1292 lines
40 KiB
C
1292 lines
40 KiB
C
/*
|
|
* Copyright (c) 2006-2023, RT-Thread Development Team
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Change Logs:
|
|
* Date Author Notes
|
|
* 2006-03-17 Bernard the first version
|
|
* 2006-04-28 Bernard fix the scheduler algorthm
|
|
* 2006-04-30 Bernard add SCHEDULER_DEBUG
|
|
* 2006-05-27 Bernard fix the scheduler algorthm for same priority
|
|
* thread schedule
|
|
* 2006-06-04 Bernard rewrite the scheduler algorithm
|
|
* 2006-08-03 Bernard add hook support
|
|
* 2006-09-05 Bernard add 32 priority level support
|
|
* 2006-09-24 Bernard add rt_system_scheduler_start function
|
|
* 2009-09-16 Bernard fix _rt_scheduler_stack_check
|
|
* 2010-04-11 yi.qiu add module feature
|
|
* 2010-07-13 Bernard fix the maximal number of rt_scheduler_lock_nest
|
|
* issue found by kuronca
|
|
* 2010-12-13 Bernard add defunct list initialization even if not use heap.
|
|
* 2011-05-10 Bernard clean scheduler debug log.
|
|
* 2013-12-21 Grissiom add rt_critical_level
|
|
* 2018-11-22 Jesven remove the current task from ready queue
|
|
* add per cpu ready queue
|
|
* add _scheduler_get_highest_priority_thread to find highest priority task
|
|
* rt_schedule_insert_thread won't insert current task to ready queue
|
|
* in smp version, rt_hw_context_switch_interrupt maybe switch to
|
|
* new task directly
|
|
* 2022-01-07 Gabriel Moving __on_rt_xxxxx_hook to scheduler.c
|
|
* 2023-03-27 rose_man Split into scheduler upc and scheduler_mp.c
|
|
* 2023-09-15 xqyjlj perf rt_hw_interrupt_disable/enable
|
|
* 2023-12-10 xqyjlj use rt_hw_spinlock
|
|
* 2024-01-05 Shell Fixup of data racing in rt_critical_level
|
|
* 2024-01-18 Shell support rt_sched_thread of scheduling status for better mt protection
|
|
*/
|
|
|
|
#include <rtthread.h>
|
|
#include <rthw.h>
|
|
|
|
#define DBG_TAG "kernel.scheduler"
|
|
#define DBG_LVL DBG_INFO
|
|
#include <rtdbg.h>
|
|
|
|
rt_list_t rt_thread_priority_table[RT_THREAD_PRIORITY_MAX];
|
|
static struct rt_spinlock _mp_scheduler_lock;
|
|
|
|
#define SCHEDULER_LOCK_FLAG(percpu) ((percpu)->sched_lock_flag)
|
|
|
|
#define SCHEDULER_ENTER_CRITICAL(curthr) \
|
|
do \
|
|
{ \
|
|
if (curthr) RT_SCHED_CTX(curthr).critical_lock_nest++; \
|
|
} while (0)
|
|
|
|
#define SCHEDULER_EXIT_CRITICAL(curthr) \
|
|
do \
|
|
{ \
|
|
if (curthr) RT_SCHED_CTX(curthr).critical_lock_nest--; \
|
|
} while (0)
|
|
|
|
#define SCHEDULER_CONTEXT_LOCK(percpu) \
|
|
do \
|
|
{ \
|
|
RT_ASSERT(SCHEDULER_LOCK_FLAG(percpu) == 0); \
|
|
_fast_spin_lock(&_mp_scheduler_lock); \
|
|
SCHEDULER_LOCK_FLAG(percpu) = 1; \
|
|
} while (0)
|
|
|
|
#define SCHEDULER_CONTEXT_UNLOCK(percpu) \
|
|
do \
|
|
{ \
|
|
RT_ASSERT(SCHEDULER_LOCK_FLAG(percpu) == 1); \
|
|
SCHEDULER_LOCK_FLAG(percpu) = 0; \
|
|
_fast_spin_unlock(&_mp_scheduler_lock); \
|
|
} while (0)
|
|
|
|
#define SCHEDULER_LOCK(level) \
|
|
do \
|
|
{ \
|
|
rt_thread_t _curthr; \
|
|
struct rt_cpu *_percpu; \
|
|
level = rt_hw_local_irq_disable(); \
|
|
_percpu = rt_cpu_self(); \
|
|
_curthr = _percpu->current_thread; \
|
|
SCHEDULER_ENTER_CRITICAL(_curthr); \
|
|
SCHEDULER_CONTEXT_LOCK(_percpu); \
|
|
} while (0)
|
|
|
|
#define SCHEDULER_UNLOCK(level) \
|
|
do \
|
|
{ \
|
|
rt_thread_t _curthr; \
|
|
struct rt_cpu *_percpu; \
|
|
_percpu = rt_cpu_self(); \
|
|
_curthr = _percpu->current_thread; \
|
|
SCHEDULER_CONTEXT_UNLOCK(_percpu); \
|
|
SCHEDULER_EXIT_CRITICAL(_curthr); \
|
|
rt_hw_local_irq_enable(level); \
|
|
} while (0)
|
|
|
|
static rt_uint32_t rt_thread_ready_priority_group;
|
|
#if RT_THREAD_PRIORITY_MAX > 32
|
|
/* Maximum priority level, 256 */
|
|
static rt_uint8_t rt_thread_ready_table[32];
|
|
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
|
|
|
|
/**
|
|
* Used only on scheduler for optimization of control flows, where the critical
|
|
* region is already guaranteed.
|
|
*/
|
|
rt_inline void _fast_spin_lock(struct rt_spinlock *lock)
|
|
{
|
|
rt_hw_spin_lock(&lock->lock);
|
|
|
|
RT_SPIN_LOCK_DEBUG(lock);
|
|
}
|
|
|
|
rt_inline void _fast_spin_unlock(struct rt_spinlock *lock)
|
|
{
|
|
rt_base_t critical_level;
|
|
RT_SPIN_UNLOCK_DEBUG(lock, critical_level);
|
|
|
|
/* for the scenario of sched, we don't check critical level */
|
|
RT_UNUSED(critical_level);
|
|
|
|
rt_hw_spin_unlock(&lock->lock);
|
|
}
|
|
|
|
#if defined(RT_USING_HOOK) && defined(RT_HOOK_USING_FUNC_PTR)
|
|
static void (*rt_scheduler_hook)(struct rt_thread *from, struct rt_thread *to);
|
|
static void (*rt_scheduler_switch_hook)(struct rt_thread *tid);
|
|
|
|
/**
|
|
* @addtogroup Hook
|
|
*/
|
|
|
|
/**@{*/
|
|
|
|
/**
|
|
* @brief This function will set a hook function, which will be invoked when thread
|
|
* switch happens.
