2023-04-16 22:37:16 -04:00

1306 lines
38 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
******************************************************************************
* @file HAL_rcc.c
* @author IC Applications Department
* @version V0.8
* @date 2019_08_02
* @brief This file provides all the RCC firmware functions.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, HOLOCENE SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2016 HOLOCENE</center></h2>
*/
/* Includes ------------------------------------------------------------------*/
#include "HAL_rcc.h"
u32 TK499_SYS_CLK = 48000000;
u32 TK499_PLL_FACTOR = 0x00004;
/** @addtogroup StdPeriph_Driver
* @{
*/
/** @defgroup RCC
* @brief RCC driver modules
* @{
*/
/** @defgroup RCC_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup RCC_Private_Defines
* @{
*/
/* ------------ RCC registers bit address in the alias region ----------- */
#define RCC_OFFSET (RCC_BASE - PERIPH_BASE)
/* --- CR Register ---*/
/* Alias word address of HSION bit */
#define CR_OFFSET (RCC_OFFSET + 0x00)
#define HSION_BitNumber 0x00
#define CR_HSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (HSION_BitNumber * 4))
/* Alias word address of PLLON bit */
#define PLLON_BitNumber 0x18
#define CR_PLLON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLON_BitNumber * 4))
/* Alias word address of CSSON bit */
#define CSSON_BitNumber 0x13
#define CR_CSSON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (CSSON_BitNumber * 4))
/* --- CFGR Register ---*/
/* Alias word address of USBPRE bit */
#define CFGR_OFFSET (RCC_OFFSET + 0x04)
#define USBPRE_BitNumber 0x16
#define CFGR_USBPRE_BB (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (USBPRE_BitNumber * 4))
/* --- BDCR Register ---*/
/* Alias word address of RTCEN bit */
#define BDCR_OFFSET (RCC_OFFSET + 0x20)
#define RTCEN_BitNumber 0x0F
#define BDCR_RTCEN_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (RTCEN_BitNumber * 4))
/* Alias word address of BDRST bit */
#define BDRST_BitNumber 0x10
#define BDCR_BDRST_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (BDRST_BitNumber * 4))
/* --- CSR Register ---*/
/* Alias word address of LSION bit */
#define CSR_OFFSET (RCC_OFFSET + 0x24)
#define LSION_BitNumber 0x00
#define CSR_LSION_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSION_BitNumber * 4))
/* ---------------------- RCC registers bit mask ------------------------ */
/* CR register bit mask */
#define CR_HSEBYP_Reset ((uint32_t)0xFFFBFFFF)
#define CR_HSEBYP_Set ((uint32_t)0x00040000)
#define CR_HSEON_Reset ((uint32_t)0xFFFEFFFF)
#define CR_HSEON_Set ((uint32_t)0x00010000)
#define CR_HSITRIM_Mask ((uint32_t)0xFFFFFF07)
/* CFGR register bit mask */
#define CFGR_PLL_Mask ((uint32_t)0xFFC0FFFF)
#define CFGR_PLLMull_Mask ((uint32_t)0x003C0000)
#define CFGR_PLLSRC_Mask ((uint32_t)0x00400000)
#define CFGR_PLLXTPRE_Mask ((uint32_t)0x00020000)
#define CFGR_SWS_Mask ((uint32_t)0x0000000C)
#define CFGR_SW_Mask ((uint32_t)0xFFFFFFFC)
#define CFGR_HPRE_Reset_Mask ((uint32_t)0xFFFFFF0F)
#define CFGR_HPRE_Set_Mask ((uint32_t)0x000000F0)
#define CFGR_PPRE1_Reset_Mask ((uint32_t)0xFFFFF8FF)
#define CFGR_PPRE1_Set_Mask ((uint32_t)0x00000700)
#define CFGR_PPRE2_Reset_Mask ((uint32_t)0xFFFFC7FF)
#define CFGR_PPRE2_Set_Mask ((uint32_t)0x00003800)
#define CFGR_ADCPRE_Reset_Mask ((uint32_t)0xFFFF3FFF)
#define CFGR_ADCPRE_Set_Mask ((uint32_t)0x0000C000)
/* CSR register bit mask */
#define CSR_RMVF_Set ((uint32_t)0x01000000)
/* RCC Flag Mask */
#define FLAG_Mask ((uint8_t)0x1F)
/* Typical Value of the HSI in Hz */
#define HSI_Value ((uint32_t)8000000)
/* CIR register byte 2 (Bits[15:8]) base address */
#define CIR_BYTE2_ADDRESS ((uint32_t)0x40021009)
/* CIR register byte 3 (Bits[23:16]) base address */
#define CIR_BYTE3_ADDRESS ((uint32_t)0x4002100A)
/* CFGR register byte 4 (Bits[31:24]) base address */
#define CFGR_BYTE4_ADDRESS ((uint32_t)0x40021007)
/* BDCR register base address */
#define BDCR_ADDRESS (PERIPH_BASE + BDCR_OFFSET)
#ifndef HSEStartUp_TimeOut
/* Time out for HSE start up */
#define HSEStartUp_TimeOut ((uint16_t)0x0500)
#endif
/**
* @}
*/
/** @defgroup RCC_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup RCC_Private_Variables
* @{
*/
static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
static __I uint8_t ADCPrescTable[4] = {2, 4, 6, 8};
/**
* @}
*/
/** @defgroup RCC_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @defgroup RCC_Private_Functions
* @{
*/
void SystemClk_HSEInit(uint32_t PLL_DN)
{
RCC_DeInit();
//HSE on
//CR寄存器BIT16位HSEON位置1作用是连接外部时钟HSE作为系统时钟
RCC_HSEConfig(RCC_HSE_ON);
while(1)
{
if(RCC_WaitForHSEStartUp()!=0)
{
break;
}
}
RCC_PLLCmd(DISABLE);
RCC_PLLConfig(RCC_PLLSource_HSE_Div1,PLL_DN);
RCC_PLLCmd(ENABLE);
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);//选择外部时钟作为系统时钟
}
/**
* @brief Resets the RCC clock configuration to the default reset state.
