rt-thread/components/drivers/sensor/sensor_cmd.c

800 lines
28 KiB
C

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-01-31 flybreak first version
* 2019-07-16 WillianChan Increase the output of sensor information
* 2020-02-22 luhuadong Add vendor info and sensor types for cmd
* 2022-12-17 Meco Man re-implement sensor framework
*/
#include <drivers/sensor.h>
#define DBG_TAG "sensor.cmd"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#include <stdlib.h>
#include <string.h>
static rt_sem_t sensor_rx_sem = RT_NULL;
static const char *sensor_get_type_name(rt_sensor_info_t info)
{
switch(info->type)
{
case RT_SENSOR_TYPE_ACCE:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_ACCE);
case RT_SENSOR_TYPE_GYRO:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_GYRO);
case RT_SENSOR_TYPE_MAG:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_MAG);
case RT_SENSOR_TYPE_TEMP:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_TEMP);
case RT_SENSOR_TYPE_HUMI:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_HUMI);
case RT_SENSOR_TYPE_BARO:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_BARO);
case RT_SENSOR_TYPE_LIGHT:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_LIGHT);
case RT_SENSOR_TYPE_PROXIMITY:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_PROXIMITY);
case RT_SENSOR_TYPE_HR:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_HR);
case RT_SENSOR_TYPE_TVOC:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_TVOC);
case RT_SENSOR_TYPE_NOISE:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_NOISE);
case RT_SENSOR_TYPE_STEP:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_STEP);
case RT_SENSOR_TYPE_FORCE:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_FORCE);
case RT_SENSOR_TYPE_DUST:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_DUST);
case RT_SENSOR_TYPE_ECO2:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_ECO2);
case RT_SENSOR_TYPE_GNSS:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_GNSS);
case RT_SENSOR_TYPE_TOF:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_TOF);
case RT_SENSOR_TYPE_SPO2:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_SPO2);
case RT_SENSOR_TYPE_IAQ:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_IAQ);
case RT_SENSOR_TYPE_ETOH:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_ETOH);
case RT_SENSOR_TYPE_BP:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_BP);
case RT_SENSOR_TYPE_VOLTAGE:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_VOLTAGE);
case RT_SENSOR_TYPE_CURRENT:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_CURRENT);
case RT_SENSOR_TYPE_NONE:
default:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_NONE);
}
}
static const char *sensor_get_vendor_name(rt_sensor_info_t info)
{
switch(info->vendor)
{
case RT_SENSOR_VENDOR_VIRTUAL:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_VIRTUAL);
case RT_SENSOR_VENDOR_ONCHIP:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_ONCHIP);
case RT_SENSOR_VENDOR_STM:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_STM);
case RT_SENSOR_VENDOR_BOSCH:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_BOSCH);
case RT_SENSOR_VENDOR_INVENSENSE:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_INVENSENSE);
case RT_SENSOR_VENDOR_SEMTECH:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_SEMTECH);
case RT_SENSOR_VENDOR_GOERTEK:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_GOERTEK);
case RT_SENSOR_VENDOR_MIRAMEMS:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_MIRAMEMS);
case RT_SENSOR_VENDOR_DALLAS:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_DALLAS);
case RT_SENSOR_VENDOR_ASAIR:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_ASAIR);
case RT_SENSOR_VENDOR_SHARP:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_SHARP);