|
|
*
|
|
* @param hook is the hook function.
|
|
*/
|
|
void rt_scheduler_sethook(void (*hook)(struct rt_thread *from, struct rt_thread *to))
|
|
{
|
|
rt_scheduler_hook = hook;
|
|
}
|
|
|
|
/**
|
|
* @brief This function will set a hook function, which will be invoked when context
|
|
* switch happens.
|
|
*
|
|
* @param hook is the hook function.
|
|
*/
|
|
void rt_scheduler_switch_sethook(void (*hook)(struct rt_thread *tid))
|
|
{
|
|
rt_scheduler_switch_hook = hook;
|
|
}
|
|
|
|
/**@}*/
|
|
#endif /* RT_USING_HOOK */
|
|
|
|
#if RT_THREAD_PRIORITY_MAX > 32
|
|
|
|
rt_inline rt_base_t _get_global_highest_ready_prio(void)
|
|
{
|
|
rt_ubase_t number;
|
|
rt_ubase_t highest_ready_priority;
|
|
|
|
number = __rt_ffs(rt_thread_ready_priority_group) - 1;
|
|
if (number != -1)
|
|
{
|
|
highest_ready_priority = (number << 3) + __rt_ffs(rt_thread_ready_table[number]) - 1;
|
|
}
|
|
else
|
|
{
|
|
highest_ready_priority = -1;
|
|
}
|
|
return highest_ready_priority;
|
|
}
|
|
|
|
rt_inline rt_base_t _get_local_highest_ready_prio(struct rt_cpu* pcpu)
|
|
{
|
|
rt_ubase_t number;
|
|
rt_ubase_t local_highest_ready_priority;
|
|
|
|
number = __rt_ffs(pcpu->priority_group) - 1;
|
|
if (number != -1)
|
|
{
|
|
local_highest_ready_priority = (number << 3) + __rt_ffs(pcpu->ready_table[number]) - 1;
|
|
}
|
|
else
|
|
{
|
|
local_highest_ready_priority = -1;
|
|
}
|
|
return local_highest_ready_priority;
|
|
}
|
|
|
|
#else /* if RT_THREAD_PRIORITY_MAX <= 32 */
|
|
|
|
rt_inline rt_base_t _get_global_highest_ready_prio(void)
|
|
{
|
|
return __rt_ffs(rt_thread_ready_priority_group) - 1;
|
|
}
|
|
|
|
rt_inline rt_base_t _get_local_highest_ready_prio(struct rt_cpu* pcpu)
|
|
{
|
|
return __rt_ffs(pcpu->priority_group) - 1;
|
|
}
|
|
|
|
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
|
|
|
|
/*
|
|
* get the highest priority thread in ready queue
|
|
*/
|
|
static struct rt_thread* _scheduler_get_highest_priority_thread(rt_ubase_t *highest_prio)
|
|
{
|
|
struct rt_thread *highest_priority_thread;
|
|
rt_ubase_t highest_ready_priority, local_highest_ready_priority;
|
|
struct rt_cpu* pcpu = rt_cpu_self();
|
|
|
|
highest_ready_priority = _get_global_highest_ready_prio();
|
|
local_highest_ready_priority = _get_local_highest_ready_prio(pcpu);
|
|
|
|
/* get highest ready priority thread */
|
|
if (highest_ready_priority < local_highest_ready_priority)
|
|
{
|
|
*highest_prio = highest_ready_priority;
|
|
|
|
highest_priority_thread = RT_THREAD_LIST_NODE_ENTRY(
|
|
rt_thread_priority_table[highest_ready_priority].next);
|
|
}
|
|
else
|
|
{
|
|
*highest_prio = local_highest_ready_priority;
|
|
if (local_highest_ready_priority != -1)
|
|
{
|
|
highest_priority_thread = RT_THREAD_LIST_NODE_ENTRY(
|
|
pcpu->priority_table[local_highest_ready_priority].next);
|
|
}
|
|
else
|
|
{
|
|
highest_priority_thread = RT_NULL;
|
|
}
|
|
}
|
|
|
|
RT_ASSERT(!highest_priority_thread ||
|
|
rt_object_get_type(&highest_priority_thread->parent) == RT_Object_Class_Thread);
|
|
return highest_priority_thread;
|
|
}
|
|
|
|
/**
|
|
* @brief set READY and insert thread to ready queue
|
|
*
|
|
* @note caller must holding the `_mp_scheduler_lock` lock
|
|
*/
|
|
static void _sched_insert_thread_locked(struct rt_thread *thread)
|
|
{
|
|
int cpu_id;
|
|
int bind_cpu;
|
|
rt_uint32_t cpu_mask;
|
|
|
|
if ((RT_SCHED_CTX(thread).stat & RT_THREAD_STAT_MASK) == RT_THREAD_READY)
|
|
{
|
|
/* already in ready queue */
|
|
return ;
|
|
}
|
|
else if (RT_SCHED_CTX(thread).oncpu != RT_CPU_DETACHED)
|
|
{
|
|
/**
|
|
* only YIELD -> READY, SUSPEND -> READY is allowed by this API. However,
|
|
* this is a RUNNING thread. So here we reset it's status and let it go.
