rt-thread/bsp/fh8620/drivers/i2c.c

531 lines
13 KiB
C

/*
* This file is part of FH8620 BSP for RT-Thread distribution.
*
* Copyright (c) 2016 Shanghai Fullhan Microelectronics Co., Ltd.
* All rights reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Visit http://www.fullhan.com to get contact with Fullhan.
*
* Change Logs:
* Date Author Notes
*/
#include <rtdevice.h>
#include <rthw.h>
#include "i2c.h"
#include "inc/fh_driverlib.h"
#include "board_info.h"
//#define FH_I2C_DEBUG
#ifdef FH_I2C_DEBUG
#define PRINT_I2C_DBG(fmt, args...) \
do \
{ \
rt_kprintf("FH_I2C_DEBUG: "); \
rt_kprintf(fmt, ## args); \
} \
while(0)
#else
#define PRINT_I2C_DBG(fmt, args...) do { } while (0)
#endif
static void fh_i2c_xfer_init(struct rt_i2c_bus_device *dev, struct rt_i2c_msg msgs[], rt_uint32_t num)
{
struct i2c_driver *i2c_drv = (struct i2c_driver *)dev->priv;
struct fh_i2c_obj *i2c_obj = (struct fh_i2c_obj *)i2c_drv->priv;
rt_uint32_t ic_con;
/* if the slave address is ten bit address, ERROR*/
if (msgs[i2c_drv->msg_write_idx].flags & I2C_M_TEN)
{
rt_kprintf("ERROR: %s, ten bit address is NOT supported\n", __func__);
return;
}
/* Disable the adapter */
I2C_WaitMasterIdle(i2c_obj);
I2C_Enable(i2c_obj, RT_FALSE);
/* set the slave (target) address */
I2C_SetSlaveAddress(i2c_obj, msgs[i2c_drv->msg_write_idx].addr);
/* Enable interrupts */
I2C_SetInterruptMask(i2c_obj, DW_IC_INTR_DEFAULT_MASK);
/* Enable the adapter */
I2C_Enable(i2c_obj, RT_TRUE);
}
static rt_size_t fh_i2c_xfer(struct rt_i2c_bus_device *dev,
struct rt_i2c_msg msgs[], rt_uint32_t num)
{
struct i2c_driver *i2c_drv = (struct i2c_driver *)dev->priv;
struct fh_i2c_obj *i2c_obj = (struct fh_i2c_obj *)i2c_drv->priv;
int ret;
struct rt_i2c_msg *pmsg = RT_NULL;
PRINT_I2C_DBG(">>>>>>>>>>>>>%s start\n", __func__);
rt_completion_init(&i2c_drv->transfer_completion);
ret = rt_mutex_take(i2c_drv->lock, RT_WAITING_FOREVER);
if (ret != RT_EOK) {
goto done;
}
i2c_drv->msgs = msgs;
i2c_drv->msgs_num = num;
i2c_drv->msg_read_idx = 0;
i2c_drv->msg_write_idx = 0;
i2c_drv->cmd_err = 0;
i2c_drv->msg_err = 0;
i2c_drv->status = STATUS_IDLE;
i2c_obj->abort_source = 0;
ret = I2C_WaitDeviceIdle(i2c_obj);
if (ret < 0)
{
//I2C_SetDataCmd(i2c_obj, 0x200);
//goto done;
}
fh_i2c_xfer_init(dev, msgs, num);
ret = rt_completion_wait(&i2c_drv->transfer_completion, RT_TICK_PER_SECOND);
PRINT_I2C_DBG("%s transfer finished\n", "rt_completion_wait");
if(ret)
{
rt_kprintf("ERROR: %s, transfer timeout\n", __func__);
I2C_SetDataCmd(i2c_obj, 0x200);
I2C_Init(i2c_obj);
ret = -RT_ETIMEOUT;
goto done;
}
if (i2c_drv->msg_err)
{
rt_kprintf("i2c_priv->msg_err: %d\n", i2c_drv->msg_err);
ret = i2c_drv->msg_err;
goto done;
}
/* no error */
if (!i2c_drv->cmd_err)
{
/* Disable the adapter */
I2C_WaitMasterIdle(i2c_obj);
I2C_Enable(i2c_obj, RT_FALSE);
ret = num;
goto done;
}
/* We have an error */
if (i2c_drv->cmd_err == DW_IC_ERR_TX_ABRT)
{
rt_kprintf("ERROR: %s, i2c_priv>cmd_err == DW_IC_ERR_TX_ABRT\n", __func__);
ret = I2C_HandleTxAbort(i2c_obj);
goto done;
}
ret = 1;
done:
I2C_Enable(i2c_obj, RT_FALSE);
rt_mutex_release(i2c_drv->lock);
PRINT_I2C_DBG(">>>>>>>>>>>>>%s end\n", __func__);
return ret;
}
/*
* Initiate (and continue) low level master read/write transaction.
