rt-thread/bsp/raspberry-pico/link.ld

272 lines
7.2 KiB
Plaintext

/* Based on GCC ARM embedded samples.
Defines the following symbols for use by code:
__exidx_start
__exidx_end
__etext
__data_start__
__preinit_array_start
__preinit_array_end
__init_array_start
__init_array_end
__fini_array_start
__fini_array_end
__data_end__
__bss_start__
__bss_end__
__end__
end
__HeapLimit
__StackLimit
__StackTop
__stack (== StackTop)
*/
MEMORY
{
FLASH(rx) : ORIGIN = 0x10000000, LENGTH = 2048k
RAM(rwx) : ORIGIN = 0x20000000, LENGTH = 256k
SCRATCH_X(rwx) : ORIGIN = 0x20040000, LENGTH = 4k
SCRATCH_Y(rwx) : ORIGIN = 0x20041000, LENGTH = 4k
}
ENTRY(_entry_point)
SECTIONS
{
/* Second stage bootloader is prepended to the image. It must be 256 bytes big
and checksummed. It is usually built by the boot_stage2 target
in the Raspberry Pi Pico SDK
*/
.flash_begin : {
__flash_binary_start = .;
} > FLASH
.boot2 : {
__boot2_start__ = .;
KEEP (*(.boot2))
__boot2_end__ = .;
} > FLASH
ASSERT(__boot2_end__ - __boot2_start__ == 256,
"ERROR: Pico second stage bootloader must be 256 bytes in size")
/* The second stage will always enter the image at the start of .text.
The debugger will use the ELF entry point, which is the _entry_point
symbol if present, otherwise defaults to start of .text.
This can be used to transfer control back to the bootrom on debugger
launches only, to perform proper flash setup.
*/
.text : {
__logical_binary_start = .;
KEEP (*(.vectors))
KEEP (*(.binary_info_header))
__binary_info_header_end = .;
KEEP (*(.reset))
/* TODO revisit this now memset/memcpy/float in ROM */
/* bit of a hack right now to exclude all floating point and time critical (e.g. memset, memcpy) code from
* FLASH ... we will include any thing excluded here in .data below by default */
*(.init)
*(EXCLUDE_FILE(*libgcc.a: *libc.a:*lib_a-mem*.o *libm.a:) .text*)
*(.fini)
/* section information for finsh shell */
. = ALIGN(4);
__fsymtab_start = .;
KEEP(*(FSymTab))
__fsymtab_end = .;
. = ALIGN(4);
__vsymtab_start = .;
KEEP(*(VSymTab))
__vsymtab_end = .;
/* section information for initial. */
. = ALIGN(4);
__rt_init_start = .;
KEEP(*(SORT(.rti_fn*)))
__rt_init_end = .;
. = ALIGN(4);
/* Pull all c'tors into .text */
*crtbegin.o(.ctors)
*crtbegin?.o(.ctors)
*(EXCLUDE_FILE(*crtend?.o *crtend.o) .ctors)
*(SORT(.ctors.*))
*(.ctors)
/* Followed by destructors */
*crtbegin.o(.dtors)
*crtbegin?.o(.dtors)
*(EXCLUDE_FILE(*crtend?.o *crtend.o) .dtors)
*(SORT(.dtors.*))
*(.dtors)
*(.eh_frame*)
PROVIDE(__ctors_start__ = .);
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
PROVIDE(__ctors_end__ = .);
. = ALIGN(4);
_etext = .;
} > FLASH
.rodata : {
*(EXCLUDE_FILE(*libgcc.a: *libc.a:*lib_a-mem*.o *libm.a:) .rodata*)
. = ALIGN(4);
*(SORT_BY_ALIGNMENT(SORT_BY_NAME(.flashdata*)))
. = ALIGN(4);
} > FLASH
.ARM.extab :
{
*(.ARM.extab* .gnu.linkonce.armextab.*)
} > FLASH
__exidx_start = .;
.ARM.exidx :
{
*(.ARM.exidx* .gnu.linkonce.armexidx.*)
} > FLASH
__exidx_end = .;
/* Machine inspectable binary information */
. = ALIGN(4);