|
|
*/
|
|
RT_SCHED_CTX(thread).stat = RT_THREAD_RUNNING | (RT_SCHED_CTX(thread).stat & ~RT_THREAD_STAT_MASK);
|
|
return ;
|
|
}
|
|
|
|
/* READY thread, insert to ready queue */
|
|
RT_SCHED_CTX(thread).stat = RT_THREAD_READY | (RT_SCHED_CTX(thread).stat & ~RT_THREAD_STAT_MASK);
|
|
|
|
cpu_id = rt_hw_cpu_id();
|
|
bind_cpu = RT_SCHED_CTX(thread).bind_cpu;
|
|
|
|
/* insert thread to ready list */
|
|
if (bind_cpu == RT_CPUS_NR)
|
|
{
|
|
#if RT_THREAD_PRIORITY_MAX > 32
|
|
rt_thread_ready_table[RT_SCHED_PRIV(thread).number] |= RT_SCHED_PRIV(thread).high_mask;
|
|
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
|
|
rt_thread_ready_priority_group |= RT_SCHED_PRIV(thread).number_mask;
|
|
|
|
/* there is no time slices left(YIELD), inserting thread before ready list*/
|
|
if((RT_SCHED_CTX(thread).stat & RT_THREAD_STAT_YIELD_MASK) != 0)
|
|
{
|
|
rt_list_insert_before(&(rt_thread_priority_table[RT_SCHED_PRIV(thread).current_priority]),
|
|
&RT_THREAD_LIST_NODE(thread));
|
|
}
|
|
/* there are some time slices left, inserting thread after ready list to schedule it firstly at next time*/
|
|
else
|
|
{
|
|
rt_list_insert_after(&(rt_thread_priority_table[RT_SCHED_PRIV(thread).current_priority]),
|
|
&RT_THREAD_LIST_NODE(thread));
|
|
}
|
|
|
|
cpu_mask = RT_CPU_MASK ^ (1 << cpu_id);
|
|
rt_hw_ipi_send(RT_SCHEDULE_IPI, cpu_mask);
|
|
}
|
|
else
|
|
{
|
|
struct rt_cpu *pcpu = rt_cpu_index(bind_cpu);
|
|
|
|
#if RT_THREAD_PRIORITY_MAX > 32
|
|
pcpu->ready_table[RT_SCHED_PRIV(thread).number] |= RT_SCHED_PRIV(thread).high_mask;
|
|
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
|
|
pcpu->priority_group |= RT_SCHED_PRIV(thread).number_mask;
|
|
|
|
/* there is no time slices left(YIELD), inserting thread before ready list*/
|
|
if((RT_SCHED_CTX(thread).stat & RT_THREAD_STAT_YIELD_MASK) != 0)
|
|
{
|
|
rt_list_insert_before(&(rt_cpu_index(bind_cpu)->priority_table[RT_SCHED_PRIV(thread).current_priority]),
|
|
&RT_THREAD_LIST_NODE(thread));
|
|
}
|
|
/* there are some time slices left, inserting thread after ready list to schedule it firstly at next time*/
|
|
else
|
|
{
|
|
rt_list_insert_after(&(rt_cpu_index(bind_cpu)->priority_table[RT_SCHED_PRIV(thread).current_priority]),
|
|
&RT_THREAD_LIST_NODE(thread));
|
|
}
|
|
|
|
if (cpu_id != bind_cpu)
|
|
{
|
|
cpu_mask = 1 << bind_cpu;
|
|
rt_hw_ipi_send(RT_SCHEDULE_IPI, cpu_mask);
|
|
}
|
|
}
|
|
|
|
LOG_D("insert thread[%.*s], the priority: %d",
|
|
RT_NAME_MAX, thread->parent.name, RT_SCHED_PRIV(thread).current_priority);
|
|
}
|
|
|
|
/* remove thread from ready queue */
|
|
static void _sched_remove_thread_locked(struct rt_thread *thread)
|
|
{
|
|
LOG_D("%s [%.*s], the priority: %d", __func__,
|
|
RT_NAME_MAX, thread->parent.name,
|
|
RT_SCHED_PRIV(thread).current_priority);
|
|
|
|
/* remove thread from ready list */
|
|
rt_list_remove(&RT_THREAD_LIST_NODE(thread));
|
|
|
|
if (RT_SCHED_CTX(thread).bind_cpu == RT_CPUS_NR)
|
|
{
|
|
if (rt_list_isempty(&(rt_thread_priority_table[RT_SCHED_PRIV(thread).current_priority])))
|
|
{
|
|
#if RT_THREAD_PRIORITY_MAX > 32
|
|
rt_thread_ready_table[RT_SCHED_PRIV(thread).number] &= ~RT_SCHED_PRIV(thread).high_mask;
|
|
if (rt_thread_ready_table[RT_SCHED_PRIV(thread).number] == 0)
|
|
{
|
|
rt_thread_ready_priority_group &= ~RT_SCHED_PRIV(thread).number_mask;
|
|
}
|
|
#else
|
|
rt_thread_ready_priority_group &= ~RT_SCHED_PRIV(thread).number_mask;
|
|
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
struct rt_cpu *pcpu = rt_cpu_index(RT_SCHED_CTX(thread).bind_cpu);
|
|
|
|
if (rt_list_isempty(&(pcpu->priority_table[RT_SCHED_PRIV(thread).current_priority])))
|
|
{
|
|
#if RT_THREAD_PRIORITY_MAX > 32
|
|
pcpu->ready_table[RT_SCHED_PRIV(thread).number] &= ~RT_SCHED_PRIV(thread).high_mask;
|
|
if (pcpu->ready_table[RT_SCHED_PRIV(thread).number] == 0)
|
|
{
|
|
pcpu->priority_group &= ~RT_SCHED_PRIV(thread).number_mask;
|
|
}
|
|
#else
|
|
pcpu->priority_group &= ~RT_SCHED_PRIV(thread).number_mask;
|
|
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief This function will initialize the system scheduler.
|
|
*/
|
|
void rt_system_scheduler_init(void)
|
|
{
|
|
int cpu;
|
|
rt_base_t offset;
|
|
|
|
LOG_D("start scheduler: max priority 0x%02x",
|
|
RT_THREAD_PRIORITY_MAX);
|
|
|
|
rt_spin_lock_init(&_mp_scheduler_lock);
|
|
|
|
for (offset = 0; offset < RT_THREAD_PRIORITY_MAX; offset ++)
|
|
{
|
|
rt_list_init(&rt_thread_priority_table[offset]);
|
|
}
|
|
|
|
for (cpu = 0; cpu < RT_CPUS_NR; cpu++)
|
|
{
|
|
struct rt_cpu *pcpu = rt_cpu_index(cpu);
|
|
for (offset = 0; offset < RT_THREAD_PRIORITY_MAX; offset ++)
|
|
{
|
|
rt_list_init(&pcpu->priority_table[offset]);
|
|
}
|
|
|
|
pcpu->irq_switch_flag = 0;
|
|
pcpu->current_priority = RT_THREAD_PRIORITY_MAX - 1;
|
|
pcpu->current_thread = RT_NULL;
|
|
pcpu->priority_group = 0;
|
|
|
|
#if RT_THREAD_PRIORITY_MAX > 32
|
|
rt_memset(pcpu->ready_table, 0, sizeof(pcpu->ready_table));
|
|
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
|
|
|
|
#ifdef RT_USING_SMART
|
|
rt_spin_lock_init(&(pcpu->spinlock));
|
|
#endif
|
|
}
|
|
|
|
/* initialize ready priority group */
|
|
rt_thread_ready_priority_group = 0;
|
|
|
|
#if RT_THREAD_PRIORITY_MAX > 32
|
|
/* initialize ready table */
|
|
rt_memset(rt_thread_ready_table, 0, sizeof(rt_thread_ready_table));
|
|
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
|
|
}
|
|
|
|
/**
|
|
* @brief This function will startup the scheduler. It will select one thread
|
|
* with the highest priority level, then switch to it.
|
|
*/
|
|
void rt_system_scheduler_start(void)
|
|
{
|
|
struct rt_thread *to_thread;
|
|
rt_ubase_t highest_ready_priority;
|
|
|
|
/**
|
|
* legacy rt_cpus_lock. some bsp codes still use it as for it's critical
|
|
* region. Since scheduler is never touching this, here we just release it
|
|
* on the entry.
