rt-thread/bsp/imxrt1052-evk/Libraries/drivers/fsl_flexio_i2c_master.c
2018-06-09 18:32:31 +08:00

819 lines
29 KiB
C

/*
* The Clear BSD License
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_flexio_i2c_master.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.flexio_i2c_master"
#endif
/*! @brief FLEXIO I2C transfer state */
enum _flexio_i2c_master_transfer_states
{
kFLEXIO_I2C_Idle = 0x0U, /*!< I2C bus idle */
kFLEXIO_I2C_CheckAddress = 0x1U, /*!< 7-bit address check state */
kFLEXIO_I2C_SendCommand = 0x2U, /*!< Send command byte phase */
kFLEXIO_I2C_SendData = 0x3U, /*!< Send data transfer phase*/
kFLEXIO_I2C_ReceiveDataBegin = 0x4U, /*!< Receive data begin transfer phase*/
kFLEXIO_I2C_ReceiveData = 0x5U, /*!< Receive data transfer phase*/
};
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Set up master transfer, send slave address and decide the initial
* transfer state.
*
* @param base pointer to FLEXIO_I2C_Type structure
* @param handle pointer to flexio_i2c_master_handle_t structure which stores the transfer state
* @param transfer pointer to flexio_i2c_master_transfer_t structure
*/
static status_t FLEXIO_I2C_MasterTransferInitStateMachine(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
flexio_i2c_master_transfer_t *xfer);
/*!
* @brief Master run transfer state machine to perform a byte of transfer.
*
* @param base pointer to FLEXIO_I2C_Type structure
* @param handle pointer to flexio_i2c_master_handle_t structure which stores the transfer state
* @param statusFlags flexio i2c hardware status
* @retval kStatus_Success Successfully run state machine
* @retval kStatus_FLEXIO_I2C_Nak Receive Nak during transfer
*/
static status_t FLEXIO_I2C_MasterTransferRunStateMachine(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
uint32_t statusFlags);
/*!
* @brief Complete transfer, disable interrupt and call callback.
*
* @param base pointer to FLEXIO_I2C_Type structure
* @param handle pointer to flexio_i2c_master_handle_t structure which stores the transfer state
* @param status flexio transfer status
*/
static void FLEXIO_I2C_MasterTransferComplete(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
status_t status);
/*******************************************************************************
* Codes
******************************************************************************/
static uint32_t FLEXIO_I2C_GetInstance(FLEXIO_I2C_Type *base)
{
return FLEXIO_GetInstance(base->flexioBase);
}
static status_t FLEXIO_I2C_MasterTransferInitStateMachine(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
flexio_i2c_master_transfer_t *xfer)
{
bool needRestart;
uint32_t byteCount;
/* Init the handle member. */
handle->transfer.slaveAddress = xfer->slaveAddress;
handle->transfer.direction = xfer->direction;
handle->transfer.subaddress = xfer->subaddress;
handle->transfer.subaddressSize = xfer->subaddressSize;
handle->transfer.data = xfer->data;
handle->transfer.dataSize = xfer->dataSize;
handle->transfer.flags = xfer->flags;
handle->transferSize = xfer->dataSize;
/* Initial state, i2c check address state. */
handle->state = kFLEXIO_I2C_CheckAddress;
/* Clear all status before transfer. */