* @param None
* @retval : None
*/
void RCC_DeInit(void)
{
/* Set HSION bit */
RCC->CR |= (uint32_t)0x00000001;
/* Reset SW[1:0], HPRE[3:0], PPRE1[2:0], PPRE2[2:0], ADCPRE[1:0] and MCO[2:0] bits */
RCC->CFGR &= (uint32_t)0xF8FF0000;
/* Reset HSEON, CSSON and PLLON bits */
RCC->CR &= (uint32_t)0xFEF6FFFF;
/* Reset HSEBYP bit */
RCC->CR &= (uint32_t)0xFFFBFFFF;
/* Reset PLLSRC, PLLXTPRE, PLLMUL[3:0] and USBPRE bits */
RCC->CFGR &= (uint32_t)0xFF80FFFF;
/* Disable all interrupts */
RCC->CIR = 0x00000000;
}
/**
* @brief Configures the External High Speed oscillator (HSE).
* HSE can not be stopped if it is used directly or through the
* PLL as system clock.
* @param RCC_HSE: specifies the new state of the HSE.
* This parameter can be one of the following values:
* @arg RCC_HSE_OFF: HSE oscillator OFF
* @arg RCC_HSE_ON: HSE oscillator ON
* @arg RCC_HSE_Bypass: HSE oscillator bypassed with external
* clock
* @retval : None
*/
void RCC_HSEConfig(uint32_t RCC_HSE)
{
/* Check the parameters */
assert_param(IS_RCC_HSE(RCC_HSE));
/* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/
/* Reset HSEON bit */
RCC->CR &= CR_HSEON_Reset;
/* Reset HSEBYP bit */
RCC->CR &= CR_HSEBYP_Reset;
/* Configure HSE (RCC_HSE_OFF is already covered by the code section above) */
switch(RCC_HSE)
{
case RCC_HSE_ON:
/* Set HSEON bit */
RCC->CR |= CR_HSEON_Set;
break;
case RCC_HSE_Bypass:
/* Set HSEBYP and HSEON bits */
RCC->CR |= CR_HSEBYP_Set | CR_HSEON_Set;
break;
default:
break;
}
}
/**
* @brief Waits for HSE start-up.
* @param None
* @retval : An ErrorStatus enumuration value:
* - SUCCESS: HSE oscillator is stable and ready to use
* - ERROR: HSE oscillator not yet ready
*/
ErrorStatus RCC_WaitForHSEStartUp(void)
{
__IO uint32_t StartUpCounter = 0;
ErrorStatus status = ERROR;
FlagStatus HSEStatus = RESET;
/* Wait till HSE is ready and if Time out is reached exit */
do
{
HSEStatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY);
StartUpCounter++;
} while((HSEStatus == RESET) && (StartUpCounter != HSEStartUp_TimeOut));
if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET)
{
status = SUCCESS;
}
else
{
status = ERROR;
}
return (status);
}
/**
* @brief Adjusts the Internal High Speed oscillator (HSI) calibration
* value.
* @param HSICalibrationValue: specifies the calibration trimming value.
* This parameter must be a number between 0 and 0x1F.
* @retval : None
*/
void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_CALIBRATION_VALUE(HSICalibrationValue));
tmpreg = RCC->CR;
/* Clear HSITRIM[4:0] bits */
tmpreg &= CR_HSITRIM_Mask;
/* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */
tmpreg |= (uint32_t)HSICalibrationValue << 3;
/* Store the new value */
RCC->CR = tmpreg;
}
/**
* @brief Enables or disables the Internal High Speed oscillator (HSI).
* HSI can not be stopped if it is used directly or through the
* PLL as system clock.
* @param NewState: new state of the HSI.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void RCC_HSICmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if(NewState==ENABLE)
{
RCC->CR |= 0x01;
}
else
{
RCC->CR &= 0xfffffffe;
}
}
/**
* @brief Configures the PLL clock source and DM DN factor.
