rt-thread/bsp/avr32/software_framework/drivers/flashc/flashc.c

974 lines
25 KiB
C

/**
* \file
*
* \brief FLASHC driver for AVR32 UC3.
*
* Copyright (c) 2009-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="https://www.microchip.com/support/">Microchip Support</a>
*/
#include <avr32/io.h>
#include <stddef.h>
#include "compiler.h"
#include "flashc.h"
/*! \name FLASHC Writable Bit-Field Registers
*/
//! @{
typedef union {
unsigned long fcr;
avr32_flashc_fcr_t FCR;
} u_avr32_flashc_fcr_t;
typedef union {
unsigned long fcmd;
avr32_flashc_fcmd_t FCMD;
} u_avr32_flashc_fcmd_t;
//! @}
/*! \name Flash Properties
*/
//! @{
unsigned int flashc_get_flash_size(void)
{
#if (AVR32_FLASHC_H_VERSION >= 300)
const uint16_t FLASH_SIZE[] = {
4,
8,
16,
32,
48,
64,
96,
128,
192,
256,
384,
512,
768,
1024,
2048,
};
return ((unsigned int)FLASH_SIZE[(AVR32_FLASHC.pr & AVR32_FLASHC_PR_FSZ_MASK)
>> AVR32_FLASHC_PR_FSZ_OFFSET])<<10;
#else // in older flashc version, FSZ is located in FSR register
const uint16_t FLASH_SIZE[] = {
32,
64,
128,
256,
384,
512,
768,
1024,
};
return ((unsigned int)FLASH_SIZE[(AVR32_FLASHC.fsr & AVR32_FLASHC_FSR_FSZ_MASK)
>> AVR32_FLASHC_FSR_FSZ_OFFSET]) << 10;
#endif
}
unsigned int flashc_get_page_count(void)
{
return flashc_get_flash_size() / AVR32_FLASHC_PAGE_SIZE;
}
unsigned int flashc_get_page_count_per_region(void)
{
return flashc_get_page_count() / AVR32_FLASHC_REGIONS;
}
unsigned int flashc_get_page_region(int page_number)
{
return ((page_number >= 0) ? page_number
: flashc_get_page_number()) / flashc_get_page_count_per_region();
}
unsigned int flashc_get_region_first_page_number(unsigned int region)
{
return region * flashc_get_page_count_per_region();
}
//! @}
/*! \name FLASHC Control
*/
//! @{
unsigned int flashc_get_wait_state(void)
{
return (AVR32_FLASHC.fcr & AVR32_FLASHC_FCR_FWS_MASK) >> AVR32_FLASHC_FCR_FWS_OFFSET;
}
void flashc_set_wait_state(unsigned int wait_state)
{
u_avr32_flashc_fcr_t u_avr32_flashc_fcr = {AVR32_FLASHC.fcr};
u_avr32_flashc_fcr.FCR.fws = wait_state;
AVR32_FLASHC.fcr = u_avr32_flashc_fcr.fcr;
}
void flashc_set_bus_freq(unsigned int cpu_f_hz)
{
if (cpu_f_hz >= AVR32_FLASHC_FWS_0_MAX_FREQ) {
// Set 1 WS.
flashc_set_wait_state(1);
} else {
// Set 0 WS.
flashc_set_wait_state(0);
}
}
bool flashc_is_ready_int_enabled(void)
{
return ((AVR32_FLASHC.fcr & AVR32_FLASHC_FCR_FRDY_MASK) != 0);
}
void flashc_enable_ready_int(bool enable)
{
u_avr32_flashc_fcr_t u_avr32_flashc_fcr = {AVR32_FLASHC.fcr};
u_avr32_flashc_fcr.FCR.frdy = (enable != false);
AVR32_FLASHC.fcr = u_avr32_flashc_fcr.fcr;
}
bool flashc_is_lock_error_int_enabled(void)
{
return ((AVR32_FLASHC.fcr & AVR32_FLASHC_FCR_LOCKE_MASK) != 0);
}
void flashc_enable_lock_error_int(bool enable)
{
u_avr32_flashc_fcr_t u_avr32_flashc_fcr = {AVR32_FLASHC.fcr};
u_avr32_flashc_fcr.FCR.locke = (enable != false);
AVR32_FLASHC.fcr = u_avr32_flashc_fcr.fcr;
}
bool flashc_is_prog_error_int_enabled(void)
{
return ((AVR32_FLASHC.fcr & AVR32_FLASHC_FCR_PROGE_MASK) != 0);
}
void flashc_enable_prog_error_int(bool enable)
{
u_avr32_flashc_fcr_t u_avr32_flashc_fcr = {AVR32_FLASHC.fcr};
u_avr32_flashc_fcr.FCR.proge = (enable != false);
AVR32_FLASHC.fcr = u_avr32_flashc_fcr.fcr;
}
//! @}
/*! \name FLASHC Status
*/
//! @{
bool flashc_is_ready(void)
{
return ((AVR32_FLASHC.fsr & AVR32_FLASHC_FSR_FRDY_MASK) != 0);
}
void flashc_default_wait_until_ready(void)
{
while (!flashc_is_ready());
}
void (*volatile flashc_wait_until_ready)(void) = flashc_default_wait_until_ready;
/*! \brief Gets the error status of the FLASHC.