FLEXIO_I2C_MasterClearStatusFlags(base, kFLEXIO_I2C_ReceiveNakFlag);
/* Calculate whether need to send re-start. */
needRestart = (handle->transfer.subaddressSize != 0) && (handle->transfer.direction == kFLEXIO_I2C_Read);
/* Calculate total byte count in a frame. */
byteCount = 1;
if (!needRestart)
{
byteCount += handle->transfer.dataSize;
}
if (handle->transfer.subaddressSize != 0)
{
byteCount += handle->transfer.subaddressSize;
/* Next state, send command byte. */
handle->state = kFLEXIO_I2C_SendCommand;
}
/* Configure data count. */
if (FLEXIO_I2C_MasterSetTransferCount(base, byteCount) != kStatus_Success)
{
return kStatus_InvalidArgument;
}
while (!((FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1U << base->shifterIndex[0]))))
{
}
/* Send address byte first. */
if (needRestart)
{
FLEXIO_I2C_MasterStart(base, handle->transfer.slaveAddress, kFLEXIO_I2C_Write);
}
else
{
FLEXIO_I2C_MasterStart(base, handle->transfer.slaveAddress, handle->transfer.direction);
}
return kStatus_Success;
}
static status_t FLEXIO_I2C_MasterTransferRunStateMachine(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
uint32_t statusFlags)
{
if (statusFlags & kFLEXIO_I2C_ReceiveNakFlag)
{
/* Clear receive nak flag. */
FLEXIO_ClearShifterErrorFlags(base->flexioBase, 1U << base->shifterIndex[1]);
if ((!((handle->state == kFLEXIO_I2C_SendData) && (handle->transfer.dataSize == 0U))) &&
(!(((handle->state == kFLEXIO_I2C_ReceiveData) || (handle->state == kFLEXIO_I2C_ReceiveDataBegin)) &&
(handle->transfer.dataSize == 1U))))
{
FLEXIO_I2C_MasterReadByte(base);
FLEXIO_I2C_MasterAbortStop(base);
handle->state = kFLEXIO_I2C_Idle;
return kStatus_FLEXIO_I2C_Nak;
}
}
if (handle->state == kFLEXIO_I2C_CheckAddress)
{
if (handle->transfer.direction == kFLEXIO_I2C_Write)
{
/* Next state, send data. */
handle->state = kFLEXIO_I2C_SendData;
}
else
{
/* Next state, receive data begin. */
handle->state = kFLEXIO_I2C_ReceiveDataBegin;
}
}
if ((statusFlags & kFLEXIO_I2C_RxFullFlag) && (handle->state != kFLEXIO_I2C_ReceiveData))
{
FLEXIO_I2C_MasterReadByte(base);
}
switch (handle->state)
{
case kFLEXIO_I2C_SendCommand:
if (statusFlags & kFLEXIO_I2C_TxEmptyFlag)
{
if (handle->transfer.subaddressSize > 0)
{
handle->transfer.subaddressSize--;
FLEXIO_I2C_MasterWriteByte(
base, ((handle->transfer.subaddress) >> (8 * handle->transfer.subaddressSize)));
if (handle->transfer.subaddressSize == 0)
{
/* Load re-start in advance. */
if (handle->transfer.direction == kFLEXIO_I2C_Read)
{
while (!((FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1U << base->shifterIndex[0]))))
{
}
FLEXIO_I2C_MasterRepeatedStart(base);
}
}
}
else
{
if (handle->transfer.direction == kFLEXIO_I2C_Write)
{
/* Next state, send data. */
handle->state = kFLEXIO_I2C_SendData;
/* Send first byte of data. */
if (handle->transfer.dataSize > 0)
{
FLEXIO_I2C_MasterWriteByte(base, *handle->transfer.data);
handle->transfer.data++;
handle->transfer.dataSize--;
}
}
else
{
FLEXIO_I2C_MasterSetTransferCount(base, (handle->transfer.dataSize + 1));
FLEXIO_I2C_MasterStart(base, handle->transfer.slaveAddress, kFLEXIO_I2C_Read);
/* Next state, receive data begin. */
handle->state = kFLEXIO_I2C_ReceiveDataBegin;