* This function must be used only when the PLL is disabled.
* @param RCC_PLLSource: specifies the PLL entry clock source.
* This parameter can be one of the following values:
* @arg RCC_PLLSource_HSI_Div2: HSI oscillator clock divided
* by 2 selected as PLL clock entry
* @arg RCC_PLLSource_HSE_Div1: HSE oscillator clock selected
* as PLL clock entry
* @arg RCC_PLLSource_HSE_Div2: HSE oscillator clock divided
* by 2 selected as PLL clock entry
* @param RCC_PLLDN: specifies the PLL multiplication factor.
* This parameter can be RCC_PLLMul_x where x:[31:26]
* @param RCC_PLLDM: specifies the PLL Divsior factor.
* This parameter can be RCC_Divsior_x where x:[22:20]
* @retval : None
*/
void RCC_PLLDMDNConfig(uint32_t RCC_PLLSource, uint32_t RCC_PLLDN,uint32_t RCC_PLLDP, uint32_t RCC_PLLDM)
{
uint32_t tmpreg0 = 0;
/* Check the parameters */
assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource));
assert_param(IS_RCC_PLL_MUL(RCC_PLLMul));
if(RCC_PLLSource == 0)
{
tmpreg0 &= ~(1<<22);
}
else
{
TK499_PLL_FACTOR |= 0x10000;
tmpreg0 |= (1<<22);
}
RCC_PLLDN &= 0x7f;
RCC_PLLDP &= 0x3;
RCC_PLLDM &= 0xf;
/* Set the PLL configuration bits */
tmpreg0 |= (u32)((u32)(RCC_PLLDN<<6))|((u32)(RCC_PLLDP<<4))|((u32)RCC_PLLDM);
RCC->PLLCFGR = tmpreg0;
// RCC->PLLCFGR = 0x4004d1;
}
/**
* @brief Configures the PLL clock source and multiplication factor.
* This function must be used only when the PLL is disabled.
* @param RCC_PLLSource: specifies the PLL entry clock source.
* This parameter can be one of the following values:
* @arg RCC_PLLSource_HSI_Div2: HSI oscillator clock divided
* by 2 selected as PLL clock entry
* @arg RCC_PLLSource_HSE_Div1: HSE oscillator clock selected
* as PLL clock entry
* @arg RCC_PLLSource_HSE_Div2: HSE oscillator clock divided
* by 2 selected as PLL clock entry
* @param RCC_PLLMul: specifies the PLL multiplication factor.
* This parameter can be RCC_PLLMul_x where x:[31:26][22:20]
* @retval : None
*/
void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t RCC_PLLMul)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource));
assert_param(IS_RCC_PLL_MUL(RCC_PLLMul));
tmpreg = RCC->CFGR;
/* Clear PLLSRC, PLLXTPRE and PLLMUL[3:0] bits */
tmpreg &= CFGR_PLL_Mask;
/* Set the PLL configuration bits */
tmpreg |= RCC_PLLSource;
/* Store the new value */
RCC->CFGR = tmpreg;
if(RCC_PLLMul==RCC_PLLMul_2)
{
TK499_PLL_FACTOR = 2;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000001, 0x00000000,0x00000000); //Frclk*8/4
}
if(RCC_PLLMul==RCC_PLLMul_3)
{
TK499_PLL_FACTOR = 3;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000002, 0x00000000,0x00000000);//Frclk*6/2
}
if(RCC_PLLMul==RCC_PLLMul_4)
{
TK499_PLL_FACTOR = 4;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000003, 0x00000000,0x00000000);//Frclk*8/2
}
if(RCC_PLLMul==RCC_PLLMul_5)
{
TK499_PLL_FACTOR = 5;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000013, 0x00000001,0x00000001);//Frclk*10/2
}
if(RCC_PLLMul==RCC_PLLMul_6)
{
TK499_PLL_FACTOR = 6;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000005, 0x00000000,0x00000000);//Frclk*12/2
}
if(RCC_PLLMul==RCC_PLLMul_7)
{
TK499_PLL_FACTOR = 7;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000006, 0x00000000,0x00000000);//Frclk*14/2
}
if(RCC_PLLMul==RCC_PLLMul_8)
{
TK499_PLL_FACTOR = 8;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000007, 0x00000000,0x00000000);//Frclk*16/2
}
if(RCC_PLLMul==RCC_PLLMul_9)
{
TK499_PLL_FACTOR = 9;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000008, 0x00000000,0x00000000);//Frclk*18/2
}
if(RCC_PLLMul==RCC_PLLMul_10)
{
TK499_PLL_FACTOR = 10;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000009, 0x00000000,0x00000000);//Frclk*20/2
}
if(RCC_PLLMul==RCC_PLLMul_11)
{
TK499_PLL_FACTOR = 11;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x0000000a, 0x00000000,0x00000000);//Frclk*22/2
}
if(RCC_PLLMul==RCC_PLLMul_12)
{
TK499_PLL_FACTOR = 12;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x0000000b, 0x00000000,0x00000000);//Frclk*24/2
}
if(RCC_PLLMul==RCC_PLLMul_13)
{
TK499_PLL_FACTOR = 13;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x0000000c, 0x00000000,0x00000000);//Frclk*26/2