* This function is only called from i2c_fh_isr, and pumping i2c_msg
* messages into the tx buffer. Even if the size of i2c_msg data is
* longer than the size of the tx buffer, it handles everything.
*/
static void i2c_fh_xfer_msg(struct rt_i2c_bus_device *dev)
{
struct i2c_driver *i2c_drv = (struct i2c_driver *)dev->priv;
struct fh_i2c_obj *i2c_obj = (struct fh_i2c_obj *)i2c_drv->priv;
struct rt_i2c_msg *msgs = i2c_drv->msgs;
rt_uint32_t intr_mask, cmd;
int tx_limit, rx_limit;
rt_uint32_t addr = msgs[i2c_drv->msg_write_idx].addr;
rt_uint32_t buf_len = i2c_drv->tx_buf_len;
rt_uint8_t *buf = i2c_drv->tx_buf;
PRINT_I2C_DBG("%s start, msgs_num: %d, write_idx: %d\n", __func__, i2c_drv->msgs_num, i2c_drv->msg_write_idx);
intr_mask = DW_IC_INTR_DEFAULT_MASK;
for (; i2c_drv->msg_write_idx < i2c_drv->msgs_num; i2c_drv->msg_write_idx++)
{
/*
* if target address has changed, we need to
* reprogram the target address in the i2c
* adapter when we are done with this transfer
*/
if (msgs[i2c_drv->msg_write_idx].addr != addr) {
rt_kprintf(
"ERROR: %s, invalid target address\n", __func__);
i2c_drv->msg_err = 1;
break;
}
if (msgs[i2c_drv->msg_write_idx].len == 0) {
rt_kprintf(
"ERROR: %s, invalid message length\n", __func__);
i2c_drv->msg_err = 1;
break;
}
if (!(i2c_drv->status & STATUS_WRITE_IN_PROGRESS))
{
/* new i2c_msg */
buf = msgs[i2c_drv->msg_write_idx].buf;
buf_len = msgs[i2c_drv->msg_write_idx].len;
PRINT_I2C_DBG("new msg: len: %d, buf: 0x%x\n", buf_len, buf[0]);
}
tx_limit = i2c_obj->config.tx_fifo_depth - I2C_GetTransmitFifoLevel(i2c_obj);
rx_limit = i2c_obj->config.rx_fifo_depth - I2C_GetReceiveFifoLevel(i2c_obj);
while (buf_len > 0 && tx_limit > 0 && rx_limit > 0)
{
if (msgs[i2c_drv->msg_write_idx].flags & RT_I2C_RD)
{
cmd = 0x100;
rx_limit--;
}
else
{
cmd = *buf++;
}
tx_limit--; buf_len--;
if(!buf_len)
{
//2015-11-8 ar0130 bug fixed
while(I2C_GetTransmitFifoLevel(i2c_obj));
cmd |= 0x200;
}
I2C_SetDataCmd(i2c_obj, cmd);
}
i2c_drv->tx_buf = buf;
i2c_drv->tx_buf_len = buf_len;
if (buf_len > 0)
{
/* more bytes to be written */
i2c_drv->status |= STATUS_WRITE_IN_PROGRESS;
break;
}
else
{
i2c_drv->status &= ~STATUS_WRITE_IN_PROGRESS;
}
}
/*
* If i2c_msg index search is completed, we don't need TX_EMPTY
* interrupt any more.