|
|
*/
|
|
rt_hw_spin_unlock(&_cpus_lock);
|
|
|
|
/* ISR will corrupt the coherency of running frame */
|
|
rt_hw_local_irq_disable();
|
|
|
|
/**
|
|
* for the accessing of the scheduler context. Noted that we don't have
|
|
* current_thread at this point
|
|
*/
|
|
_fast_spin_lock(&_mp_scheduler_lock);
|
|
|
|
/* get the thread scheduling to */
|
|
to_thread = _scheduler_get_highest_priority_thread(&highest_ready_priority);
|
|
RT_ASSERT(to_thread);
|
|
|
|
/* to_thread is picked to running on current core, so remove it from ready queue */
|
|
_sched_remove_thread_locked(to_thread);
|
|
|
|
/* dedigate current core to `to_thread` */
|
|
RT_SCHED_CTX(to_thread).oncpu = rt_hw_cpu_id();
|
|
RT_SCHED_CTX(to_thread).stat = RT_THREAD_RUNNING;
|
|
|
|
LOG_D("[cpu#%d] switch to priority#%d thread:%.*s(sp:0x%08x)",
|
|
rt_hw_cpu_id(), RT_SCHED_PRIV(to_thread).current_priority,
|
|
RT_NAME_MAX, to_thread->parent.name, to_thread->sp);
|
|
|
|
_fast_spin_unlock(&_mp_scheduler_lock);
|
|
|
|
/* switch to new thread */
|
|
rt_hw_context_switch_to((rt_ubase_t)&to_thread->sp, to_thread);
|
|
|
|
/* never come back */
|
|
}
|
|
|
|
/**
|
|
* @addtogroup Thread
|
|
* @cond
|
|
*/
|
|
|
|
/**@{*/
|
|
|
|
/**
|
|
* @brief This function will handle IPI interrupt and do a scheduling in system.
|
|
*
|
|
* @param vector is the number of IPI interrupt for system scheduling.
|
|
*
|
|
* @param param is not used, and can be set to RT_NULL.
|
|
*
|
|
* @note this function should be invoke or register as ISR in BSP.
|
|
*/
|
|
void rt_scheduler_ipi_handler(int vector, void *param)
|
|
{
|
|
rt_schedule();
|
|
}
|
|
|
|
/**
|
|
* @brief Lock the system scheduler
|
|
*
|
|
* @param plvl pointer to the object where lock level stores to
|
|
*
|
|
* @return rt_err_t RT_EOK
|
|
*/
|
|
rt_err_t rt_sched_lock(rt_sched_lock_level_t *plvl)
|
|
{
|
|
rt_base_t level;
|
|
if (!plvl)
|
|
return -RT_EINVAL;
|
|
|
|
SCHEDULER_LOCK(level);
|
|
*plvl = level;
|
|
|
|
return RT_EOK;
|
|
}
|
|
|
|
/**
|
|
* @brief Unlock the system scheduler
|
|
* @note this will not cause the scheduler to do a reschedule
|
|
*
|
|
* @param level the lock level of previous call to rt_sched_lock()
|
|
*
|
|
* @return rt_err_t RT_EOK
|
|
*/
|
|
rt_err_t rt_sched_unlock(rt_sched_lock_level_t level)
|
|
{
|
|
SCHEDULER_UNLOCK(level);
|
|
|
|
return RT_EOK;
|
|
}
|
|
|
|
rt_bool_t rt_sched_is_locked(void)
|
|
{
|
|
rt_bool_t rc;
|
|
rt_base_t level;
|
|
struct rt_cpu *pcpu;
|
|
|
|
level = rt_hw_local_irq_disable();
|
|
pcpu = rt_cpu_self();
|
|
|
|
/* get lock stat which is a boolean value */
|
|
rc = pcpu->sched_lock_flag;
|
|
|
|
rt_hw_local_irq_enable(level);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* @brief Pick the highest runnable thread, and pass the control to it
|
|
*
|
|
* @note caller should hold the scheduler context lock. lock will be released
|
|
* before return from this routine
|
|
*/
|
|
static rt_thread_t _prepare_context_switch_locked(int cpu_id,
|
|
struct rt_cpu *pcpu,
|
|
rt_thread_t current_thread)
|
|
{
|
|
rt_thread_t to_thread = RT_NULL;
|
|
rt_ubase_t highest_ready_priority;
|
|
|
|
/* quickly check if any other ready threads queuing */
|
|
if (rt_thread_ready_priority_group != 0 || pcpu->priority_group != 0)
|
|
{
|
|
/* pick the highest ready thread */
|
|
to_thread = _scheduler_get_highest_priority_thread(&highest_ready_priority);
|
|
|
|
/* detach current thread from percpu scheduling context */
|
|
RT_SCHED_CTX(current_thread).oncpu = RT_CPU_DETACHED;
|
|
|
|
/* check if current thread should be put to ready queue, or scheduling again */
|
|
if ((RT_SCHED_CTX(current_thread).stat & RT_THREAD_STAT_MASK) == RT_THREAD_RUNNING)
|
|
{
|
|
/* check if current thread can be running on current core again */
|
|
if (RT_SCHED_CTX(current_thread).bind_cpu == RT_CPUS_NR
|
|
|| RT_SCHED_CTX(current_thread).bind_cpu == cpu_id)
|
|
{
|
|
/* if current_thread is the highest runnable thread */
|
|
if (RT_SCHED_PRIV(current_thread).current_priority < highest_ready_priority)
|
|
{
|
|
to_thread = current_thread;
|
|
}
|
|
/* or no higher-priority thread existed and it has remaining ticks */
|
|
else if (RT_SCHED_PRIV(current_thread).current_priority == highest_ready_priority &&
|
|
(RT_SCHED_CTX(current_thread).stat & RT_THREAD_STAT_YIELD_MASK) == 0)
|
|
{
|
|
to_thread = current_thread;
|
|
}
|
|
/* otherwise give out the core */
|
|
else
|
|
{
|
|
_sched_insert_thread_locked(current_thread);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* put current_thread to ready queue of another core */
|
|
_sched_insert_thread_locked(current_thread);
|
|
}
|
|
|
|
/* consume the yield flags after scheduling */
|
|
RT_SCHED_CTX(current_thread).stat &= ~RT_THREAD_STAT_YIELD_MASK;
|
|
}
|
|
|
|
/**
|
|
* Now destination thread is determined, core is passed to it. Though
|
|
* the percpu scheduling context is not updated here, since the cpu
|
|
* is locked contiguously before all the scheduling works are done, it's
|
|
* safe to observe that current thread as the running thread on this
|
|
* core for any observers if they properly do the synchronization
|
|
* (take the SCHEDULER_LOCK).