}
if(RCC_PLLMul==RCC_PLLMul_14)
{
TK499_PLL_FACTOR = 14;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x0000000d, 0x00000000,0x00000000);//Frclk*28/2
}
if(RCC_PLLMul==RCC_PLLMul_15)
{
TK499_PLL_FACTOR = 15;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x0000000e, 0x00000000,0x00000000);//Frclk*30/2
}
if(RCC_PLLMul==RCC_PLLMul_16)
{
TK499_PLL_FACTOR = 16;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x0000000f, 0x00000000,0x00000000);//Frclk*32/2
}
if(RCC_PLLMul==RCC_PLLMul_17)
{
TK499_PLL_FACTOR = 17;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000010, 0x00000000,0x00000000);//Frclk*32/2
}
if(RCC_PLLMul==RCC_PLLMul_18)
{
TK499_PLL_FACTOR = 18;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000011, 0x00000000,0x00000000);//Frclk*32/2
}
if(RCC_PLLMul==RCC_PLLMul_19)
{
TK499_PLL_FACTOR = 19;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000012, 0x00000000,0x00000000);//Frclk*32/2
}
if(RCC_PLLMul==RCC_PLLMul_20)
{
TK499_PLL_FACTOR = 20;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000013, 0x00000000,0x00000000);//Frclk*32/2
}
if(RCC_PLLMul==RCC_PLLMul_21)
{
TK499_PLL_FACTOR = 21;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000014, 0x00000000,0x00000000);//Frclk*32/2
}
if(RCC_PLLMul==RCC_PLLMul_22)
{
TK499_PLL_FACTOR = 22;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000015, 0x00000000,0x00000000);//Frclk*32/2
}
if(RCC_PLLMul==RCC_PLLMul_23)
{
TK499_PLL_FACTOR = 23;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000016, 0x00000000,0x00000000);//Frclk*32/2
}
if(RCC_PLLMul==RCC_PLLMul_24)
{
TK499_PLL_FACTOR = 24;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000017, 0x00000000,0x00000000);//Frclk*32/2
}
if(RCC_PLLMul==RCC_PLLMul_25)
{
TK499_PLL_FACTOR = 25;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000018, 0x00000000,0x00000000);//Frclk*32/2
}
if(RCC_PLLMul==RCC_PLLMul_26)
{
TK499_PLL_FACTOR = 26;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000019, 0x00000000,0x00000000);//Frclk*32/2
}
if(RCC_PLLMul==RCC_PLLMul_27)
{
TK499_PLL_FACTOR = 27;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000020, 0x00000000,0x00000000);//Frclk*32/2
}
if(RCC_PLLMul==RCC_PLLMul_28)
{
TK499_PLL_FACTOR = 28;
RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000021, 0x00000000,0x00000000);//Frclk*32/2
}
}
/**
* @brief Enables or disables the PLL.
* The PLL can not be disabled if it is used as system clock.
* @param NewState: new state of the PLL.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void RCC_PLLCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->CR |= 0x01000000;
}
else
{
RCC->CR &= 0xfeffffff;
}
}
/**
* @brief Configures the system clock (SYSCLK).
* @param RCC_SYSCLKSource: specifies the clock source used as system
* clock. This parameter can be one of the following values:
* @arg RCC_SYSCLKSource_HSI: HSI selected as system clock
* @arg RCC_SYSCLKSource_HSE: HSE selected as system clock
* @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock
* @retval : None
*/
void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource));
tmpreg = RCC->CFGR;
/* Clear SW[1:0] bits */
tmpreg &= CFGR_SW_Mask;
/* Set SW[1:0] bits according to RCC_SYSCLKSource value */
tmpreg |= RCC_SYSCLKSource;
/* Store the new value */
RCC->CFGR = tmpreg;
if(RCC_SYSCLKSource == RCC_SYSCLKSource_PLLCLK)
{
if(TK499_PLL_FACTOR&0x10000)//hse as pll src
{
TK499_SYS_CLK = (TK499_PLL_FACTOR&0xff)*HSE_VALUE;
}
else
{
TK499_SYS_CLK = (TK499_PLL_FACTOR&0xff)*HSI_Value_Pll_ON;
}
}
else if(RCC_SYSCLKSource == RCC_SYSCLKSource_HSE)
{
TK499_SYS_CLK = HSE_VALUE;
}
else
{
TK499_SYS_CLK = HSI_Value_Pll_OFF;
}
}
/**
* @brief Returns the clock source used as system clock.
* @param None
* @retval : The clock source used as system clock. The returned value can
* be one of the following:
* - 0x00: HSI/6 used as system clock
* - 0x04: HSE used as system clock
* - 0x08: PLL used as system clock
*/
uint8_t RCC_GetSYSCLKSource(void)
{
return ((uint8_t)(RCC->CFGR & CFGR_SWS_Mask));
}
/**
* @brief Configures the AHB clock (HCLK).