*
* \return The error status of the FLASHC built up from
* \c AVR32_FLASHC_FSR_LOCKE_MASK and \c AVR32_FLASHC_FSR_PROGE_MASK.
*
* \warning This hardware error status is cleared by all functions reading the
* Flash Status Register (FSR). This function is therefore not part of
* the driver's API which instead presents \ref flashc_is_lock_error
* and \ref flashc_is_programming_error.
*/
static unsigned int flashc_get_error_status(void)
{
return AVR32_FLASHC.fsr & (AVR32_FLASHC_FSR_LOCKE_MASK |
AVR32_FLASHC_FSR_PROGE_MASK);
}
//! Sticky error status of the FLASHC.
//! This variable is updated by functions that issue FLASHC commands. It
//! contains the cumulated FLASHC error status of all the FLASHC commands issued
//! by a function.
static unsigned int flashc_error_status = 0;
bool flashc_is_lock_error(void)
{
return ((flashc_error_status & AVR32_FLASHC_FSR_LOCKE_MASK) != 0);
}
bool flashc_is_programming_error(void)
{
return ((flashc_error_status & AVR32_FLASHC_FSR_PROGE_MASK) != 0);
}
//! @}
/*! \name FLASHC Command Control
*/
//! @{
unsigned int flashc_get_command(void)
{
return (AVR32_FLASHC.fcmd & AVR32_FLASHC_FCMD_CMD_MASK) >> AVR32_FLASHC_FCMD_CMD_OFFSET;
}
unsigned int flashc_get_page_number(void)
{
return (AVR32_FLASHC.fcmd & AVR32_FLASHC_FCMD_PAGEN_MASK) >> AVR32_FLASHC_FCMD_PAGEN_OFFSET;
}
void flashc_issue_command(unsigned int command, int page_number)
{
u_avr32_flashc_fcmd_t u_avr32_flashc_fcmd;
flashc_wait_until_ready();
u_avr32_flashc_fcmd.fcmd = AVR32_FLASHC.fcmd;
u_avr32_flashc_fcmd.FCMD.cmd = command;
if (page_number >= 0) {
u_avr32_flashc_fcmd.FCMD.pagen = page_number;
}
u_avr32_flashc_fcmd.FCMD.key = AVR32_FLASHC_FCMD_KEY_KEY;
AVR32_FLASHC.fcmd = u_avr32_flashc_fcmd.fcmd;
flashc_error_status = flashc_get_error_status();
flashc_wait_until_ready();
}
//! @}
/*! \name FLASHC Global Commands
*/
//! @{
void flashc_no_operation(void)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_NOP, -1);
}
void flashc_erase_all(void)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_EA, -1);
}
//! @}
/*! \name FLASHC Protection Mechanisms
*/
//! @{
bool flashc_is_security_bit_active(void)
{
return ((AVR32_FLASHC.fsr & AVR32_FLASHC_FSR_SECURITY_MASK) != 0);
}
void flashc_activate_security_bit(void)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_SSB, -1);
}
unsigned int flashc_get_bootloader_protected_size(void)
{
unsigned int bootprot = (1 << AVR32_FLASHC_FGPFRLO_BOOTPROT_SIZE) - 1 -
flashc_read_gp_fuse_bitfield(AVR32_FLASHC_FGPFRLO_BOOTPROT_OFFSET,
AVR32_FLASHC_FGPFRLO_BOOTPROT_SIZE);
return (bootprot) ? AVR32_FLASHC_PAGE_SIZE << bootprot : 0;
}
unsigned int flashc_set_bootloader_protected_size(unsigned int bootprot_size)
{
flashc_set_gp_fuse_bitfield(AVR32_FLASHC_FGPFRLO_BOOTPROT_OFFSET,
AVR32_FLASHC_FGPFRLO_BOOTPROT_SIZE,
(1 << AVR32_FLASHC_FGPFRLO_BOOTPROT_SIZE) - 1 -
((bootprot_size) ?