*/
if (i2c_drv->msg_write_idx == i2c_drv->msgs_num)
intr_mask &= ~DW_IC_INTR_TX_EMPTY;
if (i2c_drv->msg_err)
{
rt_kprintf("ERROR: %s, msg_err: %d\n", __func__, i2c_drv->msg_err);
intr_mask = 0;
}
I2C_SetInterruptMask(i2c_obj, intr_mask);
PRINT_I2C_DBG("%s end\n", __func__);
}
static void i2c_fh_read(struct rt_i2c_bus_device *dev)
{
struct i2c_driver *i2c_drv = (struct i2c_driver *)dev->priv;
struct fh_i2c_obj *i2c_obj = (struct fh_i2c_obj *)i2c_drv->priv;
struct rt_i2c_msg *msgs = i2c_drv->msgs;
int rx_valid;
PRINT_I2C_DBG("%s start, msgs_num: %d, read_idx: %d\n", __func__, i2c_drv->msgs_num, i2c_drv->msg_read_idx);
for (; i2c_drv->msg_read_idx < i2c_drv->msgs_num; i2c_drv->msg_read_idx++)
{
rt_uint32_t len;
rt_uint8_t *buf;
if (!(msgs[i2c_drv->msg_read_idx].flags & RT_I2C_RD))
continue;
if (!(i2c_drv->status & STATUS_READ_IN_PROGRESS))
{
len = msgs[i2c_drv->msg_read_idx].len;
buf = msgs[i2c_drv->msg_read_idx].buf;
}
else
{
PRINT_I2C_DBG("STATUS_READ_IN_PROGRESS\n");
len = i2c_drv->rx_buf_len;
buf = i2c_drv->rx_buf;
}
rx_valid = I2C_GetReceiveFifoLevel(i2c_obj);
if(rx_valid == 0)
{
rt_kprintf("ERROR: %s, rx_valid == 0\n", __func__);
}
PRINT_I2C_DBG("%s, len=%d, rx_valid=%d\n", __func__, len, rx_valid);
for (; len > 0 && rx_valid > 0; len--, rx_valid--)
{
*buf++ = I2C_GetData(i2c_obj);
}
PRINT_I2C_DBG("i2c_fh_read, len: %d, buf[0]: 0x%x\n", msgs[i2c_drv->msg_read_idx].len, msgs[i2c_drv->msg_read_idx].buf[0]);
if (len > 0)
{
PRINT_I2C_DBG("len > 0\n");
i2c_drv->status |= STATUS_READ_IN_PROGRESS;
i2c_drv->rx_buf_len = len;
i2c_drv->rx_buf = buf;
return;
}
else
i2c_drv->status &= ~STATUS_READ_IN_PROGRESS;
}
PRINT_I2C_DBG("%s end\n", __func__);
}
/*
* Interrupt service routine. This gets called whenever an I2C interrupt
* occurs.
*/
static void fh_i2c_interrupt(int this_irq, void *dev_id)
{
struct i2c_driver *i2c_drv = dev_id;
struct rt_i2c_bus_device *i2c_bus_dev = i2c_drv->i2c_bus_dev;
struct fh_i2c_obj *i2c_obj = (struct fh_i2c_obj *)i2c_drv->priv;
rt_uint32_t stat;
stat = I2C_ClearAndGetInterrupts(i2c_obj);
PRINT_I2C_DBG("status: 0x%x, mask: 0x%x\n", stat, I2C_GetInterruptMask(i2c_obj));
if (stat & DW_IC_INTR_TX_ABRT)
{
PRINT_I2C_DBG("DW_IC_INTR_TX_ABRT\n");
i2c_drv->cmd_err |= DW_IC_ERR_TX_ABRT;
i2c_drv->status = STATUS_IDLE;
/*
* Anytime TX_ABRT is set, the contents of the tx/rx
* buffers are flushed. Make sure to skip them.
*/
I2C_SetInterruptMask(i2c_obj, 0);
goto tx_aborted;
}
if (stat & DW_IC_INTR_RX_FULL)
{
i2c_fh_read(i2c_bus_dev);
}
if (stat & DW_IC_INTR_TX_EMPTY)
{
i2c_fh_xfer_msg(i2c_bus_dev);
}
/*
* No need to modify or disable the interrupt mask here.
* i2c_fh_xfer_msg() will take care of it according to
* the current transmit status.