* @param RCC_SYSCLK: defines the AHB clock divider. This clock is derived from
* the system clock (SYSCLK).
* This parameter can be one of the following values:
* @arg RCC_SYSCLK_Div1: AHB clock = SYSCLK
* @arg RCC_SYSCLK_Div2: AHB clock = SYSCLK/2
* @arg RCC_SYSCLK_Div4: AHB clock = SYSCLK/4
* @arg RCC_SYSCLK_Div8: AHB clock = SYSCLK/8
* @arg RCC_SYSCLK_Div16: AHB clock = SYSCLK/16
* @arg RCC_SYSCLK_Div64: AHB clock = SYSCLK/64
* @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128
* @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256
* @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512
* @retval : None
*/
void RCC_HCLKConfig(uint32_t RCC_SYSCLK)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_HCLK(RCC_SYSCLK));
tmpreg = RCC->CFGR;
/* Clear HPRE[3:0] bits */
tmpreg &= CFGR_HPRE_Reset_Mask;
/* Set HPRE[3:0] bits according to RCC_SYSCLK value */
tmpreg |= RCC_SYSCLK;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Configures the Low Speed APB clock (PCLK1).
* @param RCC_HCLK: defines the APB1 clock divider. This clock is derived from
* the AHB clock (HCLK).
* This parameter can be one of the following values:
* @arg RCC_HCLK_Div1: APB1 clock = HCLK
* @arg RCC_HCLK_Div2: APB1 clock = HCLK/2
* @arg RCC_HCLK_Div4: APB1 clock = HCLK/4
* @arg RCC_HCLK_Div8: APB1 clock = HCLK/8
* @arg RCC_HCLK_Div16: APB1 clock = HCLK/16
* @retval : None
*/
void RCC_PCLK1Config(uint32_t RCC_HCLK)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PCLK(RCC_HCLK));
tmpreg = RCC->CFGR;
/* Clear PPRE1[2:0] bits */
tmpreg &= CFGR_PPRE1_Reset_Mask;
/* Set PPRE1[2:0] bits according to RCC_HCLK value */
tmpreg |= RCC_HCLK;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Configures the High Speed APB clock (PCLK2).
* @param RCC_HCLK: defines the APB2 clock divider. This clock is derived from
* the AHB clock (HCLK).
* This parameter can be one of the following values:
* @arg RCC_HCLK_Div1: APB2 clock = HCLK
* @arg RCC_HCLK_Div2: APB2 clock = HCLK/2
* @arg RCC_HCLK_Div4: APB2 clock = HCLK/4
* @arg RCC_HCLK_Div8: APB2 clock = HCLK/8
* @arg RCC_HCLK_Div16: APB2 clock = HCLK/16
* @retval : None
*/
void RCC_PCLK2Config(uint32_t RCC_HCLK)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PCLK(RCC_HCLK));
tmpreg = RCC->CFGR;
/* Clear PPRE2[2:0] bits */
tmpreg &= CFGR_PPRE2_Reset_Mask;
/* Set PPRE2[2:0] bits according to RCC_HCLK value */
tmpreg |= RCC_HCLK << 3;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Enables or disables the specified RCC interrupts.
* @param RCC_IT: specifies the RCC interrupt sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @param NewState: new state of the specified RCC interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_IT(RCC_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Perform Byte access to RCC_CIR[12:8] bits to enable the selected interrupts */
RCC->CIR |= ((uint32_t)RCC_IT)<<8;
}
else
{
/* Perform Byte access to RCC_CIR[12:8] bits to disable the selected interrupts */
RCC->CIR &= ~((uint32_t)RCC_IT<<8);
}
}
/**
* @brief Configures the USB clock (USBCLK).
* @param RCC_USBCLKSource: specifies the USB clock source. This clock is
* derived from the PLL output.
* This parameter can be one of the following values:
* @arg RCC_USBCLKSource_PLLCLK_1Div5: PLL clock divided by 1,5 selected as USB
* clock source
* @arg RCC_USBCLKSource_PLLCLK_Div1: PLL clock selected as USB clock source
* @retval : None
*/
void RCC_USBCLKConfig(uint32_t RCC_USBCLKSource)
{
/* Check the parameters */
assert_param(IS_RCC_USBCLK_SOURCE(RCC_USBCLKSource));
RCC->CFGR |= RCC_USBCLKSource;
}
/**
* @brief Configures the ADC clock (ADCCLK).
* @param RCC_PCLK2: defines the ADC clock divider. This clock is derived from
* the APB2 clock (PCLK2).