32 - clz((((min(max(bootprot_size, AVR32_FLASHC_PAGE_SIZE << 1),
AVR32_FLASHC_PAGE_SIZE <<
((1 << AVR32_FLASHC_FGPFRLO_BOOTPROT_SIZE) - 1)) +
AVR32_FLASHC_PAGE_SIZE - 1) /
AVR32_FLASHC_PAGE_SIZE) << 1) - 1) - 1 :
0));
return flashc_get_bootloader_protected_size();
}
bool flashc_is_external_privileged_fetch_locked(void)
{
return (!flashc_read_gp_fuse_bit(AVR32_FLASHC_FGPFRLO_EPFL_OFFSET));
}
void flashc_lock_external_privileged_fetch(bool lock)
{
flashc_set_gp_fuse_bit(AVR32_FLASHC_FGPFRLO_EPFL_OFFSET, !lock);
}
bool flashc_is_page_region_locked(int page_number)
{
return flashc_is_region_locked(flashc_get_page_region(page_number));
}
bool flashc_is_region_locked(unsigned int region)
{
return ((AVR32_FLASHC.fsr & AVR32_FLASHC_FSR_LOCK0_MASK << (region & (AVR32_FLASHC_REGIONS - 1))) != 0);
}
void flashc_lock_page_region(int page_number, bool lock)
{
flashc_issue_command((lock) ? AVR32_FLASHC_FCMD_CMD_LP : AVR32_FLASHC_FCMD_CMD_UP, page_number);
}
void flashc_lock_region(unsigned int region, bool lock)
{
flashc_lock_page_region(flashc_get_region_first_page_number(region), lock);
}
void flashc_lock_all_regions(bool lock)
{
unsigned int error_status = 0;
unsigned int region = AVR32_FLASHC_REGIONS;
while (region) {
flashc_lock_region(--region, lock);
error_status |= flashc_error_status;
}
flashc_error_status = error_status;
}
//! @}
/*! \name Access to General-Purpose Fuses
*/
//! @{
bool flashc_read_gp_fuse_bit(unsigned int gp_fuse_bit)
{
return ((flashc_read_all_gp_fuses() & 1ULL << (gp_fuse_bit & 0x3F)) != 0);
}
uint64_t flashc_read_gp_fuse_bitfield(unsigned int pos, unsigned int width)
{
return flashc_read_all_gp_fuses() >> (pos & 0x3F) & ((1ULL << min(width, 64)) - 1);
}
uint8_t flashc_read_gp_fuse_byte(unsigned int gp_fuse_byte)
{
return flashc_read_all_gp_fuses() >> ((gp_fuse_byte & 0x07) << 3);
}
uint64_t flashc_read_all_gp_fuses(void)
{
return AVR32_FLASHC.fgpfrlo | (uint64_t)AVR32_FLASHC.fgpfrhi << 32;
}
bool flashc_erase_gp_fuse_bit(unsigned int gp_fuse_bit, bool check)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_EGPB, gp_fuse_bit & 0x3F);
return (check) ? flashc_read_gp_fuse_bit(gp_fuse_bit) : true;
}
bool flashc_erase_gp_fuse_bitfield(unsigned int pos, unsigned int width, bool check)
{
unsigned int error_status = 0;
unsigned int gp_fuse_bit;
pos &= 0x3F;
width = min(width, 64);
for (gp_fuse_bit = pos; gp_fuse_bit < pos + width; gp_fuse_bit++) {
flashc_erase_gp_fuse_bit(gp_fuse_bit, false);
error_status |= flashc_error_status;
}
flashc_error_status = error_status;
return (check) ? (flashc_read_gp_fuse_bitfield(pos, width) == (1ULL << width) - 1) : true;
}
bool flashc_erase_gp_fuse_byte(unsigned int gp_fuse_byte, bool check)
{
unsigned int error_status;
unsigned int current_gp_fuse_byte;
uint64_t value = flashc_read_all_gp_fuses();
flashc_erase_all_gp_fuses(false);
error_status = flashc_error_status;
for (current_gp_fuse_byte = 0; current_gp_fuse_byte < 8; current_gp_fuse_byte++, value >>= 8) {
if (current_gp_fuse_byte != gp_fuse_byte) {
flashc_write_gp_fuse_byte(current_gp_fuse_byte, value);
error_status |= flashc_error_status;
}
}
flashc_error_status = error_status;
return (check) ? (flashc_read_gp_fuse_byte(gp_fuse_byte) == 0xFF) : true;
}