}
}
}
break;
/* Send command byte. */
case kFLEXIO_I2C_SendData:
if (statusFlags & kFLEXIO_I2C_TxEmptyFlag)
{
/* Send one byte of data. */
if (handle->transfer.dataSize > 0)
{
FLEXIO_I2C_MasterWriteByte(base, *handle->transfer.data);
handle->transfer.data++;
handle->transfer.dataSize--;
}
else
{
FLEXIO_I2C_MasterStop(base);
while (!(FLEXIO_I2C_MasterGetStatusFlags(base) & kFLEXIO_I2C_RxFullFlag))
{
}
FLEXIO_I2C_MasterReadByte(base);
handle->state = kFLEXIO_I2C_Idle;
}
}
break;
case kFLEXIO_I2C_ReceiveDataBegin:
if (statusFlags & kFLEXIO_I2C_RxFullFlag)
{
handle->state = kFLEXIO_I2C_ReceiveData;
/* Send nak at the last receive byte. */
if (handle->transfer.dataSize == 1)
{
FLEXIO_I2C_MasterEnableAck(base, false);
while (!((FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1U << base->shifterIndex[0]))))
{
}
FLEXIO_I2C_MasterStop(base);
}
else
{
FLEXIO_I2C_MasterEnableAck(base, true);
}
}
else if (statusFlags & kFLEXIO_I2C_TxEmptyFlag)
{
/* Read one byte of data. */
FLEXIO_I2C_MasterWriteByte(base, 0xFFFFFFFFU);
}
else
{
}
break;
case kFLEXIO_I2C_ReceiveData:
if (statusFlags & kFLEXIO_I2C_RxFullFlag)
{
*handle->transfer.data = FLEXIO_I2C_MasterReadByte(base);
handle->transfer.data++;
if (handle->transfer.dataSize--)
{
if (handle->transfer.dataSize == 0)
{
FLEXIO_I2C_MasterDisableInterrupts(base, kFLEXIO_I2C_RxFullInterruptEnable);
handle->state = kFLEXIO_I2C_Idle;
}
/* Send nak at the last receive byte. */
if (handle->transfer.dataSize == 1)
{
FLEXIO_I2C_MasterEnableAck(base, false);
while (!((FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1U << base->shifterIndex[0]))))
{
}
FLEXIO_I2C_MasterStop(base);
}
}
}
else if (statusFlags & kFLEXIO_I2C_TxEmptyFlag)
{
if (handle->transfer.dataSize > 1)
{
FLEXIO_I2C_MasterWriteByte(base, 0xFFFFFFFFU);
}
}
else
{
}
break;
default:
break;
}
return kStatus_Success;
}
static void FLEXIO_I2C_MasterTransferComplete(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
status_t status)
{
FLEXIO_I2C_MasterDisableInterrupts(base, kFLEXIO_I2C_TxEmptyInterruptEnable | kFLEXIO_I2C_RxFullInterruptEnable);
if (handle->completionCallback)
{
handle->completionCallback(base, handle, status, handle->userData);
}
}
status_t FLEXIO_I2C_MasterInit(FLEXIO_I2C_Type *base, flexio_i2c_master_config_t *masterConfig, uint32_t srcClock_Hz)
{
assert(base && masterConfig);
flexio_shifter_config_t shifterConfig;
flexio_timer_config_t timerConfig;
uint32_t controlVal = 0;
uint16_t timerDiv = 0;
status_t result = kStatus_Success;
memset(&shifterConfig, 0, sizeof(shifterConfig));
memset(&timerConfig, 0, sizeof(timerConfig));
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Ungate flexio clock. */
CLOCK_EnableClock(s_flexioClocks[FLEXIO_I2C_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Do hardware configuration. */
/* 1. Configure the shifter 0 for tx. */
shifterConfig.timerSelect = base->timerIndex[1];
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive;
shifterConfig.pinConfig = kFLEXIO_PinConfigOpenDrainOrBidirection;
shifterConfig.pinSelect = base->SDAPinIndex;
shifterConfig.pinPolarity = kFLEXIO_PinActiveLow;
shifterConfig.shifterMode = kFLEXIO_ShifterModeTransmit;
shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitHigh;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitLow;
FLEXIO_SetShifterConfig(base->flexioBase, base->shifterIndex[0], &shifterConfig);
/* 2. Configure the shifter 1 for rx. */
shifterConfig.timerSelect = base->timerIndex[1];
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnNegitive;
shifterConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled;
shifterConfig.pinSelect = base->SDAPinIndex;
shifterConfig.pinPolarity = kFLEXIO_PinActiveHigh;
shifterConfig.shifterMode = kFLEXIO_ShifterModeReceive;
shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitLow;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable;
FLEXIO_SetShifterConfig(base->flexioBase, base->shifterIndex[1], &shifterConfig);
/*3. Configure the timer 0 for generating bit clock. */
timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_SHIFTnSTAT(base->shifterIndex[0]);
timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveLow;
timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal;
timerConfig.pinConfig = kFLEXIO_PinConfigOpenDrainOrBidirection;
timerConfig.pinSelect = base->SCLPinIndex;
timerConfig.pinPolarity = kFLEXIO_PinActiveHigh;
timerConfig.timerMode = kFLEXIO_TimerModeDual8BitBaudBit;
timerConfig.timerOutput = kFLEXIO_TimerOutputZeroNotAffectedByReset;
timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput;
timerConfig.timerReset = kFLEXIO_TimerResetOnTimerPinEqualToTimerOutput;
timerConfig.timerDisable = kFLEXIO_TimerDisableOnTimerCompare;
timerConfig.timerEnable = kFLEXIO_TimerEnableOnTriggerHigh;
timerConfig.timerStop = kFLEXIO_TimerStopBitEnableOnTimerDisable;
timerConfig.timerStart = kFLEXIO_TimerStartBitEnabled;
/* Set TIMCMP[7:0] = (baud rate divider / 2) - 1. */
timerDiv = (srcClock_Hz / masterConfig->baudRate_Bps) / 2 - 1;
if (timerDiv > 0xFFU)
{
result = kStatus_InvalidArgument;
return result;
}
timerConfig.timerCompare = timerDiv;
FLEXIO_SetTimerConfig(base->flexioBase, base->timerIndex[0], &timerConfig);
/* 4. Configure the timer 1 for controlling shifters. */
timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_SHIFTnSTAT(base->shifterIndex[0]);
timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveLow;
timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal;
timerConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled;
timerConfig.pinSelect = base->SCLPinIndex;
timerConfig.pinPolarity = kFLEXIO_PinActiveLow;
timerConfig.timerMode = kFLEXIO_TimerModeSingle16Bit;
timerConfig.timerOutput = kFLEXIO_TimerOutputOneNotAffectedByReset;
timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnPinInputShiftPinInput;
timerConfig.timerReset = kFLEXIO_TimerResetNever;
timerConfig.timerDisable = kFLEXIO_TimerDisableOnPreTimerDisable;
timerConfig.timerEnable = kFLEXIO_TimerEnableOnPrevTimerEnable;
timerConfig.timerStop = kFLEXIO_TimerStopBitEnableOnTimerCompare;
timerConfig.timerStart = kFLEXIO_TimerStartBitEnabled;
/* Set TIMCMP[15:0] = (number of bits x 2) - 1. */
timerConfig.timerCompare = 8 * 2 - 1;
FLEXIO_SetTimerConfig(base->flexioBase, base->timerIndex[1], &timerConfig);
/* Configure FLEXIO I2C Master. */