* This parameter can be one of the following values:
* @arg RCC_PCLK2_Div2: ADC clock = PCLK2/2
* @arg RCC_PCLK2_Div4: ADC clock = PCLK2/4
* @arg RCC_PCLK2_Div6: ADC clock = PCLK2/6
* @arg RCC_PCLK2_Div8: ADC clock = PCLK2/8
* @retval : None
*/
void RCC_ADCCLKConfig(uint32_t RCC_PCLK2)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_ADCCLK(RCC_PCLK2));
tmpreg = RCC->CFGR;
/* Clear ADCPRE[1:0] bits */
tmpreg &= CFGR_ADCPRE_Reset_Mask;
/* Set ADCPRE[1:0] bits according to RCC_PCLK2 value */
tmpreg |= RCC_PCLK2;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Configures the External Low Speed oscillator (LSE).
* @param RCC_LSE: specifies the new state of the LSE.
* This parameter can be one of the following values:
* @arg RCC_LSE_OFF: LSE oscillator OFF
* @arg RCC_LSE_ON: LSE oscillator ON
* @arg RCC_LSE_Bypass: LSE oscillator bypassed with external
* clock
* @retval : None
*/
void RCC_LSEConfig(uint8_t RCC_LSE)
{
/* Check the parameters */
assert_param(IS_RCC_LSE(RCC_LSE));
/* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/
/* Reset LSEON bit */
RCC->BDCR &= ~((uint32_t)RCC_LSE_ON);
/* Reset LSEBYP bit */
RCC->BDCR &= ~((uint32_t)RCC_LSE_ON);
/* Configure LSE (RCC_LSE_OFF is already covered by the code section above) */
switch(RCC_LSE)
{
case RCC_LSE_ON:
/* Set LSEON bit */
RCC->BDCR |= RCC_LSE_ON;
break;
case RCC_LSE_Bypass:
/* Set LSEBYP and LSEON bits */
RCC->BDCR |= RCC_LSE_Bypass | RCC_LSE_ON;
break;
default:
break;
}
}
/**
* @brief Enables or disables the Internal Low Speed oscillator (LSI).
* LSI can not be disabled if the IWDG is running.
* @param NewState: new state of the LSI.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void RCC_LSICmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->CSR |= 0x00000001;
}
else
{
RCC->CSR &= 0xfffffffe;
}
}
/**
* @brief Configures the RTC clock (RTCCLK).
* Once the RTC clock is selected it can't be changed unless the
* Backup domain is reset.
* @param RCC_RTCCLKSource: specifies the RTC clock source.
* This parameter can be one of the following values:
* @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock
* @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock
* @arg RCC_RTCCLKSource_HSE_Div128: HSE clock divided by 128
* selected as RTC clock
* @retval : None
*/
void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource)
{
/* Check the parameters */
assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource));
/* Select the RTC clock source */
RCC->BDCR |= RCC_RTCCLKSource;
}
/**
* @brief Enables or disables the RTC clock.
* This function must be used only after the RTC clock was
* selected using the RCC_RTCCLKConfig function.
* @param NewState: new state of the RTC clock.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void RCC_RTCCLKCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->BDCR |= 0x00008000;
}
else
{
RCC->BDCR &= 0xffff7fff;
}
}
void getSystemClock(u32 *sysclk)
{
u32 tempreg0 = RCC->CFGR;
u32 tempreg1;
u8 dn,dp,dm;
if((tempreg0 & 0xC) == 0x00)
{
*sysclk = 8000000;
}
else if((tempreg0 & 0xC) ==0x04)
{
*sysclk = 12000000;
}
else
{
tempreg1 = RCC->PLLCFGR;
dn = (tempreg1 >> 6) & 0x7F;
dn ++;
dp = (tempreg1 >> 4) & 0x3;
if(dp == 0)
dp = 1;
else if(dp == 1)
dp = 2;
else if(dp == 2)
dp = 4;
else if(dp == 3)
dp = 8;
dm = (tempreg1 >> 0) & 0xF;
dm++;
if(tempreg1 & (1 << 22))
{
if(tempreg0 & (1 << 16))
*sysclk = 6000000* dn/( dm * dp);
else
*sysclk = 12000000* dn/( dm * dp);
}
else
{
*sysclk = 12000000* dn/( dm * dp);
}
}
}
/**
* @brief Returns the frequencies of different on chip clocks.
* @param RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which
* will hold the clocks frequencies.