bool flashc_erase_all_gp_fuses(bool check)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_EAGPF, -1);
return (check) ? (flashc_read_all_gp_fuses() == 0xFFFFFFFFFFFFFFFFULL) : true;
}
void flashc_write_gp_fuse_bit(unsigned int gp_fuse_bit, bool value)
{
if (!value) {
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_WGPB, gp_fuse_bit & 0x3F);
}
}
void flashc_write_gp_fuse_bitfield(unsigned int pos, unsigned int width, uint64_t value)
{
unsigned int error_status = 0;
unsigned int gp_fuse_bit;
pos &= 0x3F;
width = min(width, 64);
for (gp_fuse_bit = pos; gp_fuse_bit < pos + width; gp_fuse_bit++, value >>= 1) {
flashc_write_gp_fuse_bit(gp_fuse_bit, value & 0x01);
error_status |= flashc_error_status;
}
flashc_error_status = error_status;
}
void flashc_write_gp_fuse_byte(unsigned int gp_fuse_byte, uint8_t value)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_PGPFB, (gp_fuse_byte & 0x07) | value << 3);
}
void flashc_write_all_gp_fuses(uint64_t value)
{
unsigned int error_status = 0;
unsigned int gp_fuse_byte;
for (gp_fuse_byte = 0; gp_fuse_byte < 8; gp_fuse_byte++, value >>= 8) {
flashc_write_gp_fuse_byte(gp_fuse_byte, value);
error_status |= flashc_error_status;
}
flashc_error_status = error_status;
}
void flashc_set_gp_fuse_bit(unsigned int gp_fuse_bit, bool value)
{
if (value) {
flashc_erase_gp_fuse_bit(gp_fuse_bit, false);
} else {
flashc_write_gp_fuse_bit(gp_fuse_bit, false);
}
}
void flashc_set_gp_fuse_bitfield(unsigned int pos, unsigned int width, uint64_t value)
{
unsigned int error_status = 0;
unsigned int gp_fuse_bit;
pos &= 0x3F;
width = min(width, 64);
for (gp_fuse_bit = pos; gp_fuse_bit < pos + width; gp_fuse_bit++, value >>= 1) {
flashc_set_gp_fuse_bit(gp_fuse_bit, value & 0x01);
error_status |= flashc_error_status;
}
flashc_error_status = error_status;
}
void flashc_set_gp_fuse_byte(unsigned int gp_fuse_byte, uint8_t value)
{
unsigned int error_status;
switch (value) {
case 0xFF:
flashc_erase_gp_fuse_byte(gp_fuse_byte, false);
break;
case 0x00:
flashc_write_gp_fuse_byte(gp_fuse_byte, 0x00);
break;
default:
flashc_erase_gp_fuse_byte(gp_fuse_byte, false);
error_status = flashc_error_status;
flashc_write_gp_fuse_byte(gp_fuse_byte, value);
flashc_error_status |= error_status;
break;
}
}
void flashc_set_all_gp_fuses(uint64_t value)
{
unsigned int error_status;
switch (value) {
case 0xFFFFFFFFFFFFFFFFULL:
flashc_erase_all_gp_fuses(false);
break;
case 0x0000000000000000ULL:
flashc_write_all_gp_fuses(0x0000000000000000ULL);
break;
default:
flashc_erase_all_gp_fuses(false);
error_status = flashc_error_status;
flashc_write_all_gp_fuses(value);
flashc_error_status |= error_status;
break;
}
}
//! @}
/*! \name Access to Flash Pages
*/
//! @{
void flashc_clear_page_buffer(void)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_CPB, -1);
}
bool flashc_is_page_erased(void)
{
return ((AVR32_FLASHC.fsr & AVR32_FLASHC_FSR_QPRR_MASK) != 0);
}
bool flashc_quick_page_read(int page_number)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_QPR, page_number);
return flashc_is_page_erased();
}
bool flashc_erase_page(int page_number, bool check)
{
bool page_erased = true;
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_EP, page_number);
if (check) {
