAL_INPUT_MODE(qspi_base);
break;
case 4:
QSPI_ENABLE_QUAD_INPUT_MODE(qspi_base);
break;
default:
LOG_E("Data line is not supported.\n");
break;
}
}
}
else
#endif
{
QSPI_DISABLE_DUAL_MODE(qspi_base);
QSPI_DISABLE_QUAD_MODE(qspi_base);
}
return qspi_lines;
}
static rt_uint32_t nu_qspi_bus_xfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
struct nu_spi *qspi_bus;
struct rt_qspi_configuration *qspi_configuration;
#if defined(RT_SFUD_USING_QSPI)
struct rt_qspi_message *qspi_message;
rt_uint8_t u8last = 1;
#endif
rt_uint8_t bytes_per_word;
QSPI_T *qspi_base;
rt_uint32_t u32len = 0;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(message != RT_NULL);
qspi_bus = (struct nu_spi *) device->bus;
qspi_base = (QSPI_T *)qspi_bus->spi_base;
qspi_configuration = &qspi_bus->configuration;
bytes_per_word = qspi_configuration->parent.data_width / 8;
if (message->cs_take && !(qspi_configuration->parent.mode & RT_SPI_NO_CS))
{
if (qspi_configuration->parent.mode & RT_SPI_CS_HIGH)
{
QSPI_SET_SS_HIGH(qspi_base);
}
else
{
QSPI_SET_SS_LOW(qspi_base);
}
}
#if defined(RT_SFUD_USING_QSPI)
qspi_message = (struct rt_qspi_message *)message;
/* Command + Address + Dummy + Data */
/* Command stage */
if (qspi_message->instruction.content != 0)
{
u8last = nu_qspi_mode_config(qspi_bus, (rt_uint8_t *) &qspi_message->instruction.content, RT_NULL, qspi_message->instruction.qspi_lines);
nu_spi_transfer((struct nu_spi *)qspi_bus,
(rt_uint8_t *) &qspi_message->instruction.content,
RT_NULL,
1,
1);
}
/* Address stage */
if (qspi_message->address.size != 0)
{
rt_uint32_t u32ReversedAddr = 0;
rt_uint32_t u32AddrNumOfByte = qspi_message->address.size / 8;
switch (u32AddrNumOfByte)
{
case 1:
u32ReversedAddr = (qspi_message->address.content & 0xff);
break;
case 2:
nu_set16_be((rt_uint8_t *)&u32ReversedAddr, qspi_message->address.content);
break;
case 3:
nu_set24_be((rt_uint8_t *)&u32ReversedAddr, qspi_message->address.content);
break;
case 4:
nu_set32_be((rt_uint8_t *)&u32ReversedAddr, qspi_message->address.content);
break;
default:
RT_ASSERT(0);
break;
}
u8last = nu_qspi_mode_config(qspi_bus, (rt_uint8_t *)&u32ReversedAddr, RT_NULL, qspi_message->address.qspi_lines);
nu_spi_transfer((struct nu_spi *)qspi_bus,
(rt_uint8_t *) &u32ReversedAddr,
RT_NULL,
u32AddrNumOfByte,
1);
}
/* Dummy_cycles stage */
if (qspi_message->dummy_cycles != 0)
{
qspi_bus->dummy = 0x00;
u8last = nu_qspi_mode_config(qspi_bus, (rt_uint8_t *) &qspi_bus->dummy, RT_NULL, u8last);
nu_spi_transfer((struct nu_spi *)qspi_bus,
(rt_uint8_t *) &qspi_bus->dummy,
RT_NULL,
qspi_message->dummy_cycles / (8 / u8last),
1);
}
/* Data stage */
nu_qspi_mode_config(qspi_bus, (rt_uint8_t *) message->send_buf, (rt_uint8_t *) message->recv_buf, qspi_message->qspi_data_lines);
#else
/* Data stage */
nu_qspi_mode_config(qspi_bus, RT_NULL, RT_NULL, 1);
#endif //#if defined(RT_SFUD_USING_QSPI)
if (message->length != 0)
{
nu_spi_transfer((struct nu_spi *)qspi_bus,
(rt_uint8_t *) message->send_buf,
(rt_uint8_t *) message->recv_buf,
message->length,
bytes_per_word);
u32len = message->length;
}
else
{
u32len = 1;
}
if (message->cs_release && !(qspi_configuration->parent.mode & RT_SPI_NO_CS))
{
if (qspi_configuration->parent.mode & RT_SPI_CS_HIGH)
{
QSPI_SET_SS_LOW(qspi_base);
}
else
{
QSPI_SET_SS_HIGH(qspi_base);
}
}
return u32len;
}
static int nu_qspi_register_bus(struct nu_spi *qspi_bus, const char *name)
{
return rt_qspi_bus_register(&qspi_bus->dev, name, &nu_qspi_poll_ops);
}
/**
* Hardware SPI Initial
*/
static int rt_hw_qspi_init(void)
{
rt_uint8_t i;
for (i = (QSPI_START + 1); i < QSPI_CNT; i++)
{
nu_qspi_register_bus(&nu_qspi_arr[i], nu_qspi_arr[i].name);
#if defined(BSP_USING_SPI_PDMA)
nu_qspi_arr[i].pdma_chanid_tx = -1;
nu_qspi_arr[i].pdma_chanid_rx = -1;
if ((nu_qspi_arr[i].pdma_perp_tx != NU_PDMA_UNUSED) && (nu_qspi_arr[i].pdma_perp_rx != NU_PDMA_UNUSED))
{
if (nu_hw_spi_pdma_allocate(&nu_qspi_arr[i]) != RT_EOK)
{
LOG_E("Failed to allocate DMA channels for %s. We will use poll-mode for this bus.\n", nu_qspi_arr[i].name);
}
}
#endif
}
return 0;
}
INIT_DEVICE_EXPORT(rt_hw_qspi_init);
rt_err_t nu_qspi_bus_attach_device(const char *bus_name, const char *device_name, rt_uint8_t data_line_width, void (*enter_qspi_mode)(), void (*exit_qspi_mode)())
{
struct rt_qspi_device *qspi_device = RT_NULL;
rt_err_t result = RT_EOK;
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
RT_ASSERT(data_line_width == 1 || data_line_width == 2 || data_line_width == 4);
qspi_device = (struct rt_qspi_device *)rt_malloc(sizeof(struct rt_qspi_device));
if (qspi_device == RT_NULL)
{
LOG_E("no memory, qspi bus attach device failed!\n");
result = -RT_ENOMEM;
goto __exit;
}
qspi_device->enter_qspi_mode = enter_qspi_mode;
qspi_device->exit_qspi_mode = exit_qspi_mode;
qspi_device->config.qspi_dl_width = data_line_width;
result = rt_spi_bus_attach_device(&qspi_device->parent, device_name, bus_name, RT_NULL);
__exit:
if (result != RT_EOK)
{
if (qspi_device)
{
rt_free(qspi_device);
}
}
return result;
}
#endif //#if defined(BSP_USING_QSPI)