*/
tx_aborted:
if ((stat & (DW_IC_INTR_TX_ABRT | DW_IC_INTR_STOP_DET)) || i2c_drv->msg_err)
rt_completion_done(&i2c_drv->transfer_completion);
}
static const struct rt_i2c_bus_device_ops fh_i2c_ops =
{
.master_xfer = fh_i2c_xfer,
};
int fh_i2c_probe(void *priv_data)
{
int ret;
struct i2c_driver *i2c_drv;
struct rt_i2c_bus_device *i2c_bus_dev;
struct fh_i2c_obj *i2c_obj = (struct fh_i2c_obj *)priv_data;
char i2c_dev_name[5] = {0};
PRINT_I2C_DBG("%s start\n", __func__);
i2c_bus_dev = (struct rt_i2c_bus_device*)rt_calloc(1, sizeof(struct rt_i2c_bus_device));
if (RT_NULL == i2c_bus_dev)
{
return -RT_ENOMEM;
}
i2c_bus_dev->ops = &fh_i2c_ops;
rt_sprintf(i2c_dev_name, "%s%d", "i2c", i2c_obj->id);
ret = rt_i2c_bus_device_register(i2c_bus_dev, i2c_dev_name);
if (ret != RT_EOK)
{
rt_kprintf("ERROR:rt_spi_bus_register failed, ret=%d\n", ret);
return -RT_ENOMEM;
}
//priv struct init
i2c_drv = (struct i2c_driver*)rt_calloc(1, sizeof(struct i2c_driver));
if (RT_NULL == i2c_drv)
{
return -RT_ENOMEM;
}
i2c_drv->i2c_bus_dev = i2c_bus_dev;
i2c_drv->priv = priv_data;
i2c_bus_dev->priv = i2c_drv;
i2c_drv->lock = rt_mutex_create("i2c_mux", RT_IPC_FLAG_FIFO);
if(i2c_obj->id == 0){
rt_hw_interrupt_install(i2c_obj->irq, fh_i2c_interrupt,
(void *)i2c_drv, "i2c_0");
}
else if(i2c_obj->id == 1){
rt_hw_interrupt_install(i2c_obj->irq, fh_i2c_interrupt,
(void *)i2c_drv, "i2c_1");
}
rt_hw_interrupt_umask(i2c_obj->irq);
//fixme: get from clk tree
i2c_obj->input_clock = 15000;
I2C_Init(i2c_obj);
PRINT_I2C_DBG("%s end\n", __func__);
return ret;
}
int fh_i2c_exit(void *priv_data)
{
return 0;
}
struct fh_board_ops i2c_driver_ops =
{
.probe = fh_i2c_probe,
.exit = fh_i2c_exit,
};
void rt_hw_i2c_init(void)
{
int ret;
PRINT_I2C_DBG("%s start\n", __func__);
fh_board_driver_register("i2c", &i2c_driver_ops);
PRINT_I2C_DBG("%s end\n", __func__);
//fixme: never release?
}
static rt_err_t fh_i2c_read_reg(struct rt_i2c_bus_device *fh81_i2c,
rt_uint16_t reg, rt_uint8_t *data) {
struct rt_i2c_msg msg[2];
rt_uint8_t send_buf[2];
rt_uint8_t recv_buf[1] = {0};
PRINT_I2C_DBG("%s start\n", __func__);
// send_buf[0] = ((reg >> 8) & 0xff);
send_buf[0] = (reg & 0xFF);
msg[0].addr = 0x51;
msg[0].flags = RT_I2C_WR;
msg[0].len = 1;
msg[0].buf = send_buf;
msg[1].addr = 0x51;
msg[1].flags = RT_I2C_RD;
msg[1].len = 1;
msg[1].buf = recv_buf;
rt_i2c_transfer(fh81_i2c, msg, 2);
*data = recv_buf[0];
return RT_EOK;
}
static rt_err_t fh_i2c_write_reg(struct rt_i2c_bus_device *fh81_i2c,
rt_uint16_t reg, rt_uint8_t data) {
struct rt_i2c_msg msg;
rt_uint8_t send_buf[3];
PRINT_I2C_DBG("%s start\n", __func__);
// send_buf[0] = ((reg >> 8) & 0xff);
send_buf[1] = (reg & 0xFF);
send_buf[2] = data;
msg.addr = 0x51;
msg.flags = RT_I2C_WR;
msg.len = 2;
msg.buf = send_buf;
rt_i2c_transfer(fh81_i2c, &msg, 1);
PRINT_I2C_DBG("%s end\n", __func__);
return RT_EOK;
}
void i2c_test_sensor() {
struct rt_i2c_bus_device *fh81_i2c;
struct rt_i2c_msg msg[2];
rt_uint8_t data[1] = { 0x00 };
fh81_i2c = rt_i2c_bus_device_find("i2c1");
fh_i2c_write_reg(fh81_i2c, 0x04, 0x02);
fh_i2c_read_reg(fh81_i2c, 0x02, data);
rt_kprintf("data read from 0x3038 is 0x%x\r\n", data[0]);
PRINT_I2C_DBG("%s end\n", __func__);
}
#ifdef RT_USING_FINSH
#include <finsh.h>
FINSH_FUNCTION_EXPORT(i2c_test_sensor, sensor i2c test);
#endif