controlVal = base->flexioBase->CTRL;
controlVal &=
~(FLEXIO_CTRL_DOZEN_MASK | FLEXIO_CTRL_DBGE_MASK | FLEXIO_CTRL_FASTACC_MASK | FLEXIO_CTRL_FLEXEN_MASK);
controlVal |= (FLEXIO_CTRL_DBGE(masterConfig->enableInDebug) | FLEXIO_CTRL_FASTACC(masterConfig->enableFastAccess) |
FLEXIO_CTRL_FLEXEN(masterConfig->enableMaster));
if (!masterConfig->enableInDoze)
{
controlVal |= FLEXIO_CTRL_DOZEN_MASK;
}
base->flexioBase->CTRL = controlVal;
return result;
}
void FLEXIO_I2C_MasterDeinit(FLEXIO_I2C_Type *base)
{
base->flexioBase->SHIFTCFG[base->shifterIndex[0]] = 0;
base->flexioBase->SHIFTCTL[base->shifterIndex[0]] = 0;
base->flexioBase->SHIFTCFG[base->shifterIndex[1]] = 0;
base->flexioBase->SHIFTCTL[base->shifterIndex[1]] = 0;
base->flexioBase->TIMCFG[base->timerIndex[0]] = 0;
base->flexioBase->TIMCMP[base->timerIndex[0]] = 0;
base->flexioBase->TIMCTL[base->timerIndex[0]] = 0;
base->flexioBase->TIMCFG[base->timerIndex[1]] = 0;
base->flexioBase->TIMCMP[base->timerIndex[1]] = 0;
base->flexioBase->TIMCTL[base->timerIndex[1]] = 0;
/* Clear the shifter flag. */
base->flexioBase->SHIFTSTAT = (1U << base->shifterIndex[0]);
base->flexioBase->SHIFTSTAT = (1U << base->shifterIndex[1]);
/* Clear the timer flag. */
base->flexioBase->TIMSTAT = (1U << base->timerIndex[0]);
base->flexioBase->TIMSTAT = (1U << base->timerIndex[1]);
}
void FLEXIO_I2C_MasterGetDefaultConfig(flexio_i2c_master_config_t *masterConfig)
{
assert(masterConfig);
masterConfig->enableMaster = true;
masterConfig->enableInDoze = false;
masterConfig->enableInDebug = true;
masterConfig->enableFastAccess = false;
/* Default baud rate at 100kbps. */
masterConfig->baudRate_Bps = 100000U;
}
uint32_t FLEXIO_I2C_MasterGetStatusFlags(FLEXIO_I2C_Type *base)
{
uint32_t status = 0;
status =
((FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1U << base->shifterIndex[0])) >> base->shifterIndex[0]);
status |=
(((FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1U << base->shifterIndex[1])) >> (base->shifterIndex[1]))
<< 1U);
status |=
(((FLEXIO_GetShifterErrorFlags(base->flexioBase) & (1U << base->shifterIndex[1])) >> (base->shifterIndex[1]))
<< 2U);
return status;
}
void FLEXIO_I2C_MasterClearStatusFlags(FLEXIO_I2C_Type *base, uint32_t mask)
{
if (mask & kFLEXIO_I2C_TxEmptyFlag)
{
FLEXIO_ClearShifterStatusFlags(base->flexioBase, 1U << base->shifterIndex[0]);
}
if (mask & kFLEXIO_I2C_RxFullFlag)
{
FLEXIO_ClearShifterStatusFlags(base->flexioBase, 1U << base->shifterIndex[1]);
}
if (mask & kFLEXIO_I2C_ReceiveNakFlag)
{
FLEXIO_ClearShifterErrorFlags(base->flexioBase, 1U << base->shifterIndex[1]);
}
}
void FLEXIO_I2C_MasterEnableInterrupts(FLEXIO_I2C_Type *base, uint32_t mask)
{
if (mask & kFLEXIO_I2C_TxEmptyInterruptEnable)
{
FLEXIO_EnableShifterStatusInterrupts(base->flexioBase, 1U << base->shifterIndex[0]);
}
if (mask & kFLEXIO_I2C_RxFullInterruptEnable)
{
FLEXIO_EnableShifterStatusInterrupts(base->flexioBase, 1U << base->shifterIndex[1]);
}
}
void FLEXIO_I2C_MasterDisableInterrupts(FLEXIO_I2C_Type *base, uint32_t mask)
{
if (mask & kFLEXIO_I2C_TxEmptyInterruptEnable)
{
FLEXIO_DisableShifterStatusInterrupts(base->flexioBase, 1U << base->shifterIndex[0]);
}