* @retval : None
*/
void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)
{
uint32_t tmp = 0, presc = 0;
/* Get SYSCLK source -------------------------------------------------------*/
tmp = RCC->CFGR & CFGR_SWS_Mask;
switch (tmp)
{
case 0x00: /* HSI used as system clock */
RCC_Clocks->SYSCLK_Frequency = HSI_Value_Pll_OFF;
break;
case 0x04: /* HSE used as system clock */
RCC_Clocks->SYSCLK_Frequency = HSE_Value;
break;
case 0x08: /* PLL used as system clock */
/* Get PLL clock source and multiplication factor ----------------------*/
RCC_Clocks->SYSCLK_Frequency = TK499_SYS_CLK;
getSystemClock( & (RCC_Clocks->SYSCLK_Frequency ));
break;
default:
RCC_Clocks->SYSCLK_Frequency = HSI_Value_Pll_OFF;
break;
}
/* Compute HCLK, PCLK1, PCLK2 and ADCCLK clocks frequencies ----------------*/
/* Get HCLK prescaler */
tmp = RCC->CFGR & CFGR_HPRE_Set_Mask;
tmp = tmp >> 4;
presc = APBAHBPrescTable[tmp];
/* HCLK clock frequency */
RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc;
/* Get PCLK1 prescaler */
tmp = RCC->CFGR & CFGR_PPRE1_Set_Mask;
tmp = tmp >> 8;
presc = APBAHBPrescTable[tmp];
/* PCLK1 clock frequency */
RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
/* Get PCLK2 prescaler */
tmp = RCC->CFGR & CFGR_PPRE2_Set_Mask;
tmp = tmp >> 11;
presc = APBAHBPrescTable[tmp];
/* PCLK2 clock frequency */
RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
/* Get ADCCLK prescaler */
tmp = RCC->CFGR & CFGR_ADCPRE_Set_Mask;
tmp = tmp >> 14;
presc = ADCPrescTable[tmp];
/* ADCCLK clock frequency */
RCC_Clocks->ADCCLK_Frequency = RCC_Clocks->PCLK2_Frequency / presc;
}
/**
* @brief Enables or disables the AHB peripheral clock.
* @param RCC_AHBPeriph: specifies the AHB peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_AHBPeriph_DMA1
* @arg RCC_AHBPeriph_DMA2
* @arg RCC_AHBPeriph_SRAM
* @arg RCC_AHBPeriph_FLITF
* @arg RCC_AHBPeriph_CRC
* @arg RCC_AHBPeriph_FSMC
* @arg RCC_AHBPeriph_SDIO
* SRAM and FLITF clock can be disabled only during sleep mode.
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->AHB1ENR |= RCC_AHBPeriph;
}
else
{
RCC->AHB1ENR &= ~RCC_AHBPeriph;
}
}
/**
* @brief Enables or disables the High Speed APB (APB2) peripheral clock.
* @param RCC_APB2Periph: specifies the APB2 peripheral to gates its
* clock.
* This parameter can be any combination of the following values:
* @arg RCC_APB2Periph_SYSCFG, RCC_AHBPeriph_GPIOA, RCC_AHBPeriph_GPIOB,
* RCC_AHBPeriph_GPIOC, RCC_AHBPeriph_GPIOD, RCC_APB2Periph_ADC1,
* RCC_APB2Periph_ADC2, RCC_APB2Periph_TIM1, RCC_APB2Periph_SPI1,
* RCC_APB2Periph_TIM8, RCC_APB2Periph_UART1,
* RCC_APB2Periph_ALL
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB2ENR |= RCC_APB2Periph;
}
else
{
RCC->APB2ENR &= ~RCC_APB2Periph;
}
}
void RCC_BackupResetCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) BDCR_BDRST_BB = (uint32_t)NewState;
}
/**
* @brief Enables or disables the Low Speed APB (APB1) peripheral clock.
* @param RCC_APB1Periph: specifies the APB1 peripheral to gates its
* clock.
* This parameter can be any combination of the following values:
* @arg RCC_APB1Periph_TIM2, RCC_APB1Periph_TIM3, RCC_APB1Periph_TIM4,
* RCC_APB1Periph_TIM5, RCC_APB1Periph_TIM6, RCC_APB1Periph_TIM7,
* RCC_APB1Periph_WWDG, RCC_APB1Periph_SPI2, RCC_APB1Periph_SPI3,
* RCC_APB1Periph_UART2, RCC_APB1Periph_UART3, RCC_APB1Periph_UART4,
* RCC_APB1Periph_UART5, RCC_APB1Periph_I2C1, RCC_APB1Periph_I2C2,
* RCC_APB1Periph_USB, RCC_APB1Periph_CAN1, RCC_APB1Periph_BKP,
* RCC_APB1Periph_PWR, RCC_APB1Periph_DAC, RCC_APB1Periph_ALL
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB1ENR |= RCC_APB1Periph;
}
else
{
RCC->APB1ENR &= ~RCC_APB1Periph;
}
}
/**
* @brief Forces or releases High Speed APB (APB2) peripheral reset.
* @param RCC_APB2Periph: specifies the APB2 peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_APB2Periph_AFIO, RCC_AHBPeriph_GPIOA, RCC_AHBPeriph_GPIOB,
* RCC_AHBPeriph_GPIOC, RCC_AHBPeriph_GPIOD, RCC_APB2Periph_ADC1,
* RCC_APB2Periph_ADC2, RCC_APB2Periph_TIM1, RCC_APB2Periph_SPI1,
* RCC_APB2Periph_TIM8, RCC_APB2Periph_UART1, RCC_APB2Periph_ADC3,
* RCC_APB2Periph_ALL
* @param NewState: new state of the specified peripheral reset.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB2RSTR |= RCC_APB2Periph;
}
else
{
RCC->APB2RSTR &= ~RCC_APB2Periph;
}
}
/**
* @brief Forces or releases Low Speed APB (APB1) peripheral reset.