unsigned int error_status = flashc_error_status;
page_erased = flashc_quick_page_read(-1);
flashc_error_status |= error_status;
}
return page_erased;
}
bool flashc_erase_all_pages(bool check)
{
bool all_pages_erased = true;
unsigned int error_status = 0;
unsigned int page_number = flashc_get_page_count();
while (page_number) {
all_pages_erased &= flashc_erase_page(--page_number, check);
error_status |= flashc_error_status;
}
flashc_error_status = error_status;
return all_pages_erased;
}
void flashc_write_page(int page_number)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_WP, page_number);
}
bool flashc_quick_user_page_read(void)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_QPRUP, -1);
return flashc_is_page_erased();
}
bool flashc_erase_user_page(bool check)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_EUP, -1);
return (check) ? flashc_quick_user_page_read() : true;
}
void flashc_write_user_page(void)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_WUP, -1);
}
volatile void *flashc_memset8(volatile void *dst, uint8_t src, size_t nbytes, bool erase)
{
return flashc_memset16(dst, src | (uint16_t)src << 8, nbytes, erase);
}
volatile void *flashc_memset16(volatile void *dst, uint16_t src, size_t nbytes, bool erase)
{
return flashc_memset32(dst, src | (uint32_t)src << 16, nbytes, erase);
}
volatile void *flashc_memset32(volatile void *dst, uint32_t src, size_t nbytes, bool erase)
{
return flashc_memset64(dst, src | (uint64_t)src << 32, nbytes, erase);
}
volatile void *flashc_memset64(volatile void *dst, uint64_t src, size_t nbytes, bool erase)
{
// Use aggregated pointers to have several alignments available for a same address.
UnionCVPtr flash_array_end;
UnionVPtr dest;
Union64 source = {0};
StructCVPtr dest_end;
UnionCVPtr flash_page_source_end;
bool incomplete_flash_page_end;
Union64 flash_dword;
UnionVPtr tmp;
unsigned int error_status = 0;
unsigned int i;
// Reformat arguments.
flash_array_end.u8ptr = AVR32_FLASH + flashc_get_flash_size();
dest.u8ptr = dst;
for (i = (Get_align((uint32_t)dest.u8ptr, sizeof(uint64_t)) - 1) & (sizeof(uint64_t) - 1);
src; i = (i - 1) & (sizeof(uint64_t) - 1)) {
source.u8[i] = src;
src >>= 8;
}
dest_end.u8ptr = dest.u8ptr + nbytes;
// If destination is outside flash, go to next flash page if any.
if (dest.u8ptr < AVR32_FLASH) {
dest.u8ptr = AVR32_FLASH;
} else if (flash_array_end.u8ptr <= dest.u8ptr && dest.u8ptr < AVR32_FLASHC_USER_PAGE) {
dest.u8ptr = AVR32_FLASHC_USER_PAGE;
}
// If end of destination is outside flash, move it to the end of the previous flash page if any.
if (dest_end.u8ptr > AVR32_FLASHC_USER_PAGE + AVR32_FLASHC_USER_PAGE_SIZE) {
dest_end.u8ptr = AVR32_FLASHC_USER_PAGE + AVR32_FLASHC_USER_PAGE_SIZE;
} else if (AVR32_FLASHC_USER_PAGE >= dest_end.u8ptr && dest_end.u8ptr > flash_array_end.u8ptr) {
dest_end.u8ptr = flash_array_end.u8ptr;
}
// Align each end of destination pointer with its natural boundary.
dest_end.u16ptr = (uint16_t *)Align_down((uint32_t)dest_end.u8ptr, sizeof(uint16_t));
dest_end.u32ptr = (uint32_t *)Align_down((uint32_t)dest_end.u16ptr, sizeof(uint32_t));
dest_end.u64ptr = (uint64_t *)Align_down((uint32_t)dest_end.u32ptr, sizeof(uint64_t));
// While end of destination is not reached...