if (mask & kFLEXIO_I2C_RxFullInterruptEnable)
{
FLEXIO_DisableShifterStatusInterrupts(base->flexioBase, 1U << base->shifterIndex[1]);
}
}
void FLEXIO_I2C_MasterSetBaudRate(FLEXIO_I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
{
uint16_t timerDiv = 0;
uint16_t timerCmp = 0;
FLEXIO_Type *flexioBase = base->flexioBase;
/* Set TIMCMP[7:0] = (baud rate divider / 2) - 1.*/
timerDiv = srcClock_Hz / baudRate_Bps;
timerDiv = timerDiv / 2 - 1U;
timerCmp = flexioBase->TIMCMP[base->timerIndex[0]];
timerCmp &= 0xFF00;
timerCmp |= timerDiv;
flexioBase->TIMCMP[base->timerIndex[0]] = timerCmp;
}
status_t FLEXIO_I2C_MasterSetTransferCount(FLEXIO_I2C_Type *base, uint8_t count)
{
if (count > 14U)
{
return kStatus_InvalidArgument;
}
uint16_t timerCmp = 0;
uint32_t timerConfig = 0;
FLEXIO_Type *flexioBase = base->flexioBase;
timerCmp = flexioBase->TIMCMP[base->timerIndex[0]];
timerCmp &= 0x00FFU;
timerCmp |= (count * 18 + 1U) << 8U;
flexioBase->TIMCMP[base->timerIndex[0]] = timerCmp;
timerConfig = flexioBase->TIMCFG[base->timerIndex[0]];
timerConfig &= ~FLEXIO_TIMCFG_TIMDIS_MASK;
timerConfig |= FLEXIO_TIMCFG_TIMDIS(kFLEXIO_TimerDisableOnTimerCompare);
flexioBase->TIMCFG[base->timerIndex[0]] = timerConfig;
return kStatus_Success;
}
void FLEXIO_I2C_MasterStart(FLEXIO_I2C_Type *base, uint8_t address, flexio_i2c_direction_t direction)
{
uint32_t data;
data = ((uint32_t)address) << 1U | ((direction == kFLEXIO_I2C_Read) ? 1U : 0U);
FLEXIO_I2C_MasterWriteByte(base, data);
}
void FLEXIO_I2C_MasterRepeatedStart(FLEXIO_I2C_Type *base)
{
/* Prepare for RESTART condition, no stop.*/
FLEXIO_I2C_MasterWriteByte(base, 0xFFFFFFFFU);
}
void FLEXIO_I2C_MasterStop(FLEXIO_I2C_Type *base)
{
/* Prepare normal stop. */
FLEXIO_I2C_MasterSetTransferCount(base, 0x0U);
FLEXIO_I2C_MasterWriteByte(base, 0x0U);
}
void FLEXIO_I2C_MasterAbortStop(FLEXIO_I2C_Type *base)
{
uint32_t tmpConfig;
/* Prepare abort stop. */
tmpConfig = base->flexioBase->TIMCFG[base->timerIndex[0]];
tmpConfig &= ~FLEXIO_TIMCFG_TIMDIS_MASK;
tmpConfig |= FLEXIO_TIMCFG_TIMDIS(kFLEXIO_TimerDisableOnPinBothEdge);
base->flexioBase->TIMCFG[base->timerIndex[0]] = tmpConfig;
}
void FLEXIO_I2C_MasterEnableAck(FLEXIO_I2C_Type *base, bool enable)
{
uint32_t tmpConfig = 0;
tmpConfig = base->flexioBase->SHIFTCFG[base->shifterIndex[0]];
tmpConfig &= ~FLEXIO_SHIFTCFG_SSTOP_MASK;
if (enable)
{
tmpConfig |= FLEXIO_SHIFTCFG_SSTOP(kFLEXIO_ShifterStopBitLow);
}
else
{
tmpConfig |= FLEXIO_SHIFTCFG_SSTOP(kFLEXIO_ShifterStopBitHigh);
}
base->flexioBase->SHIFTCFG[base->shifterIndex[0]] = tmpConfig;
}
status_t FLEXIO_I2C_MasterWriteBlocking(FLEXIO_I2C_Type *base, const uint8_t *txBuff, uint8_t txSize)
{
assert(txBuff);
assert(txSize);
uint32_t status;
while (txSize--)
{
FLEXIO_I2C_MasterWriteByte(base, *txBuff++);
/* Wait until data transfer complete. */
while (!((status = FLEXIO_I2C_MasterGetStatusFlags(base)) & kFLEXIO_I2C_RxFullFlag))
{
}
if (status & kFLEXIO_I2C_ReceiveNakFlag)
{
FLEXIO_ClearShifterErrorFlags(base->flexioBase, 1U << base->shifterIndex[1]);
return kStatus_FLEXIO_I2C_Nak;
}
}
return kStatus_Success;
}
void FLEXIO_I2C_MasterReadBlocking(FLEXIO_I2C_Type *base, uint8_t *rxBuff, uint8_t rxSize)
{
assert(rxBuff);