* @param RCC_APB1Periph: specifies the APB1 peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_APB1Periph_TIM2, RCC_APB1Periph_TIM3, RCC_APB1Periph_TIM4,
* RCC_APB1Periph_TIM5, RCC_APB1Periph_TIM6, RCC_APB1Periph_TIM7,
* RCC_APB1Periph_WWDG, RCC_APB1Periph_SPI2, RCC_APB1Periph_SPI3,
* RCC_APB1Periph_UART2, RCC_APB1Periph_UART3, RCC_APB1Periph_UART4,
* RCC_APB1Periph_UART5, RCC_APB1Periph_I2C1, RCC_APB1Periph_I2C2,
* RCC_APB1Periph_USB, RCC_APB1Periph_CAN1, RCC_APB1Periph_BKP,
* RCC_APB1Periph_PWR, RCC_APB1Periph_DAC, RCC_APB1Periph_ALL
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB1RSTR |= RCC_APB1Periph;
}
else
{
RCC->APB1RSTR &= ~RCC_APB1Periph;
}
}
/**
* @brief Enables or disables the Clock Security System.
* @param NewState: new state of the Clock Security System..
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void RCC_ClockSecuritySystemCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
// *(__IO uint32_t *) CR_CSSON_BB = (uint32_t)NewState;
if(NewState==ENABLE)
{
RCC->CR |= (uint32_t)0x00080000;
}
else
{
RCC->CR &= (uint32_t)0xfff7ffff;
}
}
/**
* @brief Selects the clock source to output on MCO pin.
* @param RCC_MCO: specifies the clock source to output.
* This parameter can be one of the following values:
* @arg RCC_MCO_NoClock: No clock selected
* @arg RCC_MCO_SYSCLK: System clock selected
* @arg RCC_MCO_HSI: HSI oscillator clock selected
* @arg RCC_MCO_HSE: HSE oscillator clock selected
* @arg RCC_MCO_PLLCLK_Div2: PLL clock divided by 2 selected
* @retval : None
*/
void RCC_MCOConfig(uint8_t RCC_MCO)
{
/* Check the parameters */
assert_param(IS_RCC_MCO(RCC_MCO));
/* Perform Byte access to MCO[2:0] bits to select the MCO source */
RCC->CFGR |= (RCC_MCO<<24);
}
/**
* @brief Checks whether the specified RCC flag is set or not.
* @param RCC_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready
* @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
* @arg RCC_FLAG_PLLRDY: PLL clock ready
* @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
* @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
* @arg RCC_FLAG_PINRST: Pin reset
* @arg RCC_FLAG_PORRST: POR/PDR reset
* @arg RCC_FLAG_SFTRST: Software reset
* @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
* @arg RCC_FLAG_WWDGRST: Window Watchdog reset
* @arg RCC_FLAG_LPWRRST: Low Power reset
* @retval : The new state of RCC_FLAG (SET or RESET).
*/
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG)
{
uint32_t tmp = 0;
uint32_t statusreg = 0;
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_RCC_FLAG(RCC_FLAG));
/* Get the RCC register index */
tmp = RCC_FLAG >> 5;
if (tmp == 1) /* The flag to check is in CR register */
{
statusreg = RCC->CR;
}
else if (tmp == 2) /* The flag to check is in BDCR register */
{
statusreg = RCC->BDCR;
}
else /* The flag to check is in CSR register */
{
statusreg = RCC->CSR;
}
/* Get the flag position */
tmp = RCC_FLAG & FLAG_Mask;
if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the flag status */
return bitstatus;
}
/**
* @brief Clears the RCC reset flags.
* The reset flags are: RCC_FLAG_PINRST, RCC_FLAG_PORRST,
* RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST,
* RCC_FLAG_LPWRRST
* @param None
* @retval : None
*/
void RCC_ClearFlag(void)
{
/* Set RMVF bit to clear the reset flags */
RCC->CSR |= CSR_RMVF_Set;
}
/**
* @brief Checks whether the specified RCC interrupt has occurred or not.
* @param RCC_IT: specifies the RCC interrupt source to check.
* This parameter can be one of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_CSS: Clock Security System interrupt
* @retval : The new state of RCC_IT (SET or RESET).
*/
ITStatus RCC_GetITStatus(uint8_t RCC_IT)
{
ITStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_RCC_GET_IT(RCC_IT));
/* Check the status of the specified RCC interrupt */
if ((RCC->CIR & RCC_IT) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the RCC_IT status */
return bitstatus;
}
/**
* @brief Clears the RCC's interrupt pending bits.
* @param RCC_IT: specifies the interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_CSS: Clock Security System interrupt
* @retval : None
*/
void RCC_ClearITPendingBit(uint8_t RCC_IT)
{
/* Check the parameters */
assert_param(IS_RCC_CLEAR_IT(RCC_IT));
/* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt
pending bits */
RCC->CIR |= (uint32_t)RCC_IT<<16;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/*-------------------------(C) COPYRIGHT 2016 HOLOCENE ----------------------*/