while (dest.u8ptr < dest_end.u8ptr) {
// Clear the page buffer in order to prepare data for a flash page write.
flashc_clear_page_buffer();
error_status |= flashc_error_status;
// Determine where the source data will end in the current flash page.
flash_page_source_end.u64ptr =
(uint64_t *)min((uint32_t)dest_end.u64ptr,
Align_down((uint32_t)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE) + AVR32_FLASHC_PAGE_SIZE);
// Determine if the current destination page has an incomplete end.
incomplete_flash_page_end = (Align_down((uint32_t)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE) >=
Align_down((uint32_t)dest_end.u8ptr, AVR32_FLASHC_PAGE_SIZE));
// Use a flash double-word buffer to manage unaligned accesses.
flash_dword.u64 = source.u64;
// If destination does not point to the beginning of the current flash page...
if (!Test_align((uint32_t)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE)) {
// Fill the beginning of the page buffer with the current flash page data.
// This is required by the hardware, even if page erase is not requested,
// in order to be able to write successfully to erased parts of flash
// pages that have already been written to.
for (tmp.u8ptr = (uint8_t *)Align_down((uint32_t)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE);
tmp.u64ptr < (uint64_t *)Align_down((uint32_t)dest.u8ptr, sizeof(uint64_t));
tmp.u64ptr++) {
*tmp.u64ptr = *tmp.u64ptr;
}
// If destination is not 64-bit aligned...
if (!Test_align((uint32_t)dest.u8ptr, sizeof(uint64_t))) {
// Fill the beginning of the flash double-word buffer with the current
// flash page data.
// This is required by the hardware, even if page erase is not
// requested, in order to be able to write successfully to erased parts
// of flash pages that have already been written to.
for (i = 0; i < Get_align((uint32_t)dest.u8ptr, sizeof(uint64_t)); i++) {
flash_dword.u8[i] = *tmp.u8ptr++;
}
// Align the destination pointer with its 64-bit boundary.
dest.u64ptr = (uint64_t *)Align_down((uint32_t)dest.u8ptr, sizeof(uint64_t));
// If the current destination double-word is not the last one...
if (dest.u64ptr < dest_end.u64ptr) {
// Write the flash double-word buffer to the page buffer and reinitialize it.
*dest.u64ptr++ = flash_dword.u64;
flash_dword.u64 = source.u64;
}
}
}
// Write the source data to the page buffer with 64-bit alignment.
for (i = flash_page_source_end.u64ptr - dest.u64ptr; i; i--) {
*dest.u64ptr++ = source.u64;
}
// If the current destination page has an incomplete end...
if (incomplete_flash_page_end) {
// This is required by the hardware, even if page erase is not requested,
// in order to be able to write successfully to erased parts of flash
// pages that have already been written to.
{
tmp.u8ptr = (volatile uint8_t *)dest_end.u8ptr;
// If end of destination is not 64-bit aligned...
if (!Test_align((uint32_t)dest_end.u8ptr, sizeof(uint64_t))) {
// Fill the end of the flash double-word buffer with the current flash page data.
for (i = Get_align((uint32_t)dest_end.u8ptr, sizeof(uint64_t)); i < sizeof(uint64_t); i++)
flash_dword.u8[i] = *tmp.u8ptr++;
// Write the flash double-word buffer to the page buffer.
*dest.u64ptr++ = flash_dword.u64;
}
// Fill the end of the page buffer with the current flash page data.
for (; !Test_align((uint32_t)tmp.u64ptr, AVR32_FLASHC_PAGE_SIZE); tmp.u64ptr++) {
*tmp.u64ptr = *tmp.u64ptr;
}
}
}
// If the current flash page is in the flash array...
if (dest.u8ptr <= AVR32_FLASHC_USER_PAGE) {
// Erase the current page if requested and write it from the page buffer.
if (erase) {
flashc_erase_page(-1, false);
error_status |= flashc_error_status;
}
flashc_write_page(-1);
error_status |= flashc_error_status;
// If the end of the flash array is reached, go to the User page.
if (dest.u8ptr >= flash_array_end.u8ptr) {
dest.u8ptr = AVR32_FLASHC_USER_PAGE;
}
} else {
// Erase the User page if requested and write it from the page buffer.