case RT_SENSOR_VENDOR_SENSIRION:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_SENSIRION);
case RT_SENSOR_VENDOR_TI:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_TI);
case RT_SENSOR_VENDOR_PLANTOWER:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_PLANTOWER);
case RT_SENSOR_VENDOR_AMS:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_AMS);
case RT_SENSOR_VENDOR_MAXIM:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_MAXIM);
case RT_SENSOR_VENDOR_MELEXIS:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_MELEXIS);
case RT_SENSOR_VENDOR_LSC:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_LSC);
case RT_SENSOR_VENDOR_UNKNOWN:
default:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_UNKNOWN);
}
}
static const char *sensor_get_unit_name(rt_sensor_info_t info)
{
switch(info->unit)
{
case RT_SENSOR_UNIT_MG:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MG);
case RT_SENSOR_UNIT_MDPS:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MDPS);
case RT_SENSOR_UNIT_MGAUSS:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MGAUSS);
case RT_SENSOR_UNIT_LUX:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_LUX);
case RT_SENSOR_UNIT_M:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_M);
case RT_SENSOR_UNIT_CM:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_CM);
case RT_SENSOR_UNIT_MM:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MM);
case RT_SENSOR_UNIT_PA:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PA);
case RT_SENSOR_UNIT_MMHG:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MMHG);
case RT_SENSOR_UNIT_PERCENTAGE:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PERCENTAGE);
case RT_SENSOR_UNIT_PERMILLAGE:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PERMILLAGE);
case RT_SENSOR_UNIT_CELSIUS:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_CELSIUS);
case RT_SENSOR_UNIT_FAHRENHEIT:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_FAHRENHEIT);
case RT_SENSOR_UNIT_KELVIN:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_KELVIN);
case RT_SENSOR_UNIT_HZ:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_HZ);
case RT_SENSOR_UNIT_V:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_V);
case RT_SENSOR_UNIT_MV:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MV);
case RT_SENSOR_UNIT_A:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_A);
case RT_SENSOR_UNIT_MA:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MA);
case RT_SENSOR_UNIT_N:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_N);
case RT_SENSOR_UNIT_MN:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MN);
case RT_SENSOR_UNIT_BPM:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_BPM);
case RT_SENSOR_UNIT_PPM:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PPM);
case RT_SENSOR_UNIT_PPB:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PPB);
case RT_SENSOR_UNIT_DMS:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_DMS);
case RT_SENSOR_UNIT_DD:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_DD);
case RT_SENSOR_UNIT_MGM3:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MGM3);
case RT_SENSOR_UNIT_NONE:
default:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_NONE);
}
}
static const char* sensor_get_accuracy_mode_name(rt_sensor_info_t info)
{
switch(RT_SENSOR_MODE_GET_ACCURACY(info->mode))
{
case RT_SENSOR_MODE_ACCURACY_HIGHEST:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_HIGHEST);
case RT_SENSOR_MODE_ACCURACY_HIGH:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_HIGH);
case RT_SENSOR_MODE_ACCURACY_MEDIUM:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_MEDIUM);
case RT_SENSOR_MODE_ACCURACY_LOW:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_LOW);