__binary_info_start = .;
.binary_info :
{
KEEP(*(.binary_info.keep.*))
*(.binary_info.*)
} > FLASH
__binary_info_end = .;
. = ALIGN(4);
.ram_vector_table (NOLOAD): {
*(.ram_vector_table)
} > RAM
.data : {
__data_start__ = .;
*(vtable)
*(.time_critical*)
/* remaining .text and .rodata; i.e. stuff we exclude above because we want it in RAM */
*(.text*)
. = ALIGN(4);
*(.rodata*)
. = ALIGN(4);
*(.data*)
. = ALIGN(4);
*(.after_data.*)
. = ALIGN(4);
/* preinit data */
PROVIDE_HIDDEN (__mutex_array_start = .);
KEEP(*(SORT(.mutex_array.*)))
KEEP(*(.mutex_array))
PROVIDE_HIDDEN (__mutex_array_end = .);
. = ALIGN(4);
/* preinit data */
PROVIDE_HIDDEN (__preinit_array_start = .);
KEEP(*(SORT(.preinit_array.*)))
KEEP(*(.preinit_array))
PROVIDE_HIDDEN (__preinit_array_end = .);
. = ALIGN(4);
/* init data */
PROVIDE_HIDDEN (__init_array_start = .);
KEEP(*(SORT(.init_array.*)))
KEEP(*(.init_array))
PROVIDE_HIDDEN (__init_array_end = .);
. = ALIGN(4);
/* finit data */
PROVIDE_HIDDEN (__fini_array_start = .);
*(SORT(.fini_array.*))
*(.fini_array)
PROVIDE_HIDDEN (__fini_array_end = .);
*(.jcr)
. = ALIGN(4);
/* All data end */
__data_end__ = .;
} > RAM AT> FLASH
/* __etext is (for backwards compatibility) the name of the .data init source pointer (...) */
__etext = LOADADDR(.data);
.uninitialized_data (NOLOAD): {
. = ALIGN(4);
*(.uninitialized_data*)
} > RAM
/* Start and end symbols must be word-aligned */
.scratch_x : {
__scratch_x_start__ = .;
*(.scratch_x.*)
. = ALIGN(4);
__scratch_x_end__ = .;
} > SCRATCH_X AT > FLASH
__scratch_x_source__ = LOADADDR(.scratch_x);
.scratch_y : {
__scratch_y_start__ = .;
*(.scratch_y.*)
. = ALIGN(4);
__scratch_y_end__ = .;
} > SCRATCH_Y AT > FLASH
__scratch_y_source__ = LOADADDR(.scratch_y);
.bss : {
. = ALIGN(4);
__bss_start__ = .;
*(SORT_BY_ALIGNMENT(SORT_BY_NAME(.bss*)))
*(COMMON)
. = ALIGN(4);
__bss_end__ = .;
} > RAM
/* .stack*_dummy section doesn't contains any symbols. It is only
* used for linker to calculate size of stack sections, and assign
* values to stack symbols later
*
* stack1 section may be empty/missing if platform_launch_core1 is not used */
/* by default we put core 0 stack at the end of scratch Y, so that if core 1
* stack is not used then all of SCRATCH_X is free.
*/
.stack1_dummy (NOLOAD):
{
*(.stack1*)
} > SCRATCH_X
.stack_dummy (NOLOAD):
{
KEEP(*(.stack*))
} > SCRATCH_Y
.flash_end : {
PROVIDE(__flash_binary_end = .);
} > FLASH
/* stack limit is poorly named, but historically is maximum heap ptr */
__StackLimit = ORIGIN(RAM) + LENGTH(RAM);
__StackOneTop = ORIGIN(SCRATCH_X) + LENGTH(SCRATCH_X);
__StackTop = ORIGIN(SCRATCH_Y) + LENGTH(SCRATCH_Y);
__StackOneBottom = __StackOneTop - SIZEOF(.stack1_dummy);
__StackBottom = __StackTop - SIZEOF(.stack_dummy);
PROVIDE(__stack = __StackTop);
/* Check if data + heap + stack exceeds RAM limit */
ASSERT(__StackLimit >= __bss_end__, "region RAM overflowed")
ASSERT( __binary_info_header_end - __logical_binary_start <= 256, "Binary info must be in first 256 bytes of the binary")
/* todo assert on extra code */
}