|
|
*/
|
|
RT_SCHED_CTX(to_thread).oncpu = cpu_id;
|
|
|
|
/* check if context switch is required */
|
|
if (to_thread != current_thread)
|
|
{
|
|
pcpu->current_priority = (rt_uint8_t)highest_ready_priority;
|
|
|
|
RT_OBJECT_HOOK_CALL(rt_scheduler_hook, (current_thread, to_thread));
|
|
|
|
/* remove to_thread from ready queue and update its status to RUNNING */
|
|
_sched_remove_thread_locked(to_thread);
|
|
RT_SCHED_CTX(to_thread).stat = RT_THREAD_RUNNING | (RT_SCHED_CTX(to_thread).stat & ~RT_THREAD_STAT_MASK);
|
|
|
|
RT_SCHEDULER_STACK_CHECK(to_thread);
|
|
|
|
RT_OBJECT_HOOK_CALL(rt_scheduler_switch_hook, (current_thread));
|
|
}
|
|
else
|
|
{
|
|
/* current thread is still the best runnable thread */
|
|
to_thread = RT_NULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* no ready threads */
|
|
to_thread = RT_NULL;
|
|
}
|
|
|
|
return to_thread;
|
|
}
|
|
|
|
#ifdef RT_USING_SIGNALS
|
|
static void _sched_thread_preprocess_signal(struct rt_thread *current_thread)
|
|
{
|
|
/* should process signal? */
|
|
if (rt_sched_thread_is_suspended(current_thread))
|
|
{
|
|
/* if current_thread signal is in pending */
|
|
if ((RT_SCHED_CTX(current_thread).stat & RT_THREAD_STAT_SIGNAL_MASK) & RT_THREAD_STAT_SIGNAL_PENDING)
|
|
{
|
|
#ifdef RT_USING_SMART
|
|
rt_thread_wakeup(current_thread);
|
|
#else
|
|
rt_thread_resume(current_thread);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
static void _sched_thread_process_signal(struct rt_thread *current_thread)
|
|
{
|
|
rt_base_t level;
|
|
SCHEDULER_LOCK(level);
|
|
|
|
/* check stat of thread for signal */
|
|
if (RT_SCHED_CTX(current_thread).stat & RT_THREAD_STAT_SIGNAL_PENDING)
|
|
{
|
|
extern void rt_thread_handle_sig(rt_bool_t clean_state);
|
|
|
|
RT_SCHED_CTX(current_thread).stat &= ~RT_THREAD_STAT_SIGNAL_PENDING;
|
|
|
|
SCHEDULER_UNLOCK(level);
|
|
|
|
/* check signal status */
|
|
rt_thread_handle_sig(RT_TRUE);
|
|
}
|
|
else
|
|
{
|
|
SCHEDULER_UNLOCK(level);
|
|
}
|
|
|
|
/* lock is released above */
|
|
}
|
|
|
|
#define SCHED_THREAD_PREPROCESS_SIGNAL(pcpu, curthr) \
|
|
do \
|
|
{ \
|
|
SCHEDULER_CONTEXT_LOCK(pcpu); \
|
|
_sched_thread_preprocess_signal(curthr); \
|
|
SCHEDULER_CONTEXT_UNLOCK(pcpu); \
|
|
} while (0)
|
|
#define SCHED_THREAD_PREPROCESS_SIGNAL_LOCKED(curthr) \
|
|
_sched_thread_preprocess_signal(curthr)
|
|
#define SCHED_THREAD_PROCESS_SIGNAL(curthr) _sched_thread_process_signal(curthr)
|
|
|
|
#else /* ! RT_USING_SIGNALS */
|
|
|
|
#define SCHED_THREAD_PREPROCESS_SIGNAL(pcpu, curthr)
|
|
#define SCHED_THREAD_PREPROCESS_SIGNAL_LOCKED(curthr)
|
|
#define SCHED_THREAD_PROCESS_SIGNAL(curthr)
|
|
#endif /* RT_USING_SIGNALS */
|
|
|
|
rt_err_t rt_sched_unlock_n_resched(rt_sched_lock_level_t level)
|
|
{
|
|
struct rt_thread *to_thread;
|
|
struct rt_thread *current_thread;
|
|
struct rt_cpu *pcpu;
|
|
int cpu_id;
|
|
rt_err_t error = RT_EOK;
|
|
|
|
cpu_id = rt_hw_cpu_id();
|
|
pcpu = rt_cpu_index(cpu_id);
|
|
current_thread = pcpu->current_thread;
|
|
|
|
if (!current_thread)
|
|
{
|
|
/* scheduler is unavailable yet */
|
|
SCHEDULER_CONTEXT_UNLOCK(pcpu);
|
|
SCHEDULER_EXIT_CRITICAL(current_thread);
|
|
rt_hw_local_irq_enable(level);
|
|
return -RT_EBUSY;
|
|
}
|
|
|
|
/* whether do switch in interrupt */
|
|
if (rt_atomic_load(&(pcpu->irq_nest)))
|
|
{
|
|
pcpu->irq_switch_flag = 1;
|
|
SCHEDULER_CONTEXT_UNLOCK(pcpu);
|
|
SCHEDULER_EXIT_CRITICAL(current_thread);
|
|
rt_hw_local_irq_enable(level);
|
|
return -RT_ESCHEDISR;
|
|
}
|
|
|
|
/* prepare current_thread for processing if signals existed */
|
|
SCHED_THREAD_PREPROCESS_SIGNAL_LOCKED(current_thread);
|
|
|
|
/* whether caller had locked the local scheduler already */
|
|
if (RT_SCHED_CTX(current_thread).critical_lock_nest > 1)
|
|
{
|
|
/* leaving critical region of global context since we can't schedule */
|
|
SCHEDULER_CONTEXT_UNLOCK(pcpu);
|
|
|
|
pcpu->critical_switch_flag = 1;
|
|
error = -RT_ESCHEDLOCKED;
|
|
|
|
SCHEDULER_EXIT_CRITICAL(current_thread);
|
|
}
|
|
else
|
|
{
|
|
/* flush critical switch flag since a scheduling is done */
|
|
pcpu->critical_switch_flag = 0;
|
|
|
|
/* pick the highest runnable thread, and pass the control to it */
|
|
to_thread = _prepare_context_switch_locked(cpu_id, pcpu, current_thread);
|
|
if (to_thread)
|
|
{
|
|
/* switch to new thread */
|
|
LOG_D("[cpu#%d] UNLOCK switch to priority#%d "
|
|
"thread:%.*s(sp:0x%08x), "
|
|
"from thread:%.*s(sp: 0x%08x)",
|
|
cpu_id, RT_SCHED_PRIV(to_thread).current_priority,
|
|
RT_NAME_MAX, to_thread->parent.name, to_thread->sp,
|
|
RT_NAME_MAX, current_thread->parent.name, current_thread->sp);
|
|
|
|
rt_hw_context_switch((rt_ubase_t)¤t_thread->sp,
|
|
(rt_ubase_t)&to_thread->sp, to_thread);
|
|
}
|
|
else
|
|
{
|
|
SCHEDULER_CONTEXT_UNLOCK(pcpu);
|
|
SCHEDULER_EXIT_CRITICAL(current_thread);
|
|
}
|
|
}
|
|
|
|
/* leaving critical region of percpu scheduling context */
|
|
rt_hw_local_irq_enable(level);
|
|
|
|
/* process signals on thread if any existed */
|
|
SCHED_THREAD_PROCESS_SIGNAL(current_thread);
|
|
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* @brief This function will perform one scheduling. It will select one thread
|
|
* with the highest priority level in global ready queue or local ready queue,
|
|
* then switch to it.