case RT_SENSOR_MODE_ACCURACY_LOWEST:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_LOWEST);
case RT_SENSOR_MODE_ACCURACY_NOTRUST:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_NOTRUST);
default:
rt_kprintf("accuracy mode illegal!\n");
return "";
}
}
static const char* sensor_get_power_mode_name(rt_sensor_info_t info)
{
switch(RT_SENSOR_MODE_GET_POWER(info->mode))
{
case RT_SENSOR_MODE_POWER_HIGHEST:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_HIGHEST);
case RT_SENSOR_MODE_POWER_HIGH:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_HIGH);
case RT_SENSOR_MODE_POWER_MEDIUM:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_MEDIUM);
case RT_SENSOR_MODE_POWER_LOW:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_LOW);
case RT_SENSOR_MODE_POWER_LOWEST:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_LOWEST);
case RT_SENSOR_MODE_POWER_DOWN:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_DOWN);
default:
rt_kprintf("power mode illegal!\n");
return "";
}
}
static const char* sensor_get_fetch_mode_name(rt_sensor_info_t info)
{
switch(RT_SENSOR_MODE_GET_FETCH(info->mode))
{
case RT_SENSOR_MODE_FETCH_POLLING:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_FETCH_POLLING);
case RT_SENSOR_MODE_FETCH_INT:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_FETCH_INT);
case RT_SENSOR_MODE_FETCH_FIFO:
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_FETCH_FIFO);
default:
rt_kprintf("fetch data mode illegal!\n");
return "";
}
}
static void sensor_show_data(rt_size_t num, rt_sensor_t sensor, struct rt_sensor_data *sensor_data)
{
const char *unit_name = sensor_get_unit_name(&sensor->info);
switch (sensor->info.type)
{
case RT_SENSOR_TYPE_ACCE:
rt_kprintf("num:%d, x:%f, y:%f, z:%f %s, timestamp:%u\n", num, sensor_data->data.acce.x, sensor_data->data.acce.y, sensor_data->data.acce.z, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_GYRO:
rt_kprintf("num:%d, x:%f, y:%f, z:%f %s, timestamp:%u\n", num, sensor_data->data.gyro.x, sensor_data->data.gyro.y, sensor_data->data.gyro.z, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_MAG:
rt_kprintf("num:%d, x:%f, y:%f, z:%f %s, timestamp:%u\n", num, sensor_data->data.mag.x, sensor_data->data.mag.y, sensor_data->data.mag.z, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_GNSS:
rt_kprintf("num:%d, lon:%f, lat:%f %s, timestamp:%u\n", num, sensor_data->data.coord.longitude, sensor_data->data.coord.latitude, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_TEMP:
rt_kprintf("num:%d, temp:%f%s, timestamp:%u\n", num, sensor_data->data.temp, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_HUMI:
rt_kprintf("num:%d, humi:%f%s, timestamp:%u\n", num, sensor_data->data.humi, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_BARO:
rt_kprintf("num:%d, press:%f%s, timestamp:%u\n", num, sensor_data->data.baro, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_LIGHT:
rt_kprintf("num:%d, light:%f%s, timestamp:%u\n", num, sensor_data->data.light, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_PROXIMITY:
case RT_SENSOR_TYPE_TOF:
rt_kprintf("num:%d, distance:%f%s, timestamp:%u\n", num, sensor_data->data.proximity, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_HR:
rt_kprintf("num:%d, heart rate:%f%s, timestamp:%u\n", num, sensor_data->data.hr, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_TVOC:
rt_kprintf("num:%d, tvoc:%f%s, timestamp:%u\n", num, sensor_data->data.tvoc, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_NOISE:
rt_kprintf("num:%d, noise:%f%s, timestamp:%u\n", num, sensor_data->data.noise, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_STEP:
rt_kprintf("num:%d, step:%f%s, timestamp:%u\n", num, sensor_data->data.step, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_FORCE:
rt_kprintf("num:%d, force:%f%s, timestamp:%u\n", num, sensor_data->data.force, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_DUST:
rt_kprintf("num:%d, dust:%f%s, timestamp:%u\n", num, sensor_data->data.dust, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_ECO2:
rt_kprintf("num:%d, eco2:%f%s, timestamp:%u\n", num, sensor_data->data.eco2, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_IAQ:
rt_kprintf("num:%d, IAQ:%f%s, timestamp:%u\n", num, sensor_data->data.iaq, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_ETOH:
rt_kprintf("num:%d, EtOH:%f%s, timestamp:%u\n", num, sensor_data->data.etoh, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_BP:
rt_kprintf("num:%d, bp.sbp:%f, bp.dbp:%f %s, timestamp:%u\n", num, sensor_data->data.bp.sbp, sensor_data->data.bp.dbp, unit_name, sensor_data->timestamp);
break;
case RT_SENSOR_TYPE_NONE:
default:
rt_kprintf("Unknown type of sensor!\n");
break;
}
}
static const char* sensor_get_intf_name(rt_sensor_t sensor)
{
rt_uint8_t type = sensor->config.intf.type;
if (type | RT_SENSOR_INTF_I2C)
{
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_I2C);
}
else if (type | RT_SENSOR_INTF_SPI)
{
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_SPI);
}
else if (type | RT_SENSOR_INTF_UART)
{
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_UART);
}
else if (type | RT_SENSOR_INTF_ONEWIRE)
{
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_ONEWIRE);
}
else if (type | RT_SENSOR_INTF_CAN)
{
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_CAN);
}
else if (type | RT_SENSOR_INTF_MODBUS)
{
return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_MODBUS);
}
else
{
return "";
}
}
static rt_err_t rx_callback(rt_device_t dev, rt_size_t size)
{
rt_sem_release(sensor_rx_sem);
return 0;
}
static void sensor_fifo_rx_entry(void *parameter)
{
rt_sensor_t sensor = (rt_sensor_t)parameter;
struct rt_sensor_data *data = RT_NULL;
rt_size_t res, i;
data = (struct rt_sensor_data *)rt_calloc(sensor->info.fifo_max, sizeof(struct rt_sensor_data));
if (data == RT_NULL)
{
LOG_E("Memory allocation failed!");
}
while (1)
{
rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
res = rt_device_read((rt_device_t)sensor, 0, data, sensor->info.fifo_max);
for (i = 0; i < res; i++)
{
sensor_show_data(i, sensor, &data[i]);
}
}
}
static void sensor_fifo(int argc, char **argv)
{
static rt_thread_t tid1 = RT_NULL;
rt_device_t dev = RT_NULL;
rt_sensor_t sensor;
dev = rt_device_find(argv[1]);
if (dev == RT_NULL)
{
LOG_E("Can't find device:%s", argv[1]);
return;
}
sensor = (rt_sensor_t)dev;
if (rt_device_open(dev, RT_DEVICE_FLAG_FIFO_RX) != RT_EOK)
{
LOG_E("open device failed!");
return;
}
if (sensor_rx_sem == RT_NULL)
{
sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
}
else
{
LOG_E("The thread is running, please reboot and try again");
return;
}
tid1 = rt_thread_create("sen_rx_thread",
sensor_fifo_rx_entry, sensor,
1024,
15, 5);
if (tid1 != RT_NULL)
rt_thread_startup(tid1);
rt_device_set_rx_indicate(dev, rx_callback);
}
MSH_CMD_EXPORT(sensor_fifo, Sensor fifo mode test function);
static void sensor_irq_rx_entry(void *parameter)
{
rt_device_t dev = (rt_device_t)parameter;
rt_sensor_t sensor = (rt_sensor_t)parameter;
struct rt_sensor_data data;
rt_size_t res, i = 0;
while (1)
{
rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
res = rt_device_read(dev, 0, &data, 1);
if (res == 1)
{
sensor_show_data(i++, sensor, &data);
}
}
}
static void sensor_int(int argc, char **argv)
{
static rt_thread_t tid1 = RT_NULL;
rt_device_t dev = RT_NULL;
rt_sensor_t sensor;
dev = rt_device_find(argv[1]);
if (dev == RT_NULL)
{
LOG_E("Can't find device:%s", argv[1]);
return;
}
sensor = (rt_sensor_t)dev;
if (sensor_rx_sem == RT_NULL)
{
sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
}
else