assert(rxSize);
while (rxSize--)
{
/* Wait until data transfer complete. */
while (!(FLEXIO_I2C_MasterGetStatusFlags(base) & kFLEXIO_I2C_RxFullFlag))
{
}
*rxBuff++ = FLEXIO_I2C_MasterReadByte(base);
}
}
status_t FLEXIO_I2C_MasterTransferBlocking(FLEXIO_I2C_Type *base, flexio_i2c_master_transfer_t *xfer)
{
assert(xfer);
flexio_i2c_master_handle_t tmpHandle;
uint32_t statusFlags;
uint32_t result = kStatus_Success;
/* Zero the handle. */
memset(&tmpHandle, 0, sizeof(tmpHandle));
/* Set up transfer machine. */
FLEXIO_I2C_MasterTransferInitStateMachine(base, &tmpHandle, xfer);
do
{
/* Wait either tx empty or rx full flag is asserted. */
while (!((statusFlags = FLEXIO_I2C_MasterGetStatusFlags(base)) &
(kFLEXIO_I2C_TxEmptyFlag | kFLEXIO_I2C_RxFullFlag)))
{
}
result = FLEXIO_I2C_MasterTransferRunStateMachine(base, &tmpHandle, statusFlags);
} while ((tmpHandle.state != kFLEXIO_I2C_Idle) && (result == kStatus_Success));
return result;
}
status_t FLEXIO_I2C_MasterTransferCreateHandle(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
flexio_i2c_master_transfer_callback_t callback,
void *userData)
{
assert(handle);
IRQn_Type flexio_irqs[] = FLEXIO_IRQS;
/* Zero the handle. */
memset(handle, 0, sizeof(*handle));
/* Register callback and userData. */
handle->completionCallback = callback;
handle->userData = userData;
/* Enable interrupt in NVIC. */
EnableIRQ(flexio_irqs[FLEXIO_I2C_GetInstance(base)]);
/* Save the context in global variables to support the double weak mechanism. */
return FLEXIO_RegisterHandleIRQ(base, handle, FLEXIO_I2C_MasterTransferHandleIRQ);
}
status_t FLEXIO_I2C_MasterTransferNonBlocking(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
flexio_i2c_master_transfer_t *xfer)
{
assert(handle);
assert(xfer);
if (handle->state != kFLEXIO_I2C_Idle)
{
return kStatus_FLEXIO_I2C_Busy;
}
else
{
/* Set up transfer machine. */
FLEXIO_I2C_MasterTransferInitStateMachine(base, handle, xfer);
/* Enable both tx empty and rxfull interrupt. */
FLEXIO_I2C_MasterEnableInterrupts(base, kFLEXIO_I2C_TxEmptyInterruptEnable | kFLEXIO_I2C_RxFullInterruptEnable);
return kStatus_Success;
}
}
void FLEXIO_I2C_MasterTransferAbort(FLEXIO_I2C_Type *base, flexio_i2c_master_handle_t *handle)
{
assert(handle);
/* Disable interrupts. */
FLEXIO_I2C_MasterDisableInterrupts(base, kFLEXIO_I2C_TxEmptyInterruptEnable | kFLEXIO_I2C_RxFullInterruptEnable);
/* Reset to idle state. */
handle->state = kFLEXIO_I2C_Idle;
}
status_t FLEXIO_I2C_MasterTransferGetCount(FLEXIO_I2C_Type *base, flexio_i2c_master_handle_t *handle, size_t *count)
{
if (!count)
{
return kStatus_InvalidArgument;
}
*count = handle->transferSize - handle->transfer.dataSize;
return kStatus_Success;
}
void FLEXIO_I2C_MasterTransferHandleIRQ(void *i2cType, void *i2cHandle)
{
FLEXIO_I2C_Type *base = (FLEXIO_I2C_Type *)i2cType;
flexio_i2c_master_handle_t *handle = (flexio_i2c_master_handle_t *)i2cHandle;
uint32_t statusFlags;
status_t result;
statusFlags = FLEXIO_I2C_MasterGetStatusFlags(base);
result = FLEXIO_I2C_MasterTransferRunStateMachine(base, handle, statusFlags);
if (handle->state == kFLEXIO_I2C_Idle)
{
FLEXIO_I2C_MasterTransferComplete(base, handle, result);
}
}