rt-thread/bsp/n32g452xx/Libraries/rt_drivers/drv_pwm.c

257 lines
6.9 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-1-13 Leo first version
*/
#include <board.h>
#include "drv_pwm.h"
#ifdef RT_USING_PWM
#if !defined(BSP_USING_TIM3_CH1) && !defined(BSP_USING_TIM3_CH2) && \
!defined(BSP_USING_TIM3_CH3) && !defined(BSP_USING_TIM3_CH4)
#error "Please define at least one BSP_USING_TIMx_CHx"
#endif
#endif /* RT_USING_PWM */
#define DRV_DEBUG
#define LOG_TAG "drv.pwm"
#include <drv_log.h>
#define MAX_PERIOD 65535
struct rt_device_pwm pwm_device;
struct n32_pwm
{
struct rt_device_pwm pwm_device;
TIM_Module *tim_handle;
rt_uint8_t channel;
char *name;
};
static struct n32_pwm n32_pwm_obj[] =
{
#ifdef BSP_USING_TIM3_CH1
PWM1_TIM3_CONFIG,
#endif
#ifdef BSP_USING_TIM3_CH2
PWM2_TIM3_CONFIG,
#endif
#ifdef BSP_USING_TIM3_CH3
PWM3_TIM3_CONFIG,
#endif
#ifdef BSP_USING_TIM3_CH4
PWM4_TIM3_CONFIG,
#endif
};
static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg);
static struct rt_pwm_ops drv_ops =
{
drv_pwm_control
};
static rt_err_t drv_pwm_enable(TIM_Module *TIMx, struct rt_pwm_configuration *configuration, rt_bool_t enable)
{
/* Get the value of channel */
rt_uint32_t channel = configuration->channel;
if (!enable)
{
if (channel == 1)
{
TIM_EnableCapCmpCh(TIMx, TIM_CH_1, TIM_CAP_CMP_DISABLE);
}
else if (channel == 2)
{
TIM_EnableCapCmpCh(TIMx, TIM_CH_2, TIM_CAP_CMP_DISABLE);
}
else if (channel == 3)
{
TIM_EnableCapCmpCh(TIMx, TIM_CH_3, TIM_CAP_CMP_DISABLE);
}
else if (channel == 4)
{
TIM_EnableCapCmpCh(TIMx, TIM_CH_4, TIM_CAP_CMP_DISABLE);
}
}
else
{
if (channel == 1)
{
TIM_EnableCapCmpCh(TIMx, TIM_CH_1, TIM_CAP_CMP_ENABLE);
}
else if (channel == 2)
{
TIM_EnableCapCmpCh(TIMx, TIM_CH_2, TIM_CAP_CMP_ENABLE);
}
else if (channel == 3)
{
TIM_EnableCapCmpCh(TIMx, TIM_CH_3, TIM_CAP_CMP_ENABLE);
}
else if (channel == 4)
{
TIM_EnableCapCmpCh(TIMx, TIM_CH_4, TIM_CAP_CMP_ENABLE);
}
}
TIM_Enable(TIMx, ENABLE);
return RT_EOK;
}
static rt_err_t drv_pwm_get(TIM_Module *TIMx, struct rt_pwm_configuration *configuration)
{
RCC_ClocksType RCC_Clockstruct;
rt_uint32_t ar, div, cc1, cc2, cc3, cc4;
rt_uint32_t channel = configuration->channel;
rt_uint64_t tim_clock;
ar = TIMx->AR;
div = TIMx->PSC;
cc1 = TIMx->CCDAT1;
cc2 = TIMx->CCDAT2;
cc3 = TIMx->CCDAT3;
cc4 = TIMx->CCDAT4;
RCC_GetClocksFreqValue(&RCC_Clockstruct);
tim_clock = RCC_Clockstruct.Pclk2Freq;
/* Convert nanosecond to frequency and duty cycle. */
tim_clock /= 1000000UL;
configuration->period = (ar + 1) * (div + 1) * 1000UL / tim_clock;
if (channel == 1)
configuration->pulse = (cc1 + 1) * (div + 1) * 1000UL / tim_clock;
if (channel == 2)
configuration->pulse = (cc2 + 1) * (div + 1) * 1000UL / tim_clock;
if (channel == 3)
configuration->pulse = (cc3 + 1) * (div + 1) * 1000UL / tim_clock;
if (channel == 4)
configuration->pulse = (cc4 + 1) * (div + 1) * 1000UL / tim_clock;
return RT_EOK;
}
static rt_err_t drv_pwm_set(TIM_Module *TIMx, struct rt_pwm_configuration *configuration)