{
LOG_E("The thread is running, please reboot and try again");
return;
}
tid1 = rt_thread_create("sen_rx_thread",
sensor_irq_rx_entry, sensor,
1024,
15, 5);
if (tid1 != RT_NULL)
rt_thread_startup(tid1);
rt_device_set_rx_indicate(dev, rx_callback);
if (rt_device_open(dev, RT_DEVICE_FLAG_INT_RX) != RT_EOK)
{
LOG_E("open device failed!");
return;
}
}
MSH_CMD_EXPORT(sensor_int, Sensor interrupt mode test function);
static void sensor_polling(int argc, char **argv)
{
rt_uint16_t num = 10;
rt_device_t dev = RT_NULL;
rt_sensor_t sensor;
struct rt_sensor_data data;
rt_size_t res, i;
rt_int32_t delay;
rt_err_t result;
dev = rt_device_find(argv[1]);
if (dev == RT_NULL)
{
LOG_E("Can't find device:%s", argv[1]);
return;
}
if (argc > 2)
num = atoi(argv[2]);
sensor = (rt_sensor_t)dev;
delay = sensor->info.acquire_min > 100 ? sensor->info.acquire_min : 100;
result = rt_device_open(dev, RT_DEVICE_FLAG_RDONLY);
if (result != RT_EOK)
{
LOG_E("open device failed! error code : %d", result);
return;
}
for (i = 0; i < num; i++)
{
res = rt_device_read(dev, 0, &data, 1);
if (res != 1)
{
LOG_E("read data failed!size is %d", res);
}
else
{
sensor_show_data(i, sensor, &data);
}
rt_thread_mdelay(delay);
}
rt_device_close(dev);
}
MSH_CMD_EXPORT(sensor_polling, Sensor polling mode test function);
static void sensor_cmd_warning_unknown(void)
{
LOG_W("Unknown command, please enter 'sensor' get help information!");
rt_kprintf("sensor [OPTION] [PARAM]\n");
rt_kprintf(" list list all sensor devices\n");
rt_kprintf(" probe <dev_name> probe sensor by given name\n");
rt_kprintf(" info get sensor information\n");
rt_kprintf(" read [num] read [num] times sensor (default 5)\n");
rt_kprintf(" power [mode] set or get power mode\n");
rt_kprintf(" accuracy [mode] set or get accuracy mode\n");
rt_kprintf(" fetch [mode] set or get fetch data mode\n");
rt_kprintf(" reset reset sensor chip\n");
}
static void sensor_cmd_warning_probe(void)
{
LOG_W("Please probe sensor device first!");
}
static void sensor(int argc, char **argv)
{
static rt_device_t dev = RT_NULL;
struct rt_sensor_data data;
rt_sensor_t sensor;
rt_size_t res, i;
rt_int32_t delay;
/* If the number of arguments less than 2 */
if (argc < 2)
{
sensor_cmd_warning_unknown();
return;
}
else if (!rt_strcmp(argv[1], "info"))
{
if (dev == RT_NULL)
{
sensor_cmd_warning_probe();
return ;
}
sensor = (rt_sensor_t)dev;
rt_kprintf("name :%s\n", sensor->info.name);
rt_kprintf("type: :%s\n", sensor_get_type_name(&sensor->info));
rt_kprintf("vendor :%s\n", sensor_get_vendor_name(&sensor->info));
rt_kprintf("unit :%s\n", sensor_get_unit_name(&sensor->info));
rt_kprintf("fetch data:%s\n", sensor_get_fetch_mode_name(&sensor->info));
rt_kprintf("power :%s\n", sensor_get_power_mode_name(&sensor->info));
rt_kprintf("accuracy :%s\n", sensor_get_accuracy_mode_name(&sensor->info));
rt_kprintf("range max :%f\n", sensor->info.scale.range_max);
rt_kprintf("range min :%f\n", sensor->info.scale.range_min);
rt_kprintf("resolution:%f\n", sensor->info.accuracy.resolution);
rt_kprintf("error :%f\n", sensor->info.accuracy.error);
rt_kprintf("acquire min:%fms\n", sensor->info.acquire_min);
rt_kprintf("fifo max :%d\n", sensor->info.fifo_max);
rt_kprintf("interface type :%s\n", sensor_get_intf_name(sensor));
rt_kprintf("interface device :%s\n", sensor->config.intf.dev_name);
}
else if (!rt_strcmp(argv[1], "read"))
{
rt_uint16_t num = 5;
if (dev == RT_NULL)
{
sensor_cmd_warning_probe();
return;
}
if (argc == 3)
{
num = atoi(argv[2]);
}
sensor = (rt_sensor_t)dev;
delay = sensor->info.acquire_min > 100 ? sensor->info.acquire_min : 100;
for (i = 0; i < num; i++)
{
res = rt_device_read(dev, 0, &data, 1);
if (res != 1)
{
LOG_E("read data failed!size is %d", res);
}
else
{
sensor_show_data(i, sensor, &data);
}
rt_thread_mdelay(delay);