if (erase) {
flashc_erase_user_page(false);
error_status |= flashc_error_status;
}
flashc_write_user_page();
error_status |= flashc_error_status;
}
}
// Update the FLASHC error status.
flashc_error_status = error_status;
// Return the initial destination pointer as the standard memset function does.
return dst;
}
volatile void *flashc_memcpy(volatile void *dst, const void *src, size_t nbytes, bool erase)
{
uint16_t page_pos;
Union64 flash_dword;
uint8_t i;
bool b_user_page;
unsigned int error_status = 0;
uint8_t* flash_add;
uint8_t* dest_add=(uint8_t*)dst;
const uint8_t* src_buf=(const uint8_t*)src;
// Copy area must be in flash array or flash user page
Assert( (((uint8_t *)dst >= AVR32_FLASH)
&& (((uint8_t *)dst + nbytes) <= (AVR32_FLASH + flashc_get_flash_size())))
|| (((uint8_t *)dst >= AVR32_FLASHC_USER_PAGE)
&& (((uint8_t *)dst + nbytes) <= (AVR32_FLASHC_USER_PAGE + AVR32_FLASHC_USER_PAGE_SIZE))) );
b_user_page = (volatile uint8_t *)dst >= AVR32_FLASHC_USER_PAGE;
flash_add = (uint8_t*)((uint32_t)dest_add - ((uint32_t)dest_add % AVR32_FLASHC_PAGE_SIZE));
while (nbytes) {
// Clear the page buffer in order to prepare data for a flash page write.
flashc_clear_page_buffer();
error_status |= flashc_error_status;
// Loop in the page
for (page_pos=0; page_pos<AVR32_FLASHC_PAGE_SIZE; page_pos+=sizeof(uint64_t) ) {
// Read the flash double-word buffer
flash_dword.u64 = *(volatile uint64_t*)flash_add;
// Update double-word if necessary
for (i = 0; i < sizeof(uint64_t); i++) {
if (nbytes && (flash_add == dest_add)) {
// Update page with data source
flash_dword.u8[i] = *src_buf++;
dest_add++;
nbytes--;
}
flash_add++;
}
// Write the flash double-word buffer to the page buffer.
*(volatile uint64_t*)((uint32_t)flash_add - sizeof(uint64_t))= flash_dword.u64;
}
// Erase the current page if requested and write it from the page buffer.
if (erase) {
(b_user_page)? flashc_erase_user_page(false) : flashc_erase_page(-1, false);
error_status |= flashc_error_status;
}
// Write the page
(b_user_page)? flashc_write_user_page() : flashc_write_page(-1);
error_status |= flashc_error_status;
}
// Update the FLASHC error status.
flashc_error_status = error_status;
// Return the initial destination pointer as the standard memcpy function does.
return dst;
}
#if UC3C
void flashc_set_flash_waitstate_and_readmode(unsigned long cpu_f_hz)
{
//! Device-specific data
#undef AVR32_FLASHC_FWS_0_MAX_FREQ
#undef AVR32_FLASHC_FWS_1_MAX_FREQ
#undef AVR32_FLASHC_HSEN_FWS_0_MAX_FREQ
#undef AVR32_FLASHC_HSEN_FWS_1_MAX_FREQ
#define AVR32_FLASHC_FWS_0_MAX_FREQ 33000000
#define AVR32_FLASHC_FWS_1_MAX_FREQ 66000000
#define AVR32_FLASHC_HSEN_FWS_0_MAX_FREQ 33000000
#define AVR32_FLASHC_HSEN_FWS_1_MAX_FREQ 72000000
// These defines are missing from or wrong in the toolchain header files uc3cxxx.h
// Put a Bugzilla
if (cpu_f_hz > AVR32_FLASHC_HSEN_FWS_0_MAX_FREQ) { // > 33MHz
// Set a wait-state
flashc_set_wait_state(1);
if (cpu_f_hz <= AVR32_FLASHC_FWS_1_MAX_FREQ) { // <= 66MHz and >33Mhz
// Disable the high-speed read mode.
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSDIS, -1);
} else { // > 66Mhz
// Enable the high-speed read mode.
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSEN, -1);
}
} else { // <= 33 MHz
// Disable wait-state
flashc_set_wait_state(0);
// Disable the high-speed read mode.
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSDIS, -1);
}
}
#endif // UC3C device-specific implementation
//! @}