{
/* Init timer pin and enable clock */
n32_msp_tim_init(TIMx);
RCC_ClocksType RCC_Clock;
RCC_GetClocksFreqValue(&RCC_Clock);
rt_uint64_t input_clock;
if ((TIM1 == TIMx) || (TIM8 == TIMx))
{
RCC_ConfigTim18Clk(RCC_TIM18CLK_SRC_SYSCLK);
input_clock = RCC_Clock.SysclkFreq;
}
else
{
if (1 == (RCC_Clock.HclkFreq / RCC_Clock.Pclk1Freq))
input_clock = RCC_Clock.Pclk1Freq;
else
input_clock = RCC_Clock.Pclk1Freq * 2;
}
/* Convert nanosecond to frequency and duty cycle. */
rt_uint32_t period = (unsigned long long)configuration->period ;
rt_uint64_t psc = period / MAX_PERIOD + 1;
period = period / psc;
psc = psc * (input_clock / 1000000);
/* TIMe base configuration */
TIM_TimeBaseInitType TIM_TIMeBaseStructure;
TIM_InitTimBaseStruct(&TIM_TIMeBaseStructure);
TIM_TIMeBaseStructure.Period = period;
TIM_TIMeBaseStructure.Prescaler = psc - 1;
TIM_TIMeBaseStructure.ClkDiv = 0;
TIM_TIMeBaseStructure.CntMode = TIM_CNT_MODE_UP;
TIM_InitTimeBase(TIMx, &TIM_TIMeBaseStructure);
rt_uint32_t pulse = (unsigned long long)configuration->pulse;
/* PWM1 Mode configuration: Channel1 */
OCInitType TIM_OCInitStructure;
TIM_InitOcStruct(&TIM_OCInitStructure);
TIM_OCInitStructure.OcMode = TIM_OCMODE_PWM1;
TIM_OCInitStructure.OutputState = TIM_OUTPUT_STATE_ENABLE;
TIM_OCInitStructure.Pulse = pulse;
TIM_OCInitStructure.OcPolarity = TIM_OC_POLARITY_HIGH;
rt_uint32_t channel = configuration->channel;
if (channel == 1)
{
TIM_InitOc1(TIMx, &TIM_OCInitStructure);
TIM_ConfigOc1Preload(TIMx, TIM_OC_PRE_LOAD_ENABLE);
}
else if (channel == 2)
{
TIM_InitOc2(TIMx, &TIM_OCInitStructure);
TIM_ConfigOc2Preload(TIMx, TIM_OC_PRE_LOAD_ENABLE);
}
else if (channel == 3)
{
TIM_InitOc3(TIMx, &TIM_OCInitStructure);
TIM_ConfigOc3Preload(TIMx, TIM_OC_PRE_LOAD_ENABLE);
}
else if (channel == 4)
{
TIM_InitOc4(TIMx, &TIM_OCInitStructure);
TIM_ConfigOc4Preload(TIMx, TIM_OC_PRE_LOAD_ENABLE);
}
TIM_ConfigArPreload(TIMx, ENABLE);
TIM_EnableCtrlPwmOutputs(TIMx, ENABLE);
return RT_EOK;
}
static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg)
{
struct rt_pwm_configuration *configuration = (struct rt_pwm_configuration *)arg;
TIM_Module *TIMx = (TIM_Module *)device->parent.user_data;
switch (cmd)
{
case PWM_CMD_ENABLE:
return drv_pwm_enable(TIMx, configuration, RT_TRUE);
case PWM_CMD_DISABLE:
return drv_pwm_enable(TIMx, configuration, RT_FALSE);
case PWM_CMD_SET:
return drv_pwm_set(TIMx, configuration);
case PWM_CMD_GET:
return drv_pwm_get(TIMx, configuration);
default:
return RT_EINVAL;
}
}
static int rt_hw_pwm_init(void)
{
int i = 0;
int result = RT_EOK;
for (i = 0; i < sizeof(n32_pwm_obj) / sizeof(n32_pwm_obj[0]); i++)
{
if (rt_device_pwm_register(&n32_pwm_obj[i].pwm_device, n32_pwm_obj[i].name, &drv_ops, n32_pwm_obj[i].tim_handle) == RT_EOK)
{
LOG_D("%s register success", n32_pwm_obj[i].name);
}
else
{
LOG_D("%s register failed", n32_pwm_obj[i].name);
result = -RT_ERROR;
}
}
return result;
}
INIT_BOARD_EXPORT(rt_hw_pwm_init);