}
}
else if (!rt_strcmp(argv[1], "list"))
{
struct rt_object *object;
struct rt_list_node *node;
struct rt_object_information *information;
rt_sensor_t sensor_dev;
information = rt_object_get_information(RT_Object_Class_Device);
if(information == RT_NULL)
return;
rt_kprintf("device name sensor name sensor type mode resolution range\n");
rt_kprintf("----------- ------------- ------------------ ---- ---------- ----------\n");
for (node = information->object_list.next;
node != &(information->object_list);
node = node->next)
{
object = rt_list_entry(node, struct rt_object, list);
sensor_dev = (rt_sensor_t)object;
if (sensor_dev->parent.type != RT_Device_Class_Sensor)
continue;
rt_kprintf("%-*.*s %-*s %-*s %u%u%u %-*f %.*f - %.*f%-*s\n",
RT_NAME_MAX+3, RT_NAME_MAX, sensor_dev->parent.parent.name,
13, sensor_dev->info.name,
18, sensor_get_type_name(&sensor_dev->info),
RT_SENSOR_MODE_GET_ACCURACY(sensor_dev->info.mode), RT_SENSOR_MODE_GET_POWER(sensor_dev->info.mode), RT_SENSOR_MODE_GET_FETCH(sensor_dev->info.mode),
10, sensor_dev->info.accuracy.resolution,
2, sensor_dev->info.scale.range_min, 2, sensor_dev->info.scale.range_max, 5, sensor_get_unit_name(&sensor_dev->info));
}
}
else if (!rt_strcmp(argv[1], "reset"))
{
if (dev == RT_NULL)
{
sensor_cmd_warning_probe();
return;
}
if (rt_device_control(dev, RT_SENSOR_CTRL_SOFT_RESET, RT_NULL) != RT_EOK)
{
LOG_E("This sensor doesn't support this command!");
}
}
else if (!rt_strcmp(argv[1], "probe"))
{
rt_uint8_t reg = 0xFF;
rt_device_t new_dev;
if (argc < 3)
{
sensor_cmd_warning_unknown();
return;
}
new_dev = rt_device_find(argv[2]);
if (new_dev == RT_NULL)
{
LOG_E("Can't find device:%s", argv[2]);
return;
}
if (rt_device_open(new_dev, RT_DEVICE_FLAG_RDWR) != RT_EOK)
{
LOG_E("open device failed!");
return;
}
if (rt_device_control(new_dev, RT_SENSOR_CTRL_GET_ID, &reg) == RT_EOK)
{
rt_kprintf("Sensor Chip ID: %#x\n", reg);
}
if (dev)
{
rt_device_close(dev);
}
dev = new_dev;
}
else if (!rt_strcmp(argv[1], "power"))
{
rt_uint32_t mode;
if (dev == RT_NULL)
{
sensor_cmd_warning_probe();
return;
}
sensor = (rt_sensor_t)dev;
if (argc == 2)
{
rt_kprintf("current power mode: %s\n", sensor_get_power_mode_name(&sensor->info));
}
else if (argc == 3)
{
mode = atoi(argv[2]);
if (rt_device_control(dev, RT_SENSOR_CTRL_SET_POWER_MODE, (void *)mode) == RT_EOK)
{
rt_kprintf("set new power mode as: %s\n", sensor_get_power_mode_name(&sensor->info));
}
else
{
LOG_E("Don't support! Set new power mode error!");
}
}
else
{
sensor_cmd_warning_unknown();
}
}
else if (!rt_strcmp(argv[1], "accuracy"))
{
rt_uint32_t mode;
if (dev == RT_NULL)
{
sensor_cmd_warning_probe();
return;
}
sensor = (rt_sensor_t)dev;
if (argc == 2)
{
rt_kprintf("current accuracy mode: %s\n", sensor_get_accuracy_mode_name(&sensor->info));
}
else if (argc == 3)
{
mode = atoi(argv[2]);
if (rt_device_control(dev, RT_SENSOR_CTRL_SET_ACCURACY_MODE, (void *)mode) == RT_EOK)
{
rt_kprintf("set new accuracy mode as: %s\n", sensor_get_accuracy_mode_name(&sensor->info));
}
else
{
LOG_E("Don't support! Set new accuracy mode error!");
}
}
else
{
sensor_cmd_warning_unknown();
}
}
else if (!rt_strcmp(argv[1], "fetch"))
{
rt_uint32_t mode;
if (dev == RT_NULL)
{
sensor_cmd_warning_probe();
return;
}
sensor = (rt_sensor_t)dev;
if (argc == 2)
{
rt_kprintf("current fetch data mode: %s\n", sensor_get_fetch_mode_name(&sensor->info));
}
else if (argc == 3)
{
mode = atoi(argv[2]);
if (rt_device_control(dev, RT_SENSOR_CTRL_SET_FETCH_MODE, (void *)mode) == RT_EOK)
{
rt_kprintf("set new fetch data mode as: %s\n", sensor_get_fetch_mode_name(&sensor->info));
}
else
{
LOG_E("Don't support! Set new fetch data mode error!");
}
}
else
{
sensor_cmd_warning_unknown();
}
}
else
{
sensor_cmd_warning_unknown();
}
}
MSH_CMD_EXPORT(sensor, sensor test function);