|
|
*/
|
|
void rt_schedule(void)
|
|
{
|
|
rt_base_t level;
|
|
struct rt_thread *to_thread;
|
|
struct rt_thread *current_thread;
|
|
struct rt_cpu *pcpu;
|
|
int cpu_id;
|
|
|
|
/* enter ciritical region of percpu scheduling context */
|
|
level = rt_hw_local_irq_disable();
|
|
|
|
/* get percpu scheduling context */
|
|
cpu_id = rt_hw_cpu_id();
|
|
pcpu = rt_cpu_index(cpu_id);
|
|
current_thread = pcpu->current_thread;
|
|
|
|
/* whether do switch in interrupt */
|
|
if (rt_atomic_load(&(pcpu->irq_nest)))
|
|
{
|
|
pcpu->irq_switch_flag = 1;
|
|
rt_hw_local_irq_enable(level);
|
|
return ; /* -RT_ESCHEDISR */
|
|
}
|
|
|
|
/* forbid any recursive entries of schedule() */
|
|
SCHEDULER_ENTER_CRITICAL(current_thread);
|
|
|
|
/* prepare current_thread for processing if signals existed */
|
|
SCHED_THREAD_PREPROCESS_SIGNAL(pcpu, current_thread);
|
|
|
|
/* whether caller had locked the local scheduler already */
|
|
if (RT_SCHED_CTX(current_thread).critical_lock_nest > 1)
|
|
{
|
|
pcpu->critical_switch_flag = 1;
|
|
|
|
SCHEDULER_EXIT_CRITICAL(current_thread);
|
|
|
|
/* -RT_ESCHEDLOCKED */
|
|
}
|
|
else
|
|
{
|
|
/* flush critical switch flag since a scheduling is done */
|
|
pcpu->critical_switch_flag = 0;
|
|
pcpu->irq_switch_flag = 0;
|
|
|
|
/**
|
|
* take the context lock before we do the real scheduling works. Context
|
|
* lock will be released before returning from this _schedule_locked()
|
|
*/
|
|
SCHEDULER_CONTEXT_LOCK(pcpu);
|
|
|
|
/* pick the highest runnable thread, and pass the control to it */
|
|
to_thread = _prepare_context_switch_locked(cpu_id, pcpu, current_thread);
|
|
|
|
if (to_thread)
|
|
{
|
|
LOG_D("[cpu#%d] switch to priority#%d "
|
|
"thread:%.*s(sp:0x%08x), "
|
|
"from thread:%.*s(sp: 0x%08x)",
|
|
cpu_id, RT_SCHED_PRIV(to_thread).current_priority,
|
|
RT_NAME_MAX, to_thread->parent.name, to_thread->sp,
|
|
RT_NAME_MAX, current_thread->parent.name, current_thread->sp);
|
|
|
|
rt_hw_context_switch((rt_ubase_t)¤t_thread->sp,
|
|
(rt_ubase_t)&to_thread->sp, to_thread);
|
|
}
|
|
else
|
|
{
|
|
/* current thread continue to take the core */
|
|
SCHEDULER_CONTEXT_UNLOCK(pcpu);
|
|
SCHEDULER_EXIT_CRITICAL(current_thread);
|
|
}
|
|
}
|
|
|
|
/* leaving critical region of percpu scheduling context */
|
|
rt_hw_local_irq_enable(level);
|
|
|
|
/* process signals on thread if any existed */
|
|
SCHED_THREAD_PROCESS_SIGNAL(current_thread);
|
|
}
|
|
|
|
/**
|
|
* @brief This function checks whether a scheduling is needed after an IRQ context switching. If yes,
|
|
* it will select one thread with the highest priority level, and then switch
|
|
* to it.
|
|
*/
|
|
void rt_scheduler_do_irq_switch(void *context)
|
|
{
|
|
int cpu_id;
|
|
rt_base_t level;
|
|
struct rt_cpu *pcpu;
|
|
struct rt_thread *to_thread;
|
|
struct rt_thread *current_thread;
|
|
|
|
level = rt_hw_local_irq_disable();
|
|
|
|
cpu_id = rt_hw_cpu_id();
|
|
pcpu = rt_cpu_index(cpu_id);
|
|
current_thread = pcpu->current_thread;
|
|
|
|
/* forbid any recursive entries of schedule() */
|
|
SCHEDULER_ENTER_CRITICAL(current_thread);
|
|
|
|
SCHED_THREAD_PREPROCESS_SIGNAL(pcpu, current_thread);
|
|
|
|
/* any pending scheduling existed? */
|
|
if (pcpu->irq_switch_flag == 0)
|
|
{
|
|
/* if no, just continue execution of current_thread */
|
|
SCHEDULER_EXIT_CRITICAL(current_thread);
|
|
rt_hw_local_irq_enable(level);
|
|
return;
|
|
}
|
|
|
|
/* whether caller had locked the local scheduler already */
|
|
if (RT_SCHED_CTX(current_thread).critical_lock_nest > 1)
|
|
{
|
|
pcpu->critical_switch_flag = 1;
|
|
SCHEDULER_EXIT_CRITICAL(current_thread);
|
|
}
|
|
else if (rt_atomic_load(&(pcpu->irq_nest)) == 0)
|
|
{
|
|
/* flush critical & irq switch flag since a scheduling is done */
|
|
pcpu->critical_switch_flag = 0;
|
|
pcpu->irq_switch_flag = 0;
|
|
|
|
SCHEDULER_CONTEXT_LOCK(pcpu);
|
|
|
|
/* pick the highest runnable thread, and pass the control to it */
|
|
to_thread = _prepare_context_switch_locked(cpu_id, pcpu, current_thread);
|
|
if (to_thread)
|
|
{
|
|
LOG_D("[cpu#%d] IRQ switch to priority#%d "
|
|
"thread:%.*s(sp:0x%08x), "
|
|
"from thread:%.*s(sp: 0x%08x)",
|
|
cpu_id, RT_SCHED_PRIV(to_thread).current_priority,
|
|
RT_NAME_MAX, to_thread->parent.name, to_thread->sp,
|
|
RT_NAME_MAX, current_thread->parent.name, current_thread->sp);
|
|
|
|
rt_hw_context_switch_interrupt(context, (rt_ubase_t)¤t_thread->sp,
|
|
(rt_ubase_t)&to_thread->sp, to_thread);
|
|
}
|
|
else
|
|
{
|
|
/* current thread continue to take the core */
|
|
SCHEDULER_CONTEXT_UNLOCK(pcpu);
|
|
SCHEDULER_EXIT_CRITICAL(current_thread);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
SCHEDULER_EXIT_CRITICAL(current_thread);
|
|
}
|
|
|
|
/* leaving critical region of percpu scheduling context */
|
|
rt_hw_local_irq_enable(level);
|
|
}
|
|
|
|
/**
|
|
* @brief This function will insert a thread to the system ready queue. The state of
|
|
* thread will be set as READY and the thread will be removed from suspend queue.
|
|
*
|
|
* @param thread is the thread to be inserted.
|
|
*
|
|
* @note Please do not invoke this function in user application.
|
|
* Caller must hold the scheduler lock
|
|
*/
|
|
void rt_sched_insert_thread(struct rt_thread *thread)
|
|
{
|
|
RT_ASSERT(thread != RT_NULL);
|
|
RT_SCHED_DEBUG_IS_LOCKED;
|
|
|
|
/* set READY and insert thread to ready queue */
|
|
_sched_insert_thread_locked(thread);
|
|
}
|
|
|
|
/**
|
|
* @brief This function will remove a thread from system ready queue.
|
|
*
|
|
* @param thread is the thread to be removed.
|
|
*
|
|
* @note Please do not invoke this function in user application.
|
|
*/
|
|
void rt_sched_remove_thread(struct rt_thread *thread)
|
|
{
|
|
RT_ASSERT(thread != RT_NULL);
|
|
RT_SCHED_DEBUG_IS_LOCKED;
|
|
|
|
/* remove thread from scheduler ready list */
|
|
_sched_remove_thread_locked(thread);
|
|
}
|
|
|
|
/* thread status initialization and setting up on startup */
|
|
|
|
void rt_sched_thread_init_priv(struct rt_thread *thread, rt_uint32_t tick, rt_uint8_t priority)
|
|
{
|
|
rt_list_init(&RT_THREAD_LIST_NODE(thread));
|
|
|
|
/* priority init */
|
|
RT_ASSERT(priority < RT_THREAD_PRIORITY_MAX);
|
|
RT_SCHED_PRIV(thread).init_priority = priority;
|
|
RT_SCHED_PRIV(thread).current_priority = priority;
|
|
|
|
/* don't add to scheduler queue as init thread */
|
|
RT_SCHED_PRIV(thread).number_mask = 0;
|
|
#if RT_THREAD_PRIORITY_MAX > 32
|
|
RT_SCHED_PRIV(thread).number = 0;
|
|
RT_SCHED_PRIV(thread).high_mask = 0;
|
|
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
|
|
|
|
/* tick init */
|
|
RT_SCHED_PRIV(thread).init_tick = tick;
|
|
RT_SCHED_PRIV(thread).remaining_tick = tick;
|
|
|
|
#ifdef RT_USING_SMP
|
|
|
|
/* lock init */
|
|
RT_SCHED_CTX(thread).critical_lock_nest = 0;
|
|
#endif /* RT_USING_SMP */
|
|
|
|
}
|
|
|
|
/* Normally, there isn't anyone racing with us so this operation is lockless */
|
|
void rt_sched_thread_startup(struct rt_thread *thread)
|
|
{
|
|
#if RT_THREAD_PRIORITY_MAX > 32
|
|
RT_SCHED_PRIV(thread).number = RT_SCHED_PRIV(thread).current_priority >> 3; /* 5bit */
|
|
RT_SCHED_PRIV(thread).number_mask = 1L << RT_SCHED_PRIV(thread).number;
|
|
RT_SCHED_PRIV(thread).high_mask = 1L << (RT_SCHED_PRIV(thread).current_priority & 0x07); /* 3bit */
|
|
#else
|
|
RT_SCHED_PRIV(thread).number_mask = 1L << RT_SCHED_PRIV(thread).current_priority;
|
|
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
|
|
|
|
/* change thread stat, so we can resume it */
|
|
RT_SCHED_CTX(thread).stat = RT_THREAD_SUSPEND;
|
|
}
|
|
|
|
/**
|
|
* @brief Update scheduling status of thread. this operation is taken as an
|
|
* atomic operation of the update of SP. Since the local irq is disabled,
|
|
* it's okay to assume that the stack will not be modified meanwhile.
|
|
*/
|
|
void rt_sched_post_ctx_switch(struct rt_thread *thread)
|
|
{
|
|
struct rt_cpu* pcpu = rt_cpu_self();
|
|
rt_thread_t from_thread = pcpu->current_thread;
|
|
|
|
RT_ASSERT(rt_hw_interrupt_is_disabled());
|
|
|
|
if (from_thread)
|
|
{
|
|
RT_ASSERT(RT_SCHED_CTX(from_thread).critical_lock_nest == 1);
|
|
|
|
/* release the scheduler lock since we are done with critical region */
|
|
RT_SCHED_CTX(from_thread).critical_lock_nest = 0;
|
|
SCHEDULER_CONTEXT_UNLOCK(pcpu);
|
|
}
|
|
/* safe to access since irq is masked out */
|
|
pcpu->current_thread = thread;
|
|
}
|
|
|
|
#ifdef RT_USING_DEBUG
|
|
|
|
static volatile int _critical_error_occurred = 0;
|
|
|
|
void rt_exit_critical_safe(rt_base_t critical_level)
|
|
{
|
|
struct rt_cpu *pcpu = rt_cpu_self();
|
|
rt_thread_t current_thread = pcpu->current_thread;
|
|
if (current_thread && !_critical_error_occurred)
|
|
{
|
|
if (critical_level != RT_SCHED_CTX(current_thread).critical_lock_nest)
|
|
{
|
|
int dummy = 1;
|
|
_critical_error_occurred = 1;
|
|
|
|
rt_kprintf("%s: un-compatible critical level\n" \
|
|
"\tCurrent %d\n\tCaller %d\n",
|
|
__func__, RT_SCHED_CTX(current_thread).critical_lock_nest,
|
|
critical_level);
|
|
rt_backtrace();
|
|
|
|
while (dummy) ;
|
|
}
|
|
}
|
|
rt_exit_critical();
|
|
}
|
|
|
|
#else
|
|
|
|
void rt_exit_critical_safe(rt_base_t critical_level)
|
|
{
|
|
return rt_exit_critical();
|
|
}
|
|
|
|
#endif
|
|
RTM_EXPORT(rt_exit_critical_safe);
|
|
|
|
/**
|
|
* @brief This function will lock the thread scheduler.
|
|
*/
|
|
rt_base_t rt_enter_critical(void)
|
|
{
|
|
rt_base_t level;
|
|
rt_base_t critical_level;
|
|
struct rt_thread *current_thread;
|
|
struct rt_cpu *pcpu;
|
|
|
|
/* disable interrupt */
|
|
level = rt_hw_local_irq_disable();
|
|
|
|
pcpu = rt_cpu_self();
|
|
current_thread = pcpu->current_thread;
|
|
if (!current_thread)
|
|
{
|
|
rt_hw_local_irq_enable(level);
|
|
/* scheduler unavailable */
|
|
return -RT_EINVAL;
|
|
}
|
|
|
|
/* critical for local cpu */
|
|
RT_SCHED_CTX(current_thread).critical_lock_nest++;
|
|
critical_level = RT_SCHED_CTX(current_thread).critical_lock_nest;
|
|
|
|
/* enable interrupt */
|
|
rt_hw_local_irq_enable(level);
|
|
|
|
return critical_level;
|
|
}
|
|
RTM_EXPORT(rt_enter_critical);
|
|
|
|
/**
|
|
* @brief This function will unlock the thread scheduler.
|
|
*/
|
|
void rt_exit_critical(void)
|
|
{
|
|
rt_base_t level;
|
|
struct rt_thread *current_thread;
|
|
rt_bool_t need_resched;
|
|
struct rt_cpu *pcpu;
|
|
|
|
/* disable interrupt */
|
|
level = rt_hw_local_irq_disable();
|
|
|
|
pcpu = rt_cpu_self();
|
|
current_thread = pcpu->current_thread;
|
|
if (!current_thread)
|
|
{
|
|
rt_hw_local_irq_enable(level);
|
|
return;
|
|
}
|
|
|
|
/* the necessary memory barrier is done on irq_(dis|en)able */
|
|
RT_SCHED_CTX(current_thread).critical_lock_nest--;
|
|
|
|
/* may need a rescheduling */
|
|
if (RT_SCHED_CTX(current_thread).critical_lock_nest == 0)
|
|
{
|
|
/* is there any scheduling request unfinished? */
|
|
need_resched = pcpu->critical_switch_flag;
|
|
pcpu->critical_switch_flag = 0;
|
|
|
|
/* enable interrupt */
|
|
rt_hw_local_irq_enable(level);
|
|
|
|
if (need_resched)
|
|
rt_schedule();
|
|
}
|
|
else
|
|
{
|
|
/* each exit_critical is strictly corresponding to an enter_critical */
|
|
RT_ASSERT(RT_SCHED_CTX(current_thread).critical_lock_nest > 0);
|
|
|
|
/* enable interrupt */
|
|
rt_hw_local_irq_enable(level);
|
|
}
|
|
}
|
|
RTM_EXPORT(rt_exit_critical);
|
|
|
|
/**
|
|
* @brief Get the scheduler lock level.
|
|
*
|
|
* @return the level of the scheduler lock. 0 means unlocked.
|
|
*/
|
|
rt_uint16_t rt_critical_level(void)
|
|
{
|
|
rt_base_t level;
|
|
rt_uint16_t critical_lvl;
|
|
struct rt_thread *current_thread;
|
|
|
|
level = rt_hw_local_irq_disable();
|
|
|
|
current_thread = rt_cpu_self()->current_thread;
|
|
|
|
if (current_thread)
|
|
{
|
|
/* the necessary memory barrier is done on irq_(dis|en)able */
|
|
critical_lvl = RT_SCHED_CTX(current_thread).critical_lock_nest;
|
|
}
|
|
else
|
|
{
|
|
critical_lvl = 0;
|
|
}
|
|
|
|
rt_hw_local_irq_enable(level);
|
|
return critical_lvl;
|
|
}
|
|
RTM_EXPORT(rt_critical_level);
|
|
|
|
rt_err_t rt_sched_thread_bind_cpu(struct rt_thread *thread, int cpu)
|
|
{
|
|
rt_sched_lock_level_t slvl;
|
|
rt_uint8_t thread_stat;
|
|
|
|
RT_SCHED_DEBUG_IS_UNLOCKED;
|
|
|
|
if (cpu >= RT_CPUS_NR)
|
|
{
|
|
cpu = RT_CPUS_NR;
|
|
}
|
|
|
|
rt_sched_lock(&slvl);
|
|
|
|
thread_stat = rt_sched_thread_get_stat(thread);
|
|
|
|
if (thread_stat == RT_THREAD_READY)
|
|
{
|
|
/* unbind */
|
|
/* remove from old ready queue */
|
|
rt_sched_remove_thread(thread);
|
|
/* change thread bind cpu */
|
|
RT_SCHED_CTX(thread).bind_cpu = cpu;
|
|
/* add to new ready queue */
|
|
rt_sched_insert_thread(thread);
|
|
|
|
if (rt_thread_self() != RT_NULL)
|
|
{
|
|
rt_sched_unlock_n_resched(slvl);
|
|
}
|
|
else
|
|
{
|
|
rt_sched_unlock(slvl);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
RT_SCHED_CTX(thread).bind_cpu = cpu;
|
|
if (thread_stat == RT_THREAD_RUNNING)
|
|
{
|
|
/* thread is running on a cpu */
|
|
int current_cpu = rt_hw_cpu_id();
|
|
|
|
if (cpu != RT_CPUS_NR)
|
|
{
|
|
if (RT_SCHED_CTX(thread).oncpu == current_cpu)
|
|
{
|
|
/* current thread on current cpu */
|
|
if (cpu != current_cpu)
|
|
{
|
|
/* bind to other cpu */
|
|
rt_hw_ipi_send(RT_SCHEDULE_IPI, 1U << cpu);
|
|
/* self cpu need reschedule */
|
|
rt_sched_unlock_n_resched(slvl);
|
|
}
|
|
else
|
|
{
|
|
/* else do nothing */
|
|
rt_sched_unlock(slvl);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* no running on self cpu, but dest cpu can be itself */
|
|
rt_hw_ipi_send(RT_SCHEDULE_IPI, 1U << RT_SCHED_CTX(thread).oncpu);
|
|
rt_sched_unlock(slvl);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* else do nothing */
|
|
rt_sched_unlock(slvl);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
rt_sched_unlock(slvl);
|
|
}
|
|
}
|
|
|
|
return RT_EOK;
|
|
}
|
|
|
|
/**@}*/
|
|
/**@endcond*/
|